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Abstract

We have developed a block version of the Bi-Conjugate Gradient Stabilized (BiCGStab) solver

for treating the Wilson-Dirac equation with multiple right-hand sides in lattice QCD employing

O(a)-improved Wilson fermions. Code development and optimization are carried out on the K com-

puter at RIKEN Advanced Institute for Computational Science (AICS). We implement the QR

decomposition, a preconditioner based on the domain decomposed Schwarz alternating procedure

(SAP) and the symmetric successive over-relaxation (SSOR) iteration with locally lexicographic or-

dering for the inversion within the domain. The block BiCGStab solver, written in single precision,

is included as a preconditioning step for an outer BiCGStab solver in double precision. Numerical

test is performed on the lattice size of 964 using 2048 nodes of the K computer. The performance

of a computational kernel exceeds 50% efficiency, and the single precision block BiCGStab solver

shows more than ∼ 30% sustained efficiency.

∗Electronic address: suno@riken.jp
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I. INTRODUCTION

The physical point simulation has been one of the primary issues in the first principle

calculation of lattice QCD in the recent years. A great effort has been paid to reduce the

computational cost for the configuration generation with light quark masses. The algorithmic

improvements together with rapid increase of the computational power actually allow us to

carry out a direct full QCD simulation on the physical up and down quark masses [1, 2].

While previous improvements mostly concerns the configuration generation, growing effort

has been also paid to algorithmic improvements for the measurement of physical observables,

so that we are now able to obtain the results for physical quantities at the physical up, down

and strange quark masses [3]. Yet it still remains necessary to refine the results reducing

the systematic errors and to challenge computationally demanding problems, for example,

calculation of the disconnected diagrams.

The main difficulty in lattice QCD simulations resides in solving the Wilson-Dirac equa-

tion, which is computationally expensive near the physical up and down quark masses and

must be repeated many times both in the configuration generation and measurement of

physical observables on given configurations. This can be done in an efficient way only by

using a Krylov subspace method, such as the Bi-Conjugate Gradient Stabilized (BiCGStab)

method. The performance of the BiCGStab is usually improved with a suitable precondi-

tioning technique such as the Schwarz alternating procedure (SAP) preconditioner proposed

by Lüscher, which is applied to the domain-decomposed lattice [4]. The performance is

further improved by the nested BiCGStab algorithm with an inner-outer strategy, in which

another Krylov subspace method is implemented as a preconditioner[5, 6].

In addition, the Wilson-Dirac equation must be solved with multiple sources in the mea-

surement of physical observables on given configurations: twelve in the simplest case and

O(10 − 100) for the stochastic technique. These are typical examples for differential equa-

tions with multiple right-hand sides. For this type of equations, it is well known that the

block Krylov subspace solvers works successfully in reducing the computational cost [7, 8].

Since the Wilson-Dirac matrix in lattice QCD is non-Hermitian, we might expect the block

BiCGStab algorithm [9] to be applicable in a straightforward manner. Recently, new algo-

rithms, the block BiCGGR and block BiCGStab were found to show significant improve-

ments for this problem [10, 11].
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In this work we first develop and optimize an inner block BiCGStab solver in single

precision for the K computer at the RIKEN Advanced Institute for Computational Science.

Systematic performance tests are carried out for different computational kernels. The solver

is used as a preconditioning step for an outer BiCGStab solver in double precision, where

different right-hand sides are treated independently. Numerical tests are performed with a

964 lattice using 2048 nodes of the K computer.

This report is organized as follows. We explain the block BiCGStab algorithm in detail in

Sec. II. Code development and tuning are explained in Sec. III. The results of the numerical

test are presented in Sec. IV. Conclusions and discussions are summarized in Sec. V.

II. ALGORITHM

The lattice QCD is defined on a hypercubic four-dimensional lattice with the three-

dimensional spatial extent Lx × Ly × Lz and the temporal extent Lt. The fields are defined

on the four-dimensional lattice sites n with periodic boundary conditions. We define two

types of fields on the lattice. One is the gauge field represented by (Uµ(n))a,b with four-

dimensional direction indices µ = 1, 2, 3, 4 and color indices a, b = 1, 2, 3, thus which is a

3× 3 matrix assigned on each link. The other is the quark field (q(n))a
α that locates on each

site carrying the Dirac indices α = 1, 2, 3, 4. The O(a)-improved Wilson-Dirac operator

preconditioned with the clover term is represented by the matrix elements

Da,b
α,β(n,m) = δa,bδα,βδ(n,m) − κF a,c

α,γ(n)
4∑

µ=1

[(1 − γµ)γ,β(Uµ(n))c,bδ(n + µ̂,m)

+ (1 + γµ)γ,β((Uµ(m))b,c)∗δ(n − µ̂,m)], (1)

where µ̂ denotes the unit vector in the µ direction in the four-dimensional space-time, F (n)

the inverse clover term (1 − (cSWκ/2)σµνFµν(n))−1 with cSW being an adjusting parameter

for the O(a)-improvement. Our gamma matrices γµ are defined as

γ1 =


0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0

 , γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 ,
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γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , γ4 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (2)

The O(a)-improved Wilson-Dirac operator defined above is a complex non-Hermitian square

matrix, where only 51 out of Lx×Ly×Lz×Lt×3×4 entries in each row have nonzero values.

The matrix is fairly sparse in current numerical simulations with Lx,y,z,t ∼ O(10 − 100).

Calculations of the physical quantities requires the solution of linear equations with mul-

tiple right-hand sides: ∑
m,β,b

Da,b
α,β(n,m)x(i)(m)b

β = b(i)(n)a
α, (3)

where b(i) (i = 1, · · ·L) represents the i-th source vector. This is expressed in a simple form:

DX = B, (4)

where D is an N × N complex sparse non-Hermitian matrix, X and B are N × L complex

rectangular matrices given by

X = [x(1), . . . , x(i), . . . , x(L)], (5)

B = [b(1), . . . , b(i), . . . , b(L)]. (6)

In the Wilson-Dirac equation, the matrix dimension is given by N = Lx×Ly×Lz×Lt×3×4,

whereas we designate as L the number of the right-hand sides corresponding to the different

source vectors in lattice QCD.

Pseudocode for the block BiCGStab algorithm is described in Algorithm 1 below, which is

improved with two ingredients. One is the QR decomposition with a modified Gram-Schmidt

orthogonalization method, which improves numerical accuracy since each span works effec-

tively to search approximative solutions. The other is Lüscher’s SAP preconditioner [4],

which is applied to the domain-decomposed lattice: The Wilson-Dirac matrix D is decom-

posed in the 2 × 2 blocked matrix form

D =

 DEE DEO

DOE DOO

 , (7)
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where the subscripts E and O denote the even and odd domains, respectively. The SAP

preconditioner MSAP is computed as

MSAP = K

NSAP−1∑
j=0

(1 − DK)j (8)

with

K =

 AEE 0

−AOODOEAEE AOO

 , (9)

where AEE (AOO) can be any approximation for (DEE)−1 ((DOO)−1). When AEE and AOO

are exact, DK becomes block triangular and is expected to be well conditioned. In the

case |DK| < 1, MSAP converges to D−1 when NSAP → ∞. The approximate inverse of the

operator AEE (AOO) is the most important part in the SAP. The exactness is not required

for the SAP, however, the better approximation with less computational cost is preferred

for AEE (AOO). We adopt the symmetric successive over-relaxation (SSOR) method [12],

which is derived by decomposing the original operator into the sum of an upper and a lower

triangle matrices. We have then:

AEE = (1 − ωUEE)−1

[
NSSOR∑

j=0

(1 − ASSOR
EE )j

]
(1 − ωLEE)−1 (10)

with

ASSOR
EE =

1

ω
[(1 − ωLEE)−1 + (1 − ωUEE)−1 + (ω − 2)(1 − ωLEE)−1(1 − ωUEE)−1], (11)

where LEE and UEE are the lower and upper triangle matrices corresponding to the forward

and backward hopping terms, respectively. To extract 8 core parallelism for the K computer

(for the computer architecture, see Sec. III), we further divide the block into 16 sub-blocks via

the locally-lexicographical ordering (ll -ordering) as described in detail in Refs. [12, 13]. Since

(1−ωLEE) and (1−ωUEE) are triangular matrices, their inverse can be directly calculated

via forward and backward substitutions, respectively. Since more than 80% of the CPU time

is spent for the forward/backward substitutions, optimization must concentrate upon these

parts.

III. CODE DEVELOPMENT AND OPTIMIZATION FOR THE K COMPUTER

Our code development and optimization are carried out for the K computer at the RIKEN

Advanced Institute for Computational Science. The machine consists of 82944 computa-
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Algorithm 1 Block BiCGStab algorithm (D,MSAP, B, ϵi).

1: initial guess X ∈ CN×L,

2: compute R = B − DX,

3: set P = R,

4: choose R̃ ∈ CN×L,

5: while (|r(i)|/|b(i)|) > ϵi do

6: QR decomposition P = Qγ, P ← Q,

7: U = MSAPP ,

8: V = DU ,

9: solve (R̃HV )α = R̃HR for α,

10: R ← R − V α,

11: X ← X + Uα,

12: S = MSAPR,

13: Z = DS,

14: ζ = Tr(ZH
i Ri)/Tr(ZH

i Zi),

15: X ← X + ζS,

16: R ← R − ζZ,

17: solve (R̃HV )β = −R̃HZ for β,

18: P ← R + (P − ζV )β,

19: end while

tional nodes and 5184 I/O nodes connected by the so-called “Tofu” network, providing

11.28 Pflops of computing capability. The Tofu network topology is six-dimensional one

with 3D-mesh times 3D-torus shape. Each node has a single 2.0GHz SPARC64 VIIIfx pro-

cessor equipping 8 cores with SIMD enabled 256 registers, 6MB shared L2 cache and 16GB of

memory. The L1 cache sizes per each core are 32KB/2WAY (instruction) and 32KB/2WAY

(data).

We have developed a block version of the forward and backward solvers constructing AEE

(or AOO) in the SSOR for the multiple right-hand sides, based on the non-block version[13].

The forward and backward kernels constitute the most important part in the SSOR. Both

consists of several four-fold nested loops: three spatial direction x, y, z-loops and one tem-

poral t-loop. They are typically written as
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for ix = 0 to Nx − 1 do

for iy = 0 to Ny − 1 do

for iz = 0 to Nz − 1 do

OpenMP Barrier

for it = 0 to Nt − 1 do

if it > 0 then

y′′(n)a
α = (1 + γ4)α,β((U(n − t̂))b,a)∗y(n − t̂)b

β

end if

. . .

y′′(n)a
α ⇐ F (n)a,b

α,βy′′(n)b
β

y′(n)a
α = y(n)a

α + κy′′(n)a
α

end for

end for

end for

end for,

or as the same way with all the loops in the reversed order, where Nx,y,z,t denote the number

of lattice sites in x, y, z, t directions inside the SAP block. Note that an explicit OpenMP

barrier is inserted because of the recurrence dependency among the OpenMP threads. There

are several conditional branches for site location like it > 0, ix > 0 and ix < Nx − 1, etc...

inside the t-loop. The question arises as to where to put the loop running over different

right-hand side vectors in Eq. (4). Our choice is just inside the t-loop like (we designate as

case (a)):

for it = 0 to Nt − 1 do

for i = 0 to L − 1 do

if it > 0 then

y′′(n)a
α = (1 + γ4)α,β((U(n − t̂))b,a)∗y(i)(n − t̂)b

β

end if

. . .

y′′(n)a
α ⇐ F (n)a,b

α,βy′′(n)b
β

y′(i)(n)a
α = y(n)a

α + κy′′(n)a
α

end for
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end for,

or even inside the if statements (we designate as case (b)):

for it = 0 to Nt − 1 do

if it > 0 then

for i = 0 to L − 1 do

y′′(i)(n)a
α = (1 + γ4)α,β((U(n − t̂))b,a)∗y(i)(n − t̂)b

β

end for

end if

. . .

for i = 0 to L − 1 do

y′′(i)(n)a
α ⇐ F (n)a,b

α,βy′′(i)(n)b
β

y′(i)(n)a
α = y(i)(n)a

α + κy′′(i)(n)a
α

end for

end for.

We have carried out performance tests for these two cases with lattice sizes 123 × 24 and

243 × 48, where the SAP block sizes correspond to 64 and 124, respectively, on 16 nodes of

the K computer choosing L = 1, 4 and 12 for the number of the right-hand sides. For all

the performance tests presented in this Section, we choose the hopping and improvement

parameters (κ, cSW) = (0.123, 1.0). Table I shows efficiency, SIMD rate and several time

consuming parts. Although it is difficult to observe the general trend because of the com-

plexity of their behavior with respect to L, the efficiency and SIMD rate increase well with

L. We notice that (OpenMP) barrier synchronization wait and integer cache wait decrease

with L. This is because the L-loop does not include any OpenMP barrier statement inside

it. For all the values of L the better performance is found for case (a) than for case (b);

We obtain a better SIMD rate and less time for floating-point cache wait. We should also

note that case (a) has less loop overhead than case (b) so that SIMDization and software

pipelining should work better. We have hence chosen to put the L-loop inside the t-loop and

outside the if statements, as in case (a). Since the DEE and DOO kernels involve a similar

four-fold nested loop with several if statements inside, though without OpenMP barrier

synchronization, we have inserted the L-loop inside the t-loop and outside if statements.

We have measured the performance of the AEE and DEE kernels as well as the DMSAP
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multiplication and the block BiCGStab algorithm with two lattice sizes of 123 × 24 and

243 × 48 on 16 nodes of the K computer. Figure 1 presents the performance efficiencies with

respect to the floating point number operations for these kernels as a function of L. All the

performance efficiencies are increased with L. We should note that the difference between

the block BiCGStab and DMSAP slightly becomes larger as L increases. This is mostly due

to the QR decomposition, which requires more MPI Allreduce calls for increased number

of L. We have also carried out weak-scaling performance tests by increasing the number

of nodes with the SAP block size fixed to 64 and 124 at L = 12: We have chosen lattices

sizes of 243 × 48 on 256 nodes, 484 on 2048 nodes, 483 × 96 on 256 nodes, and 964 on 2048

nodes. The results are shown in Fig. 2. We observe that the performance drops little with

increasing number of nodes for most of the computational kernels. Even in the case of the

block BiCGStab with the SAP block size of 64, which shows the worst scaling behavior, the

efficiency is still better than 30% for the largest lattice size. The numerical results of these

performance tests are summarized in Table II, together with the measured SIMD rate and

several time consuming parts.

The nested BiCGStab algorithm is designed to be flexible against the preconditioner

changing iteration by iteration [5, 6], where the outer BiCGStab contains an inner BiCGStab

as the flexible preconditioner. The flexibility ensures the double precision accuracy of the

solution vector even if we used the single precision for the inner BiCGStab solver. In

our work, the block BiCGStab solver described above is used as a preconditioner or inner

solver for the outer solver, the former in single precision and the latter in double precision.

Pseudocode for the outer solver is described in Algorithm 2. Note that the preconditioning

steps at lines 8 and 14 in Algorithm 2 consist of solving approximatively the Dirac equation

with multiple right-hand sides DV = P and DV = R by using the single precision block

BiCGStab, which is described in Algorithm 1. We can quickly obtain an approximative

solution to the Wilson-Dirac equation by using the block BiCGStab algorithm.
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Algorithm 2 Outer BiCGStab algorithm
1: for i = 0 to L − 1 do

2: initial guess x(i) ∈ CN ,

3: compute r(i) = b(i) − Dx(i),

4: set p(i) = r(i),

5: choose r̃(i) such that (r̃(i), r(i)) ̸= 0,

6: end for

7: while maxi(|r(i)|/|b(i)|) > ϵouter do

8: solve D[v(1), . . . , v(L)] = [p(1), . . . , p(L)] by the block BiCGStab

9: for i = 0 to L − 1 do

10: α(i) = (r̃(i), r(i))/(r̃(i), Dv(i)),

11: x(i) ← x(i) + α(i)v(i),

12: r(i) ← r(i) − α(i)Dv(i),

13: end for

14: solve D[v(1), . . . , v(L)] = [r(1), . . . , r(L)] by the block BiCGStab

15: for i = 0 to L − 1 do

16: ζ(i) = (Dv(i), r(i))/(Dv(i), Dv(i)),

17: x(i) ← x(i) + ζ(i)v(i),

18: r(i) ← r(i) − ζ(i)Dv(i),

19: β(i) = (α(i)/ζ(i)) · (r̃(i), r(i))/(r̃(i), r′(i)),

20: p(i) ← r(i) + β
(i)
k (p(i) − ζ(i)Dv(i)),

21: r′(i) = r(i)

22: end for

23: end while

IV. NUMERICAL TEST

Our numerical tests are performed using 2048 nodes of the K computer. We use

a thermalized configuration generated at almost the physical point with (κud, κs) =

(0.126117, 0.124790) on 964 lattice in 2 + 1 flavor lattice QCD employing the nonpertur-
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batively O(a)-improved Wilson quark action with cSW = 1.11 and the Iwasaki gauge ac-

tion at β = 1.82. Stout smearing procedure is performed with the smearing parameters

Nstout = 6 and α = 0.1. We choose the hopping parameter κ = 0.126125 for the Wilson-

Dirac equation, and NSAP = 5 with 124 SAP block size following Ref. [1]. Parameters

for the SSOR method are fixed with NSSOR = 1 and ω = 1.24. The stopping criterion

is set to be maxi(|r(i)|/|b(i)|) ≤ 10−14 for the outer BiCGStab, while the stopping crite-

rion (|r(i)|/|b(i)|) ≤ ϵinner
i (i = 1, 2, ..., L) for the inner block BiCGStab is set by the outer

BiCGStab from iteration to iteration ranging from ϵinner
i ≈ 10−7 to 10−3. We have used

so-called “noise sources” generated with random numbers for multiple right-hand sides.

Figure 3 presents a representative case for the residual norm as a function of the total

number of inner matrix-vector multiplications (IMVMs) for the block BiCGstab with L =

1, 2, 3, 4, 6 and 12 in addition to the residual norm of the outer BiCGStab solver. The

residual norm of the inner block BiCGStab decreases well along with the iteration, and once

the stopping condition is satisfied, the algorithm is switched from the inner BiCGStab to

the outer one and returns again to the inner one in order to resume the next preconditioning

step with the residual norm initialized. Although for some cases the inner residual norm

decreases more quickly as L increases, the total number of iterations for convergence does not

diminish so drastically as observed in Refs. [6, 11], where the block BiCGStab is employed as

the outer solver. A possible reason is a rather loose stopping criterion compared to the one

used in Refs. [6, 11], where the required number of iterations seems to decrease much more

conspicuously as a function of L with a more stringent stopping criterion. Table III shows

the L dependence of the computational cost to solve the Wilson-Dirac equation as well as

the maximum and minimum values of the true residuals. We present the averaged values

over the (12/L) samples of L noise source vectors for the number of inner matrix-vector

multiplications and the execution time. The computational cost divided by L is found to

decrease as L increases. We do not have a problem of the convergence failure. In Table III

we also show the performance and efficiency of the block BiCGStab solver. It turns out

that we obtain more than 30% efficiency with L ≥ 2 and the performance goes beyond

85TFLOPS for several values of L. This implies that we have a clear gain in using the block

BiCGStab instead of its non-blocked version, where the maximum efficiency is about 26%.
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FIG. 3: Respresentative behavior of the residual norm as a function of the number of inner matrix-

vector multiplications (IMVMs), together with the residual norm of the outer solver. The number

of right-hand side vectors are chosen to be L = 1, 2, 3, 4, 6, and 12.

TABLE III: L dependence of the number of inner matrix-vector multiplications (IMVMs) and the

execution time to solve the Wilson-Dirac equation. True residual is evaluated after the relative

residual in the outer solver reaches the tolerance of 10−14.

L #IMVM Time [s] Time/L [s] True residual Performance Efficiency

Max Min [TFLOPS] [%]

1 915.3 65.2 65.2 4.99 × 10−15 7.24 × 10−16 71 27

2 913.0 128.4 64.2 2.69 × 10−15 4.59 × 10−16 81 31

3 876.8 193.8 64.6 4.49 × 10−15 4.20 × 10−16 86 33

4 869.7 235.6 58.9 2.21 × 10−15 4.09 × 10−16 82 31

6 856.5 349.3 58.2 4.62 × 10−15 4.48 × 10−16 85 32

12 770.0 669.0 55.8 4.25 × 10−15 6.52 × 10−16 83 32

V. SUMMARY

In this work we have developed the single precision block BiCGStab solver for treating

the O(a)-improved Wilson-Dirac equation with multiple right-hand sides in lattice QCD.

The code development is carried out for the K computer and the optimization for the
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computation kernels shows the improvement in performance depending on the SAP block

size, the number of compute nodes, and the number of right-hand sides L. The performance

of the block BiCGStab solver is found to be more than 30% efficiency. With the block

BiCGStab solver used as the preconditioning step for the outer BiCGStab solver in double

precision, we have succeeded in test calculations with 964 lattice size on 2048 nodes of the K

computer. The computational cost reduces with increasing number of L. It may be possible

to make a further improvement for the QR decomposition in future.

Acknowledgments

All the results are obtained by using the K computer at the RIKEN Advanced Institute

for Computational Science.

[1] S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi,

Y. Namekawa, M. Okawa, Y. Taniguchi, et al. (PACS-CS Collaboration), Phys. Rev. D 79,

034503 (2009).

[2] Y. Kuramashi, PoS Lattice 2008, 018 (2008).

[3] S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi,

Y. Namekawa, M. Okawa, Y. Taniguchi, et al. (PACS-CS Collaboration), Phys. Rev. D 81,

074503 (2010).
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