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PRIMEHPC FX10  System Configuration 

IO Network 

Local file system 

Compute Nodes 

I/O nodes 
Network  

(IB or GbE) 

Tofu interconnect for I/O 

Local disks 

Global disk 

File servers 

Management servers 

Portal 
 servers 

Login  
server 

Global file system 

Compute node configuration 

SPARC64TM IXfx 
CPU 

ICC 
(Interconnect 
Control Chip) 

DDR3 
memory 

IB: InfiniBand 

GB: GigaBit Ethernet 
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 SPARC64TM IXfx CPU 

 16 cores/socket 

 236.5 GFlops 

FX１０ System H/W Specifications 

PRIMEHPC FX10 H/W Specifications 

CPU 
Name SPARC64TM IXfx 

Performance 236.5GFlops@1.848GHz 

Node 
Configuration 1 CPU / Node 

Memory capacity 32, 64 GB 

Rack Performance/rack 22.7 TFlops 

System 

(4 ~1024 racks) 

No. of compute node 384 to 98,304 

Performance 90.8TFlops to 23.2PFlops 

Memory 12 TB to 6 PB  

 System board 

 4 nodes (4 CPUs) 

 System rack 
 96 compute nodes 
 6 I/O nodes 
 With optional water 

cooling exhaust unit 

 System  
 Max. 23.2 PFlops 
 Max. 1,024 racks 
 Max. 98,304 CPUs 
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The K computer and FX10  
Comparison of System H/W Specifications 

K computer FX10 

CPU 

Name SPARC64TM VIIIfx SPARC64TM IXfx 

Performance 128GFlops@2GHz 236.5GFlops@1.848GHz 

Architecture 
SPARC V9 + 

HPC-ACE extension ← 

Cache configuration 

L1(I) Cache:32KB/core, 

L1(D) Cache:32KB/core ← 

L2 Cache: 6MB(shared) L2 Cache: 12MB(shared) 

No. of cores/socket 8 16 

Memory band width 64 GB/s. 85 GB/s. 

Node 
Configuration 1 CPU / Node ← 

Memory capacity 16 GB 32, 64 GB 

System board Node/system board 4 Nodes ← 

Rack 
System board/rack 24 System boards ← 

Performance/rack 12.3 TFlops 22.7 TFlops 
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The K computer and FX10  
Comparison of System H/W Specifications (cont.) 

K computer FX10 

Interconnect 

Topology 6D Mesh/Torus ← 

Performance 
5GB/s x2 

(bi-directional) ← 

No. of link per node 10 ← 

Additional features 
H/W barrier, reduction ← 

no external switch box ← 

Cooling 

CPU, ICC(interconnect 
chip), DDCON 

Direct water cooling ← 

Other parts Air cooling 
Air cooling + 

Exhaust air water cooling 
unit (Optional) 
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Programming Environment 

  

Login Node Compute Nodes 

Job Control   
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User Client 
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Data 

FX10 System 
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Debugger GUI 

Profiler 

IDE 

IDE Interface 

Visualized 

Data 

  

  

  

App Debugger 

Interface 

Data 

Converter 

debugger 
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 Hardware 

Massively parallel supercomputer 

SPARC64TM IXfx 

Tofu interconnect 

 Software 

Parallel compiler 

PA(Performance Analysis) information 

Low jitter Operating System 

Distributed File System 

Tools for high performance computing 
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 Parallel programing style 

Hybrid parallel 

 

 Scalar tuning 

 

 Parallel tuning 

False sharing 

Load imbalance 

Tuning Techniques for FX10 
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 Large number of parallelism for large scale systems 

 Large number processes need large memory and overhead 

 Hybrid thread-process programming to reduce number of processes 

Hybrid parallel programming is annoying for programmers 

 Even for multi-threading, the coarser grain the better 

Procedure level or outer loop parallelism is desired 

 Little opportunity for such coarse grain parallelism 

System support for “fine grain” parallelism is required 

 VISIMPACT solves these problems 
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 Hybrid Parallel vs. Flat MPI 

Hybrid Parallel: MPI parallel between CPUs 
                         Thread parallel inside CPU (between cores) 

Flat MPI: MPI parallel between cores 

 VISIMPACT (Virtual Single Processor by Integrated Multi-core Parallel 
Architecture) 

Mechanism that treats multiple cores as one CPU through automatic 
parallelization 

 Hardware mechanisms to support hybrid parallel 

 Software tools to realize hybrid parallel automatically 

Hybrid Parallel 

Flat MPI 

MPI  
VISIMPACT 

MPI 
• Automatic threading 

• Hardware barrier 

• Shared L2 cache 

16 Process x 1 Thread 4 Process x 4 Thread 

Hybrid Parallel 
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Merits and Drawbacks of Flat MPI and Hybrid Parallel 

Node 
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Comm.
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Comm.
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                Data Area 

                Comm. Buffer 

Data per thread 

Flat MPI Hybrid Parallel 

Program portability Reduced memory usage 

Performance 
・less process = less MPI message trans. time 

・thread performance can be improved by 

VISIMPACT 

Need memory 
・communication buffer 

・large page fragmentation 

MPI message passing time 

increase 

Need two level parallelization 
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Flat MPI Hybrid Parallel 
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 Optimum number of processes and threads depends on application 
characteristics. 

 For example, thread parallel scalability, MPI communication ratio and 
process load imbalance are involved. 

 

Characteristics of Hybrid Parallel 

Conceptual Image:  

 performance change of different combination of process and thread 

Faster 

High 

Slower 

Low 

16P×1T   8Ｐ×2T   4P×4T   8P×2T   1P×16T 

Application B 

• mostly processed in serial 

Application A  

• mostly processed in parallel 

• has a lot of communication 

• has a big load imbalance 

• has a high L2 cache reuse rate 

Application C 

• has a characteristic between A and B 
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Impact of Hybrid Parallel : example 1 & 2 
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Memory per Node Application A 
 MPI + automatic parallelize 
 Meteorology application 
 Flat MPI (1536 processes- 

1 thread) doesn’t work due to 

memory limit  
 Granularity of a thread is small 

Application B 
 MPI + automatic parallelize + 

OpenMP 
 Meteorology application 
 Flat MPI (1536 processes- 

1 thread) doesn’t work due to 

memory limit  
 Communication cost is 15% 
 72% of the process is done by 

thread parallel 
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Impact of Hybrid Parallel : example 3 & 4 
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Application C 
 MPI + OpenMP 
 Meteorology application 
 Load imbalance is eased by 

hybrid parallel 
 Communication cost is 15% 
 87% of the process is done by 

thread parallel 

Application D 
 MPI + automatic parallelize 
 NPB.CG benchmark 
 Load imbalance is eased by 

hybrid parallel 
 Communication cost is 

20%~30% 
 92% of the process is done by 

thread parallel 
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Application Tuning Cycle and Tools 

Execution 

MPI Tuning 

CPU Tuning 

Overall 

Tuning 

Job 

Information 

PAPI 

Vampir-trace 

Profiler 

Profiler RMATT 

Tofu-PA 

Open Source 

Tools 

Vampir-trace 

FX10 Specific 

Tools 

Profiler snapshot 
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 Performance Analysis 
reports: 

 elapsed time 

 calculation 
speed(FLOPS) 

 cache/memory access 
statistical information 

 Instruction count 

 Load balance 

Cycle accounting 

 Cycle Accounting data: 

 performance bottleneck 
identification 

 systematic 
performance tuning 

PA(Performance Analysis) reports 

Instruction Count/Rate 

Cache Miss Count/Rate 

TLB Miss Count/Rate 

Memory/Cache 

Throughput 
Elapsed Time, 

Calculation 

Speed/Efficiency 

Cycle Accounting 

SIMDize Ratio 

Indicator 

Load Balance 
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Cycle Accounting 

Store wait 

Instruction fetch 

wait 

Other 

Floating point  

execution wait 

Memory 

access wait 

Cache 

access wait 

4 

3/2 
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Max commit 
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Instruction 

commit count 

Restriction 

factor 

Integer register  

write wait 

Various 

reasons 

 Cycle Accounting is a technique to analyse performance bottleneck 

 SPARC64TM IXfx can measure a lot of performance analysis events  

 Summarize the execution time for each instruction commit count 

  

Overview 

1-4 instruction(s) commit: time to execute N instruction(s) in one machine cycle 

0 instruction commit: stall time due to some reason 

0 instruction commit 

1 instruction commit 

2-3 instructions commit 

4 instructions commit 

  

[sec] 
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loop 

procedure 

focusing overall interval  

PA information usage 

The bottleneck of a focusing interval (exclude input, output and communication) 

could be estimated from PA information of the overall interval 

 Utilization for tuning 

 Understanding the bottleneck 

By breaking down to a loop level and capture the PA information of the loop, 

you can find out what you can do to improve the bottleneck or how far you 

can improve the performance 

Copyright 2013 FUJITSU LIMITED 

Overall Interval

FP Cache

Load Wait

FP

Operation

Wait

1 Commit

2/3

Commits

4 Commits

0

1

2

3

4

5

6

7

8

9

Before Tuning

[sec]

Bottleneck 1 

Bottleneck 2 

18/40 



June 6th, 2013  7th MQM 

 PA graph of a whole measured interval 

Hot spot break down 

Breakdown 
to hot spot 
intervals 

 PA graph of different hot spots 
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Hot spot 1
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Analyse and Diagnose(Hot spot 1: if-statement in a loop) 

 PA graph  Source List 

 

        151     1               !$omp do 

                              <<< Loop-information Start >>> 

                              <<<  [OPTIMIZATION] 

                              <<<    PREFETCH       : 24 

                              <<<      a: 12, b: 12 

                              <<< Loop-information  End >>> 

        152     2   p   6s               do i=1,n1 

        153     3   p   6m                if (p(i) > 0.0) then 

        154     3   p   6s                  b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)* 

        155     3                    &            (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)* 

        156     3                    &            (c8 + a(i)*c9)))))))) 

        157     3   p   6v                endif 

        158     2   p   6v               enddo 

        159     1               !$omp enddo 

 

No software pipelining or 

SIMDizing due to inner loop 

if-statement 

Long Operation 

Wait 

Phenomenon 

Tuning required 

-> Eliminate the inner loop if-statement 

Diagnosis 

Analysis 
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Hot spot 2

FP

Memory

Load Wait
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Analyse and Diagnose(Hot spot 2: Stride Access) 

 

        176     1               !$omp do 

        177     2   p                 do j=1,n2 

                              <<< Loop-information Start >>> 

                              <<<  [OPTIMIZATION] 

                              <<<    SIMD 

                              <<<    SOFTWARE PIPELINING 

                              <<< Loop-information  End >>> 

        178     3   p   6v              do i=1,n1 

        179     3   p   6v                b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)* 

        180     3                    &            (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)* 

        181     3                    &            (c8 + a(j,i)*c9)))))))) 

        182     3   p   6v              enddo 

        183     2   p                 enddo 

        184     1               !$omp enddo 

 

The accessing pattern of 

array ‘b’ is sequent but that 

of ‘a’ is stride. This reduces 

the cache utilization rate. 

Long Memory 

Access Wait 

Phenomenon 

Tuning required 

-> Improve cache utilization rate of array ‘a’ 

Diagnosis 

Analysis 

L1D miss rate L2 miss rate 

53.01% 53.04% 

 PA graph  Source List 
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Hot spot 3

1 Commit
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Commits
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Analyze and Diagnose(Hot spot 3: Ideal Operation) 

  
        201     1               !$omp do 

                              <<< Loop-information Start >>> 

                              <<<  [OPTIMIZATION] 

                              <<<    SIMD 

                              <<<    SOFTWARE PIPELINING 

                              <<< Loop-information  End >>> 

        202     2   p   6v               do i=1,n1 

        203     2   p   6v                  b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)* 

        204     2                    &            (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)* 

        205     2                    &            (c8 + a(i)*c9)))))))) 

        206     2   p   6v               enddo 

        207     1               !$omp enddo 

 

 PA graph  Source List 
Both SIMDize ratio and 

SIMD multiply add 

instruction ratio are high 

Long instruction commit 

Most of them are plural 

Phenomenon 

Tuning NOT required 

-> Instruction level parallelization is highly done 

Diagnosis 

Analysis 

SIMDize ratio 
SIMD multiply add 

instruction ratio 

97.25% 79.53% 
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Hot spot 4
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analyse and Diagnose(Hot spot 4: Data Dependency) 

  

 

 

 

 

 

        224     1               !$omp do 

        225     2   p   6s              do i=2,n1 

        226     2   p   6s              a(i) = c0 + a(i-1)*(c1 + a(i-1)*(c2 + a(i-1)*(c3 + a(i-1)* 

        227     2                    &        (c4 + a(i-1)*(c5 + a(i-1)*(c6 + a(i-1)*(c7 + a(i-1)* 

        228     2                    &        (c8 + a(i-1)*c9)))))))) 

        229     2   p   6s              enddo 

        230     1               !$omp enddo 

 

 PA graph  Source List Statement ‘a(i)=a(i-1)’ 

makes data dependency 

between iteration. This 

causes no software 

pipelining and no SIMDizing. 
Long Operation 

Wait 

Phenomenon 

No way to tune 

-> Need to change the algorithm 

Diagnosis 

Analysis 
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Hot spot 1
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 Hot spot 1: use mask instruction instead of if-statement 

Tuning Result (Hot spot 1): if-statement in a loop 

Execution time(sec) FP op. peak ratio 
SIMD inst. ratio 

(/all inst.) 

SIMD inst. ratio 

(/SIMDizable inst.) 
Number of inst. 

Before Tuning 3.467 9.90% 0.00% 0.00% 9.46E+10 

After Tuning 0.631 60.11% 87.79% 99.98% 3.79E+10 

Hot spot 1
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Hot spot 2
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Memory

Load Wait
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 Apply loop blocking (divide into blocks which fit the cache size) 

Tuning Result (Hot spot 2): Stride Access 

Hot spot 2
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do j=1, n2 

   do i=1, n1 

do jj=1, n2, 16 

   do ii=1, n1, 96 

      do j=jj, min(jj+16-1, n2) 

         do i=ii, min(ii+96-1, n1) 

Execution time(sec) FP op. peak ratio L1D miss ratio L2 miss ratio 

Before Tuning 2.874 3.07% 53.01% 53.04% 

After Tuning 0.658 13.30% 6.69% 4.29% 

23% 
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Overall Interval
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 Chose tuning methods according to the cycle accounting result 

Scalar Tuning Technique 
E

x
e

c
u

ti
o

n
 T

im
e

 (
m

e
a

s
u

re
d
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Breakdown of Execution Time 

 Instruction Scheduling/Software pipelining 

 Masked execution of ‘if’ statement 

 Loop unrolling 

 Loop fission 

 Efficient L2 cache use 

 Loop blocking 

 Outer loop fusion, Outer loop unrolling 

 Memory latency hiding 

 L2 cache prefetch(stride/list access) 

 Efficient L1 cache use 

 Padding, Loop fission, Array merge 

 L2 cache latency hiding 

 L1 cache prefetch(stride/list access) 

Major Tuning Technique 

 Instruction Reduction 

 SIMDize 

 Common subexpression elimination 

Execution 

Execution 

Wait 

Cache 

Wait 

Memory 

Wait 
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Scalar Tuning Techniques 

Criteria Technique 
Speed Up 
Example 

Execution 

mask instruction x1.49 

loop peeling x2.01 

explicit data dependency hint x1.46 

x2.63 

Data 

loop interchange x3.74 

loop fusion x1.56 

loop fission x2.69 

array merge x2.98 

array index interchange x2.99 

array data padding x2.84 
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Source Program 

 1                           subroutine sub(s,a,b,ni,nj) 

 2                           real*8 a(ni,nj),b(ni,nj) 

 3                           real*8 s(nj) 

 4 

 5     1  pp                 do j = 1, nj 

 6     1   p                    s(j)=0.0 

 7     2   p   8v               do i = 1, ni 

 8     2   p   8v                  s(j)=s(j)+a(i,j)*b(i,j) 

 9     2   p   8v               end do 

10    1   p                  end do 

11 

12                             end 

nj=4 

ni=2000 

Each thread reads same cache line containing s(1)~s(4) 

s(1)~s(4) 

Thread 0 
(core 1) 

L1 
cache 

L2 cache 

Cache holds the data by line size 

1. Cache hit 

2. Thread 0 completes s(1) update 

3. Invalidate the cache lines of thread 1-3 to keep the data coherent 

2.Update 

3. Invalidate 

1. Cache miss 

2. Copy back cache line from thread 0 to thread 1 

3. Thread 1 completes s(2) update 

4. Invalidate the cache line of thread 0 to keep the data coherent 

2. Copy 
Back 

 Initial State 

Performance 
degrades as 
every thread 
repeats this 

state transition 

1. Cache miss 

Example of 4 threads 

Invalidate Invalidate 

1. Cache hit 

 Thread 0 updates s(1) 

False Sharing 
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Thread 1 
(core 2) 

Thread 2 
(core 3) 

Thread 3 
(core 4) 

s(1)~s(4) s(1)~s(4) s(1)~s(4) 

s(1)~s(4) L1 
cache 3. Invalidate 3. Invalidate 

L2 cache 

Thread 0 
(core 1) 

Thread 1 
(core 2) 

Thread 2 
(core 3) 

Thread 3 
(core 4) 

 Thread 1 updates s(2) 

Thread 0 
(core 1) 

Thread 1 
(core 2) 

Thread 2 
(core 3) 

Thread 3 
(core 4) 

3.Update 

s(1)~s(4) 

L2 cache 

L1 
cache 4. Invalidate 
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Source code before tuning 

20                           subroutine sub() 

21                           integer*8 i,j,n 

22                           parameter(n=30000) 

23                           parameter(m=8) 

24                           real*8 a(m,n),b(n,m) 

25                           common /com/a,b 

26 

                     <<< Loop-information Start >>> 

                     <<<  [PARALLELIZATION] 

                     <<<    Standard iteration count: 2 

                     <<< Loop-information  End >>> 

27     1  pp                   do j=1,m 

                     <<< Loop-information Start >>> 

                     <<<  [OPTIMIZATION] 

                     <<<    SIMD 

                     <<<    SOFTWARE PIPELINING 

                     <<< Loop-information  End >>> 

28     2   p   8v                do i=1,n 

29     2   p   8v                  a(j,i)=b(i,j) 

30     2   p   8v                enddo 

31     1   p                   enddo 

32 

33 End 

 Because the parallelized index ‘j’ runs from 1 to 8 (too small), every 

threads share the same cache line of array ‘a’.  

This causes a false sharing.  

PA data shows a lot of data access wait occurred. 

False sharing 
occurs here 

parallelized 

index runs only 8 

False sharing outcome (before tuning) 
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Store Wait
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Load Wait

Barrier Wait
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[sec]

L1D miss ratio 

Before tuning 29.53% 
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After Tuning

Store
Wait

FP
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Load
Wait

Barrier
Wait

0

1
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7

Before Tuning

[sec]Source code after tuning (source level tuning) 

20                           subroutine sub() 

21                           integer*8 i,j,n 

22                           parameter(n=30000) 

23                           parameter(m=8) 

24                           real*8 a(m,n),b(n,m) 

25                           common /com/a,b 

26 

                     <<< Loop-information Start >>> 

                     <<<  [PARALLELIZATION] 

                     <<<    Standard iteration count: 2 

                     <<<  [OPTIMIZATION] 

                     <<<    PREFETCH       : 4 

                     <<<      b: 2, a: 2 

                     <<< Loop-information  End >>> 

27     1  pp                   do i=1,n 
                     <<< Loop-information Start >>> 

                     <<<  [OPTIMIZATION] 

                     <<<    SIMD 

                     <<<    SOFTWARE PIPELINING 

                     <<< Loop-information  End >>> 

28     2   p   8v                do j=1,m 

29     2   p   8v                  a(j,i)=b(i,j) 

30     2   p   8v                enddo 

31     1   p                   enddo 
32 

33 End 

 By doing loop interchange, the false sharing can be avoided. 

This reduces L1 cache miss and improve the data access wait. 

Avoid false sharing 

Parallelize the second 

index by loop interchange 

False sharing tuned 
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27% 

L1D miss ratio 

After tuning 7.89% 
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 Triangular loop is a loop that has an inner loop initial index value 

driven by the outer loop index variable. If you divide this loop into 

blocks and run in parallel, you will get a load imbalance. 

Example 

 subroutine sub() 

      integer*8 i,j,n 

      parameter(n=512) 

      real*8 a(n+1,n),b(n+1,n),c(n+1,n) 

      common a,b,c 

 

!$omp parallel do 

        do j=1,n 

          do i=j,n 

            a(i,j)=b(i,j)+c(i,j) 

          enddo 

        enddo 

 

      end 

The initial index 

value of inner loop is 

determined by the 

outer loop variable. 

Triangular loop 
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T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 
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i 
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[sec]

Load imbalance occurs as the 
processing quantity of thread 0 is 

largest and that of thread 15 is smallest. 

Barrier Synchronization Wait 
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 By adding openMP directive, schedule(static, 1), loop size becomes small 
and loops are assigned to each thread in cyclic manner. This assignes 
almost same job quantity to each thread and reduces load imbalance. 
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Triangular loop load imbalance tuning 

Modified code 

28                           subroutine sub() 

29                           integer*8 i,j,n 

30                           parameter(n=512) 

31                           real*8 a(n+1,n),b(n+1,n),c(n+1,n) 

32                           common a,b,c 

33 

34                     !$omp parallel do schedule(static,1) 

35     1   p                   do j=1,n 

36     2   p   8v                do i=j,n 

37     2   p   8v                  a(i,j)=b(i,j)+c(i,j) 

38     2   p   8v                enddo 

39     1   p                   enddo 

40 

41                           end 
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[sec]
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[sec]

Example 

 1                     subroutine sub(a,b,s,n,m) 

 2                       real a(n),b(n),s 

 3                     !$omp parallel do schedule(static,1) 

 4     1   p             do j=1,n 

 5     2   p                if( mod(j,2) .eq. 0 ) then 

6     3   p   8v              do i=1,m 

 7     3   p   8v                 a(i) = a(i)*b(i)*s 

 8     3   p   8v              enddo 

 9     2   p                endif 

10     1   p             enddo 

11         end subroutine sub 

 : 

21                     program main 

22                       parameter(n=1000000) 

23                       parameter(m=100000) 

24                       real a(n),b(n) 

25                       call init(a,b,n) 

26                       call sub(a,b,2.0,n,m) 

27                     end program main 

Before Tuning 

 When the processing quantity of each thread is different, say the 

loop contains an if-statement, load imbalance can NOT be resolved 

by a static cyclic divide.  

Barrier 
synchronization wait 

Loop with if-statement 
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Only odd threads 
execute  ‘then’ clause 
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Modified code 

 1                     subroutine sub(a,b,s,n,m) 

 2                       real a(n),b(n),s 

 3                     !$omp parallel do schedule(dynamic,1) 

 4     1   p             do j=1,n 

 5     2   p                if( mod(j,2) .eq. 0 ) then 

6     3   p   8v              do i=1,m 

 7     3   p   8v                 a(i) = a(i)*b(i)*s 

 8     3   p   8v              enddo 

 9     2   p                endif 

10     1   p             enddo 

11                     end subroutine sub 

 : 

21                     program main 

22                       parameter(n=1000000) 

23                       parameter(m=100000) 

24                       real a(n),b(n) 

25                       call init(a,b,n) 

26                       call sub(a,b,2.0,n,m) 

27                     end program main 

Before 

Tuning 

 By changing the thread schedule method to dynamic, a thread which 

finishes its execution earlier can execute the next iteration. This 

reduces the load imbalance. 

Using dynamic scheduling to reduce load imbalance 
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 If the iteration count is too small to parallelize, a load imbalance occurs. 

Example 

34     1  pp             do k=1,l 

35     2   p                do j=1,m 

36     3   p   8v              do i=1,n 

37     3   p   8v                 a(i,j,k)=b(i,j,k)+c(i,j,k) 

38     3   p   8v              enddo 

39     2   p                enddo 

40     1   p             enddo 

l=2 

m=256 

n=256 

バリア同期待ち 

改善前 

Choosing a right parallelize loop 
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Barrier Synchronization Wait 

Modified code 

33                     !ocl serial 

34     1               do k=1,l 

35     1               !ocl parallel 

36     2  pp              do j=1,m 

37     3   p   8v            do i=1,n 

38     3   p   8v               a(i,j,k)=b(i,j,k)+c(i,j,k) 

39     3   p   8v            enddo 

40     2   p              enddo 

41     1               enddo 
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 By using a compiler option –Kdynamic_iteration, an appropriate iteration 
is chosen at runtime and the load imbalance is reduced. 

Example 

                              <<< Loop-information Start >>> 

                              <<<  [PARALLELIZATION] 

                              <<<    Standard iteration count: 2 

                              <<< Loop-information  End >>> 

         34     1  pp             do k=1,l 

                              <<< Loop-information Start >>> 

                              <<<  [PARALLELIZATION] 

                              <<<    Standard iteration count: 4 

                              <<< Loop-information  End >>> 

         35     2  pp                do j=1,m 

                              <<< Loop-information Start >>> 

                              <<<  [PARALLELIZATION] 

                              <<<    Standard iteration count: 728 

                              <<<  [OPTIMIZATION] 

                              <<<    SIMD 

                              <<<    SOFTWARE PIPELINING 

                              <<< Loop-information  End >>> 

         36     3  pp   8v              do i=1,n 

         37     3   p   8v                 a(i,j,k)=b(i,j,k)+c(i,j,k) 

         38     3   p   8v              enddo 

         39     2   p                enddo 

         40     1   p             enddo 

         41 

         42                     end 

l=2 

m=256 

n=256 

Though it tries to execute the outer 

loop in parallel at first, the iteration 

count ‘k’, which is 2, is too small to 

execute in parallel. So the inner 

loop, whose count is 256, is 

executed in parallel instead. 

バリア同期待ち 

Compiler option to choose a right iteration 
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 Due to synchronization, each computation is prolonged to the duration of 
the slowest process. 

 Even if the job size of each process is exactly the same, OS interferes the 
application and time varies 

OS jitter problem for parallel processing 

prolonged 

job proc #0 

proc #1 

noise 

wait job 

sync 

noise 

wait 

job job 

job noise 

wait job 

job 

sync sync 

job proc #0 

proc #1 job 

sync 

job job 

sync sync 

job job 
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 Ideal 

 Reality 

 OS tuning and hybrid parallel can reduce OS jitter. 
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OS jitter (noise) measured using a program called FWQ developed by 
Lawrence Livermore National Laboratory. https://asc.llnl.gov/sequoia/benchmarks/ 

t_fwq –w 18 –n 20000 –t 16 

-w: workload 
-n: repeat time 
-t: number of thread 

Machine PRIMEHPC FX10 PC Cluster 

Mean noise ratio 0. 589E-04 0. 154E-01 

Longest noise length(usec) 29.3 644.0 

OS jitter measured 

PRIMEHPC FX10 
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x86 
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 Fujitsu’s supercomputer, PRIMEHPC FX10, as well as K computer consists 
of high performance multi-core CPUs 

 There are bunch of scalar tuning techniques to make each process faster 

 We recommend to program applications in hybrid parallel manner to get a 
better performance 

 By checking performance analysis information, you can find bottlenecks 

 Some parallel tuning can be done using open MP directives 

 Operating system could be an obstacle to get higher performance 
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Summary 
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