

Getting the best performance

from massively parallel

computer

June 6th, 2013

Takashi Aoki

Next Generation Technical Computing Unit

Fujitsu Limited

June 6th, 2013 7th MQM

 Second generation petascale supercomputer PRIMEHPC FX10

 Tuning techniques for PRIMEHPC FX10

Agenda

Copyright 2013 FUJITSU LIMITED 1/40

*1: eXtended Parallel Fortran (Distributed Parallel Fortran)
*2: Rank Map Automatic Tuning Tool

In
te

r N
o

d
e

In
tra

 N
o

d
e

Fortran 2003

Programming Language, MPI Programming tool Math. Lib.

XPFortran
*1

BLAS

LAPACK

SSL II

IDE

Debugger

Profiler

MPI 2.1
ScaLAPACK

C

C++

OpenMP 3.0

RMATT
*2

•Insts. level opt.
 Instruction

scheduling

 SIMDization

•Loop level opt.
 Automatic

Parallelization

June 6th, 2013 7th MQM

PRIMEHPC FX10 System Configuration

IO Network

Local file system

Compute Nodes

I/O nodes
Network

(IB or GbE)

Tofu interconnect for I/O

Local disks

Global disk

File servers

Management servers

Portal
 servers

Login
server

Global file system

Compute node configuration

SPARC64TM IXfx
CPU

ICC
(Interconnect
Control Chip)

DDR3
memory

IB: InfiniBand

GB: GigaBit Ethernet

Copyright 2013 FUJITSU LIMITED

PRIMEHPC FX10

2/40

June 6th, 2013 7th MQM

 SPARC64TM IXfx CPU

 16 cores/socket

 236.5 GFlops

FX１０ System H/W Specifications

PRIMEHPC FX10 H/W Specifications

CPU
Name SPARC64TM IXfx

Performance 236.5GFlops@1.848GHz

Node
Configuration 1 CPU / Node

Memory capacity 32, 64 GB

Rack Performance/rack 22.7 TFlops

System

(4 ~1024 racks)

No. of compute node 384 to 98,304

Performance 90.8TFlops to 23.2PFlops

Memory 12 TB to 6 PB

 System board

 4 nodes (4 CPUs)

 System rack
 96 compute nodes
 6 I/O nodes
 With optional water

cooling exhaust unit

 System
 Max. 23.2 PFlops
 Max. 1,024 racks
 Max. 98,304 CPUs

Copyright 2013 FUJITSU LIMITED 3/40

June 6th, 2013 7th MQM

The K computer and FX10
Comparison of System H/W Specifications

K computer FX10

CPU

Name SPARC64TM VIIIfx SPARC64TM IXfx

Performance 128GFlops@2GHz 236.5GFlops@1.848GHz

Architecture
SPARC V9 +

HPC-ACE extension ←

Cache configuration

L1(I) Cache:32KB/core,

L1(D) Cache:32KB/core ←

L2 Cache: 6MB(shared) L2 Cache: 12MB(shared)

No. of cores/socket 8 16

Memory band width 64 GB/s. 85 GB/s.

Node
Configuration 1 CPU / Node ←

Memory capacity 16 GB 32, 64 GB

System board Node/system board 4 Nodes ←

Rack
System board/rack 24 System boards ←

Performance/rack 12.3 TFlops 22.7 TFlops

Copyright 2013 FUJITSU LIMITED 4/40

June 6th, 2013 7th MQM

The K computer and FX10
Comparison of System H/W Specifications (cont.)

K computer FX10

Interconnect

Topology 6D Mesh/Torus ←

Performance
5GB/s x2

(bi-directional) ←

No. of link per node 10 ←

Additional features
H/W barrier, reduction ←

no external switch box ←

Cooling

CPU, ICC(interconnect
chip), DDCON

Direct water cooling ←

Other parts Air cooling
Air cooling +

Exhaust air water cooling
unit (Optional)

Copyright 2013 FUJITSU LIMITED 5/40

June 6th, 2013 7th MQM

Programming Environment

Login Node Compute Nodes

Job Control

App

Data

Sampler

User Client

Command

Interface

Sampling

Data

FX10 System

Interactive

Debugger GUI

Profiler

IDE

IDE Interface

Visualized

Data

App Debugger

Interface

Data

Converter

debugger

Copyright 2013 FUJITSU LIMITED 6/40

June 6th, 2013 7th MQM

 Hardware

Massively parallel supercomputer

SPARC64TM IXfx

Tofu interconnect

 Software

Parallel compiler

PA(Performance Analysis) information

Low jitter Operating System

Distributed File System

Tools for high performance computing

Copyright 2013 FUJITSU LIMITED 7/40

June 6th, 2013 7th MQM

 Parallel programing style

Hybrid parallel

 Scalar tuning

 Parallel tuning

False sharing

Load imbalance

Tuning Techniques for FX10

Copyright 2013 FUJITSU LIMITED 8/40

June 6th, 2013 7th MQM

 Large number of parallelism for large scale systems

 Large number processes need large memory and overhead

 Hybrid thread-process programming to reduce number of processes

Hybrid parallel programming is annoying for programmers

 Even for multi-threading, the coarser grain the better

Procedure level or outer loop parallelism is desired

 Little opportunity for such coarse grain parallelism

System support for “fine grain” parallelism is required

 VISIMPACT solves these problems

Copyright 2013 FUJITSU LIMITED

Parallel Programming for Busy Researchers

9/40

June 6th, 2013 7th MQM

 Hybrid Parallel vs. Flat MPI

Hybrid Parallel: MPI parallel between CPUs
 Thread parallel inside CPU (between cores)

Flat MPI: MPI parallel between cores

 VISIMPACT (Virtual Single Processor by Integrated Multi-core Parallel
Architecture)

Mechanism that treats multiple cores as one CPU through automatic
parallelization

 Hardware mechanisms to support hybrid parallel

 Software tools to realize hybrid parallel automatically

Hybrid Parallel

Flat MPI

MPI
VISIMPACT

MPI
• Automatic threading

• Hardware barrier

• Shared L2 cache

16 Process x 1 Thread 4 Process x 4 Thread

Hybrid Parallel

Copyright 2013 FUJITSU LIMITED 10/40

June 6th, 2013 7th MQM

Merits and Drawbacks of Flat MPI and Hybrid Parallel

Node

Process

Data

Area

Comm.

Buffer

Process

Data

Area

Comm.

Buffer

Process

Data

Area

Comm.

Buffer

Process

Data

Area

Comm.

Buffer

Node

Process

 Data Area

 Comm. Buffer

Data per thread

Flat MPI Hybrid Parallel

Program portability Reduced memory usage

Performance
・less process = less MPI message trans. time

・thread performance can be improved by

VISIMPACT

Need memory
・communication buffer

・large page fragmentation

MPI message passing time

increase

Need two level parallelization

M
e
ri
ts

D

ra
w

b
a
c
k
s

Flat MPI Hybrid Parallel

Copyright 2013 FUJITSU LIMITED 11/40

June 6th, 2013 7th MQM

 Optimum number of processes and threads depends on application
characteristics.

 For example, thread parallel scalability, MPI communication ratio and
process load imbalance are involved.

Characteristics of Hybrid Parallel

Conceptual Image:

 performance change of different combination of process and thread

Faster

High

Slower

Low

16P×1T 8Ｐ×2T 4P×4T 8P×2T 1P×16T

Application B

• mostly processed in serial

Application A

• mostly processed in parallel

• has a lot of communication

• has a big load imbalance

• has a high L2 cache reuse rate

Application C

• has a characteristic between A and B

Copyright 2013 FUJITSU LIMITED 12/40

June 6th, 2013 7th MQM

Impact of Hybrid Parallel : example 1 & 2

0

2

4

6

8

10

12

14

16

18

20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1536p1t 768p2t 384p4t 192p8t 96p16t

M
e

m
o

ry
 p

e
r

N
o

d
e

 [
G

B
]

T
im

e
 r

a
ti

o

Procs. & Threads

Time ratio(1 for 16t)

Memory per Node

0

5

10

15

20

25

30

35

40

45

50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1536p1t 1536p2t 1536p4t 1536p8t 1536p16t

M
e
m

o
ry

 p
e
r

N
o

d
e
 [

G
B

]

T
im

e
 r

a
ti

o

Procs. & Threads

Time ratio(1 for 16t)

Memory per Node Application A
 MPI + automatic parallelize
 Meteorology application
 Flat MPI (1536 processes-

1 thread) doesn’t work due to

memory limit
 Granularity of a thread is small

Application B
 MPI + automatic parallelize +

OpenMP
 Meteorology application
 Flat MPI (1536 processes-

1 thread) doesn’t work due to

memory limit
 Communication cost is 15%
 72% of the process is done by

thread parallel
Copyright 2013 FUJITSU LIMITED 13/40

June 6th, 2013 7th MQM

Impact of Hybrid Parallel : example 3 & 4

0

1

2

3

4

5

6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1536p1t 768p2t 384p4t 192p8t 96p16t

M
e
m

o
ry

 p
e
r

N
o

d
e
 [

G
B

]

T
im

e
 r

a
ti

o

Procs. & Threads

Time ratio(1 for 16t)

Memory per Node

0

5

10

15

20

25

30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4096p1t 2048p2t 1024p4t 512p8t 256p16t

M
e

m
o

ry
 p

e
r

N
o

d
e

 [
G

B
]

T
im

e
 r

a
ti

o

Procs. & Threads

Application C
 MPI + OpenMP
 Meteorology application
 Load imbalance is eased by

hybrid parallel
 Communication cost is 15%
 87% of the process is done by

thread parallel

Application D
 MPI + automatic parallelize
 NPB.CG benchmark
 Load imbalance is eased by

hybrid parallel
 Communication cost is

20%~30%
 92% of the process is done by

thread parallel

Copyright 2013 FUJITSU LIMITED 14/40

June 6th, 2013 7th MQM

Application Tuning Cycle and Tools

Execution

MPI Tuning

CPU Tuning

Overall

Tuning

Job

Information

PAPI

Vampir-trace

Profiler

Profiler RMATT

Tofu-PA

Open Source

Tools

Vampir-trace

FX10 Specific

Tools

Profiler snapshot

Copyright 2013 FUJITSU LIMITED 15/40

June 6th, 2013 7th MQM

 Performance Analysis
reports:

 elapsed time

 calculation
speed(FLOPS)

 cache/memory access
statistical information

 Instruction count

 Load balance

Cycle accounting

 Cycle Accounting data:

 performance bottleneck
identification

 systematic
performance tuning

PA(Performance Analysis) reports

Instruction Count/Rate

Cache Miss Count/Rate

TLB Miss Count/Rate

Memory/Cache

Throughput
Elapsed Time,

Calculation

Speed/Efficiency

Cycle Accounting

SIMDize Ratio

Indicator

Load Balance

Copyright 2013 FUJITSU LIMITED 16/40

June 6th, 2013 7th MQM

Cycle Accounting

Store wait

Instruction fetch

wait

Other

Floating point

execution wait

Memory

access wait

Cache

access wait

4

3/2

1

0

Max commit

E
x
e

c
u

ti
o

n
 T

im
e

(m
e

a
s
u
re

d
)

Instruction

commit count

Restriction

factor

Integer register

write wait

Various

reasons

 Cycle Accounting is a technique to analyse performance bottleneck

 SPARC64TM IXfx can measure a lot of performance analysis events

 Summarize the execution time for each instruction commit count

Overview

1-4 instruction(s) commit: time to execute N instruction(s) in one machine cycle

0 instruction commit: stall time due to some reason

0 instruction commit

1 instruction commit

2-3 instructions commit

4 instructions commit

[sec]

Copyright 2013 FUJITSU LIMITED

0

2

4

6

8

10

12

14

16

17/40

June 6th, 2013 7th MQM

loop

procedure

focusing overall interval

PA information usage

The bottleneck of a focusing interval (exclude input, output and communication)

could be estimated from PA information of the overall interval

 Utilization for tuning

 Understanding the bottleneck

By breaking down to a loop level and capture the PA information of the loop,

you can find out what you can do to improve the bottleneck or how far you

can improve the performance

Copyright 2013 FUJITSU LIMITED

Overall Interval

FP Cache

Load Wait

FP

Operation

Wait

1 Commit

2/3

Commits

4 Commits

0

1

2

3

4

5

6

7

8

9

Before Tuning

[sec]

Bottleneck 1

Bottleneck 2

18/40

June 6th, 2013 7th MQM

 PA graph of a whole measured interval

Hot spot break down

Breakdown
to hot spot
intervals

 PA graph of different hot spots

Copyright 2013 FUJITSU LIMITED

Overall Interval

FP Cache

Load Wait

FP

Operation

Wait

1 Commit

2/3

Commits

4 Commits

0

1

2

3

4

5

6

7

8

9

Before Tuning

[sec]

Possible to check the
bottleneck level

Hot spot 1

FP

Operation

Wait

1 Commit

4

Commits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Before Tuning

[sec]

Hot spot 2

FP

Memory

Load Wait

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Before Tuning

[sec]

Hot spot 4

FP

Operation

Wait

1 Commit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before Tuning

[sec]

Hot spot 3

1 Commit

2/3

Commits

4 Commits

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Before Tuning

[sec]

19/40

June 6th, 2013 7th MQM

Hot spot 1

FP

Operation

Wait

1 Commit

4

Commits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Before Tuning

[sec]

Analyse and Diagnose(Hot spot 1: if-statement in a loop)

 PA graph Source List

 151 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 24

 <<< a: 12, b: 12

 <<< Loop-information End >>>

 152 2 p 6s do i=1,n1

 153 3 p 6m if (p(i) > 0.0) then

 154 3 p 6s b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 155 3 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 156 3 & (c8 + a(i)*c9))))))))

 157 3 p 6v endif

 158 2 p 6v enddo

 159 1 !$omp enddo

No software pipelining or

SIMDizing due to inner loop

if-statement

Long Operation

Wait

Phenomenon

Tuning required

-> Eliminate the inner loop if-statement

Diagnosis

Analysis

Copyright 2013 FUJITSU LIMITED 20/40

June 6th, 2013 7th MQM

Hot spot 2

FP

Memory

Load Wait

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Before Tuning

[sec]

Analyse and Diagnose(Hot spot 2: Stride Access)

 176 1 !$omp do

 177 2 p do j=1,n2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 178 3 p 6v do i=1,n1

 179 3 p 6v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*

 180 3 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*

 181 3 & (c8 + a(j,i)*c9))))))))

 182 3 p 6v enddo

 183 2 p enddo

 184 1 !$omp enddo

The accessing pattern of

array ‘b’ is sequent but that

of ‘a’ is stride. This reduces

the cache utilization rate.

Long Memory

Access Wait

Phenomenon

Tuning required

-> Improve cache utilization rate of array ‘a’

Diagnosis

Analysis

L1D miss rate L2 miss rate

53.01% 53.04%

 PA graph Source List

Copyright 2013 FUJITSU LIMITED 21/40

June 6th, 2013 7th MQM

Hot spot 3

1 Commit

2/3

Commits

4 Commits

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Before Tuning

[sec]

Analyze and Diagnose(Hot spot 3: Ideal Operation)

 201 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 202 2 p 6v do i=1,n1

 203 2 p 6v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 204 2 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 205 2 & (c8 + a(i)*c9))))))))

 206 2 p 6v enddo

 207 1 !$omp enddo

 PA graph Source List
Both SIMDize ratio and

SIMD multiply add

instruction ratio are high

Long instruction commit

Most of them are plural

Phenomenon

Tuning NOT required

-> Instruction level parallelization is highly done

Diagnosis

Analysis

SIMDize ratio
SIMD multiply add

instruction ratio

97.25% 79.53%

Copyright 2013 FUJITSU LIMITED 22/40

June 6th, 2013 7th MQM

Hot spot 4

FP

Operation

Wait

1 Commit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before Tuning

[sec]

analyse and Diagnose(Hot spot 4: Data Dependency)

 224 1 !$omp do

 225 2 p 6s do i=2,n1

 226 2 p 6s a(i) = c0 + a(i-1)*(c1 + a(i-1)*(c2 + a(i-1)*(c3 + a(i-1)*

 227 2 & (c4 + a(i-1)*(c5 + a(i-1)*(c6 + a(i-1)*(c7 + a(i-1)*

 228 2 & (c8 + a(i-1)*c9))))))))

 229 2 p 6s enddo

 230 1 !$omp enddo

 PA graph Source List Statement ‘a(i)=a(i-1)’

makes data dependency

between iteration. This

causes no software

pipelining and no SIMDizing.
Long Operation

Wait

Phenomenon

No way to tune

-> Need to change the algorithm

Diagnosis

Analysis

Copyright 2013 FUJITSU LIMITED 23/40

June 6th, 2013 7th MQM

Hot spot 1

FP

Operation

Wait

1 Commit

4

Commits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Before Tuning

[sec]

 Hot spot 1: use mask instruction instead of if-statement

Tuning Result (Hot spot 1): if-statement in a loop

Execution time(sec) FP op. peak ratio
SIMD inst. ratio

(/all inst.)

SIMD inst. ratio

(/SIMDizable inst.)
Number of inst.

Before Tuning 3.467 9.90% 0.00% 0.00% 9.46E+10

After Tuning 0.631 60.11% 87.79% 99.98% 3.79E+10

Hot spot 1

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

After Tuning

[sec]

18%

Copyright 2013 FUJITSU LIMITED 24/40

June 6th, 2013 7th MQM

Hot spot 2

FP

Memory

Load Wait

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Before Tuning

[sec]

 Apply loop blocking (divide into blocks which fit the cache size)

Tuning Result (Hot spot 2): Stride Access

Hot spot 2

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

After Tuning

[sec]

do j=1, n2

 do i=1, n1

do jj=1, n2, 16

 do ii=1, n1, 96

 do j=jj, min(jj+16-1, n2)

 do i=ii, min(ii+96-1, n1)

Execution time(sec) FP op. peak ratio L1D miss ratio L2 miss ratio

Before Tuning 2.874 3.07% 53.01% 53.04%

After Tuning 0.658 13.30% 6.69% 4.29%

23%

Copyright 2013 FUJITSU LIMITED 25/40

June 6th, 2013 7th MQM

Overall Interval

FP Cache

Load Wait

FP

Operation

Wait

1 Commit

2/3

Commits

4 Commits

0

1

2

3

4

5

6

7

8

9

Before Tuning

[sec]

Tuning Result (Overall)

Overall Interval

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

9.0E+00

After Tuning

[sec]

39%

Copyright 2013 FUJITSU LIMITED 26/40

June 6th, 2013 7th MQM

 Chose tuning methods according to the cycle accounting result

Scalar Tuning Technique
E

x
e

c
u

ti
o

n
 T

im
e

 (
m

e
a

s
u

re
d
)

Breakdown of Execution Time

 Instruction Scheduling/Software pipelining

 Masked execution of ‘if’ statement

 Loop unrolling

 Loop fission

 Efficient L2 cache use

 Loop blocking

 Outer loop fusion, Outer loop unrolling

 Memory latency hiding

 L2 cache prefetch(stride/list access)

 Efficient L1 cache use

 Padding, Loop fission, Array merge

 L2 cache latency hiding

 L1 cache prefetch(stride/list access)

Major Tuning Technique

 Instruction Reduction

 SIMDize

 Common subexpression elimination

Execution

Execution

Wait

Cache

Wait

Memory

Wait

Copyright 2013 FUJITSU LIMITED 27/40

June 6th, 2013 7th MQM Copyright 2013 FUJITSU LIMITED

Scalar Tuning Techniques

Criteria Technique
Speed Up
Example

Execution

mask instruction x1.49

loop peeling x2.01

explicit data dependency hint x1.46

x2.63

Data

loop interchange x3.74

loop fusion x1.56

loop fission x2.69

array merge x2.98

array index interchange x2.99

array data padding x2.84

28/40

June 6th, 2013 7th MQM

Source Program

 1 subroutine sub(s,a,b,ni,nj)

 2 real*8 a(ni,nj),b(ni,nj)

 3 real*8 s(nj)

 4

 5 1 pp do j = 1, nj

 6 1 p s(j)=0.0

 7 2 p 8v do i = 1, ni

 8 2 p 8v s(j)=s(j)+a(i,j)*b(i,j)

 9 2 p 8v end do

10 1 p end do

11

12 end

nj=4

ni=2000

Each thread reads same cache line containing s(1)~s(4)

s(1)~s(4)

Thread 0
(core 1)

L1
cache

L2 cache

Cache holds the data by line size

1. Cache hit

2. Thread 0 completes s(1) update

3. Invalidate the cache lines of thread 1-3 to keep the data coherent

2.Update

3. Invalidate

1. Cache miss

2. Copy back cache line from thread 0 to thread 1

3. Thread 1 completes s(2) update

4. Invalidate the cache line of thread 0 to keep the data coherent

2. Copy
Back

 Initial State

Performance
degrades as
every thread
repeats this

state transition

1. Cache miss

Example of 4 threads

Invalidate Invalidate

1. Cache hit

 Thread 0 updates s(1)

False Sharing

Copyright 2013 FUJITSU LIMITED

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

s(1)~s(4) s(1)~s(4) s(1)~s(4)

s(1)~s(4) L1
cache 3. Invalidate 3. Invalidate

L2 cache

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

 Thread 1 updates s(2)

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

3.Update

s(1)~s(4)

L2 cache

L1
cache 4. Invalidate

29/40

June 6th, 2013 7th MQM

Source code before tuning

20 subroutine sub()

21 integer*8 i,j,n

22 parameter(n=30000)

23 parameter(m=8)

24 real*8 a(m,n),b(n,m)

25 common /com/a,b

26

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

27 1 pp do j=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

28 2 p 8v do i=1,n

29 2 p 8v a(j,i)=b(i,j)

30 2 p 8v enddo

31 1 p enddo

32

33 End

 Because the parallelized index ‘j’ runs from 1 to 8 (too small), every

threads share the same cache line of array ‘a’.

This causes a false sharing.

PA data shows a lot of data access wait occurred.

False sharing
occurs here

parallelized

index runs only 8

False sharing outcome (before tuning)

Copyright 2013 FUJITSU LIMITED

Store Wait

FP Cache
Load Wait

Barrier Wait

0

1

2

3

4

5

6

7

Before Tuning

[sec]

L1D miss ratio

Before tuning 29.53%

30/40

June 6th, 2013 7th MQM

After Tuning

Store
Wait

FP
Cache
Load
Wait

Barrier
Wait

0

1

2

3

4

5

6

7

Before Tuning

[sec]Source code after tuning (source level tuning)

20 subroutine sub()

21 integer*8 i,j,n

22 parameter(n=30000)

23 parameter(m=8)

24 real*8 a(m,n),b(n,m)

25 common /com/a,b

26

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< [OPTIMIZATION]

 <<< PREFETCH : 4

 <<< b: 2, a: 2

 <<< Loop-information End >>>

27 1 pp do i=1,n
 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

28 2 p 8v do j=1,m

29 2 p 8v a(j,i)=b(i,j)

30 2 p 8v enddo

31 1 p enddo
32

33 End

 By doing loop interchange, the false sharing can be avoided.

This reduces L1 cache miss and improve the data access wait.

Avoid false sharing

Parallelize the second

index by loop interchange

False sharing tuned

Copyright 2013 FUJITSU LIMITED

27%

L1D miss ratio

After tuning 7.89%

31/40

June 6th, 2013 7th MQM

 Triangular loop is a loop that has an inner loop initial index value

driven by the outer loop index variable. If you divide this loop into

blocks and run in parallel, you will get a load imbalance.

Example

 subroutine sub()

 integer*8 i,j,n

 parameter(n=512)

 real*8 a(n+1,n),b(n+1,n),c(n+1,n)

 common a,b,c

!$omp parallel do

 do j=1,n

 do i=j,n

 a(i,j)=b(i,j)+c(i,j)

 enddo

 enddo

 end

The initial index

value of inner loop is

determined by the

outer loop variable.

Triangular loop

Copyright 2013 FUJITSU LIMITED

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Processing Quantity

i

j

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

Load imbalance occurs as the
processing quantity of thread 0 is

largest and that of thread 15 is smallest.

Barrier Synchronization Wait

32/40

June 6th, 2013 7th MQM

 By adding openMP directive, schedule(static, 1), loop size becomes small
and loops are assigned to each thread in cyclic manner. This assignes
almost same job quantity to each thread and reduces load imbalance.

Copyright 2013 FUJITSU LIMITED

Triangular loop load imbalance tuning

Modified code

28 subroutine sub()

29 integer*8 i,j,n

30 parameter(n=512)

31 real*8 a(n+1,n),b(n+1,n),c(n+1,n)

32 common a,b,c

33

34 !$omp parallel do schedule(static,1)

35 1 p do j=1,n

36 2 p 8v do i=j,n

37 2 p 8v a(i,j)=b(i,j)+c(i,j)

38 2 p 8v enddo

39 1 p enddo

40

41 end

T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15

T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15

T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15

T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

33/40

June 6th, 2013 7th MQM

0

1

2

3

4

5

6

7

8

9

10

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

Example

 1 subroutine sub(a,b,s,n,m)

 2 real a(n),b(n),s

 3 !$omp parallel do schedule(static,1)

 4 1 p do j=1,n

 5 2 p if(mod(j,2) .eq. 0) then

6 3 p 8v do i=1,m

 7 3 p 8v a(i) = a(i)*b(i)*s

 8 3 p 8v enddo

 9 2 p endif

10 1 p enddo

11 end subroutine sub

 :

21 program main

22 parameter(n=1000000)

23 parameter(m=100000)

24 real a(n),b(n)

25 call init(a,b,n)

26 call sub(a,b,2.0,n,m)

27 end program main

Before Tuning

 When the processing quantity of each thread is different, say the

loop contains an if-statement, load imbalance can NOT be resolved

by a static cyclic divide.

Barrier
synchronization wait

Loop with if-statement

Copyright 2013 FUJITSU LIMITED

Only odd threads
execute ‘then’ clause

34/40

June 6th, 2013 7th MQM

Modified code

 1 subroutine sub(a,b,s,n,m)

 2 real a(n),b(n),s

 3 !$omp parallel do schedule(dynamic,1)

 4 1 p do j=1,n

 5 2 p if(mod(j,2) .eq. 0) then

6 3 p 8v do i=1,m

 7 3 p 8v a(i) = a(i)*b(i)*s

 8 3 p 8v enddo

 9 2 p endif

10 1 p enddo

11 end subroutine sub

 :

21 program main

22 parameter(n=1000000)

23 parameter(m=100000)

24 real a(n),b(n)

25 call init(a,b,n)

26 call sub(a,b,2.0,n,m)

27 end program main

Before

Tuning

 By changing the thread schedule method to dynamic, a thread which

finishes its execution earlier can execute the next iteration. This

reduces the load imbalance.

Using dynamic scheduling to reduce load imbalance

Copyright 2013 FUJITSU LIMITED

0

1

2

3

4

5

6

7

8

9

10

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

0

1

2

3

4

5

6

7

8

9

10

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

After

Tuning

35/40

June 6th, 2013 7th MQM

 If the iteration count is too small to parallelize, a load imbalance occurs.

Example

34 1 pp do k=1,l

35 2 p do j=1,m

36 3 p 8v do i=1,n

37 3 p 8v a(i,j,k)=b(i,j,k)+c(i,j,k)

38 3 p 8v enddo

39 2 p enddo

40 1 p enddo

l=2

m=256

n=256

バリア同期待ち

改善前

Choosing a right parallelize loop

Copyright 2013 FUJITSU LIMITED

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

Barrier Synchronization Wait

Modified code

33 !ocl serial

34 1 do k=1,l

35 1 !ocl parallel

36 2 pp do j=1,m

37 3 p 8v do i=1,n

38 3 p 8v a(i,j,k)=b(i,j,k)+c(i,j,k)

39 3 p 8v enddo

40 2 p enddo

41 1 enddo

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

36/40

June 6th, 2013 7th MQM

 By using a compiler option –Kdynamic_iteration, an appropriate iteration
is chosen at runtime and the load imbalance is reduced.

Example

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 34 1 pp do k=1,l

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 4

 <<< Loop-information End >>>

 35 2 pp do j=1,m

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 728

 <<< [OPTIMIZATION]

 <<< SIMD

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 36 3 pp 8v do i=1,n

 37 3 p 8v a(i,j,k)=b(i,j,k)+c(i,j,k)

 38 3 p 8v enddo

 39 2 p enddo

 40 1 p enddo

 41

 42 end

l=2

m=256

n=256

Though it tries to execute the outer

loop in parallel at first, the iteration

count ‘k’, which is 2, is too small to

execute in parallel. So the inner

loop, whose count is 256, is

executed in parallel instead.

バリア同期待ち

Compiler option to choose a right iteration

Copyright 2013 FUJITSU LIMITED

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

37/40

June 6th, 2013 7th MQM

 Due to synchronization, each computation is prolonged to the duration of
the slowest process.

 Even if the job size of each process is exactly the same, OS interferes the
application and time varies

OS jitter problem for parallel processing

prolonged

job proc #0

proc #1

noise

wait job

sync

noise

wait

job job

job noise

wait job

job

sync sync

job proc #0

proc #1 job

sync

job job

sync sync

job job

Copyright 2013 FUJITSU LIMITED

 Ideal

 Reality

 OS tuning and hybrid parallel can reduce OS jitter.

38/40

June 6th, 2013 7th MQM

OS jitter (noise) measured using a program called FWQ developed by
Lawrence Livermore National Laboratory. https://asc.llnl.gov/sequoia/benchmarks/

t_fwq –w 18 –n 20000 –t 16

-w: workload
-n: repeat time
-t: number of thread

Machine PRIMEHPC FX10 PC Cluster

Mean noise ratio 0. 589E-04 0. 154E-01

Longest noise length(usec) 29.3 644.0

OS jitter measured

PRIMEHPC FX10

Copyright 2013 FUJITSU LIMITED

x86

39/40

June 6th, 2013 7th MQM

 Fujitsu’s supercomputer, PRIMEHPC FX10, as well as K computer consists
of high performance multi-core CPUs

 There are bunch of scalar tuning techniques to make each process faster

 We recommend to program applications in hybrid parallel manner to get a
better performance

 By checking performance analysis information, you can find bottlenecks

 Some parallel tuning can be done using open MP directives

 Operating system could be an obstacle to get higher performance

Copyright 2013 FUJITSU LIMITED

Summary

40/40

June 6th, 2013 7th MQM

