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9.2 Research Activities

In this team, we have developed GENESIS(Generalized Ensemble Simulation System) for molecular
dynamics simulations. The key features of GENESIS are that it is highly parallelized for K and other
massively parallel supercomputers and that GENESIS contains a lot of enhanced conformational
sampling methods and various molecular models for multi-scale and multi-resolution simulations.
We have already open the code of GENESIS as free software under the license of GPLv2 and
will update it every two year by adding new functions and optimizing the code into K or other
computational platforms. These activities are necessary, in particular, for biological applications,
since many interesting biological phenomena happen on the milliseconds or slower but current all-
atom MD simulations cover only 1-10 microseconds on the general-purpose supercomputers or GPU
clusters. We intend to spread GENESIS into academia as well as industries as a basic MD program
that is useful for research and development.
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Figure 9.1: GENESIS performance of 1M (left), 8.5M (middle), and 28M (right) systems

9.3 Research Results and Achievements

9.3.1 Developement of GENESIS

We have already optimized GENESIS for large scale MD simulations on K computer. In the given
fiscal year, we further optimized it by increasing parallel efficiency and enlarging the available number
of processors. First, we make use of a multiple-program, multiple-data approach by separating
computational resources responsible for real space and reciprocal space interactions. Second, we
assign multiple time step integrator where time-consuming parts are skipped regularly based on
the multiple-program and multiple-data approach. Our new implementation was tested on the K
computer, and we could obtain very good performance results for big systems consisting of 1 million,
8.5 million, and 28 million atoms systems just increasing the parallel efficiencies. One MD cycle with
the PME calculations for systems containing 1 million, 8.5 million, and 28 million atoms could be
finished within 2.8 ms, 5.4 ms, and 8 ms (Figure .

9.3.2 Multi-resolution simulation methods for reactions couple with large
conformational changes

Recently, experimental studies proposed that large conformational changes of proteins play important
roles on biological functions. The conformational changes can originate as domain motions, where
rigid structural units (domains) change their positions and/or orientations with respect to each other
through flexible hinges or loops. It is difficult to investigate atomistic details of multi-domain pro-
teins by experimental studies. In addition, it is still difficult to simulate using all-atom MD due
to the slow time-scale. To overcome the difficulties, we have developed multi-resolution simulation
method including the following three steps; 1. Analysis for “dynamic domains” and the magnitude
of local domain motions in a protein through “Motion Tree”, a tree diagram that describes confor-
mational changes in a hierarchical manner from two structures. (Koike et al., J. Mol. Biol., 2014)
2. Development of a structure-based coarse-grained (CG) model enables a stable and efficient MD
simulation from the information of domain motion obtained by “Motion Tree” [5]. The CG model
provides a stable trajectory that is comparable to experimental studies and long-time all-atom MD
simulations. 3. Performing sampling simulations with the CG model and investigate conformational
changes in response to reactions in biological systems. We examine how many CVs are required to
capture the correct transition-state structure during the open-to-close motion of adenylate kinase
using a coarse-grained model in the mean forces string method to search the minimum free-energy
pathway [4].

9.3.3 Systematic evaluation of collective variable choice for describing
conformational changes of a protein

Collective variables (CVs) are often used in molecular dynamics simulations based on enhanced
sampling algorithms to investigate large conformational changes of a protein. The choice of CVs in
these simulations is essential because it affects simulation results, and impacts on the free-energy
profile, the minimum free-energy pathway (MFEP), and the transition-state structure. Here, we
examine how many CVs are required to capture the correct transition-state structure during the
open-to-close motion of Adenylate Kinase using a coarse-grained model in the mean forces string
method to search the MFEP. Various numbers of large amplitude principal components (PCs) are
tested as CVs in the simulations. The incorporation of local coordinates into CVs, which is possible
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Figure 9.2: Free-energy landscape in the distances between domains’ centers of mass. Lines indicate
minimum free energy paths calculated in 2D (dark blue), 3D (light blue), 10D (yellow), and 20D
(red) principal component spaces.
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Figure 9.3: Electrostatic potential on QM atoms of the reactant state in the model crowding envi-
ronment (left) and solution (right). QM atom index 43-55 corresponds to triphosphate moiety of
GTP.

in higher dimensional CV spaces, is important for capturing a reliable MFEP. The Bayesian measure
proposed by Best and Hummer is sensitive to the choice of CVs, showing sharp peaks when the
transition-state structure is captured. We thus evaluate the required number of CVs needed in
enhanced sampling simulations for describing protein conformational changes (Figure 7).

9.3.4 Molecular crowding effect on GTP hydrolysis reaction in Ras-GAP
complex

Macromolecular crowding effects have essential role in biomolecular system. Such effects have been
extensively investigated experimentally, and also in classical Molecular Dynamics (MD) calculations.
However, in the quantum chemistry level, those effects are not investigated due to the computational
costs and methodological difficulties. In this study, we studied the molecular crowding effect on the
GTP hydrolysis reaction in Ras-GAP complex by QM /MM RWFE method, which can take crowding
effects into account with a reasonable computational cost. We modeled a crowding environment by
adding 7 BSAs to the system as a crowder, and refined the reactant and transition states of the
hydrolysis reaction by QM /MM RWFE method, where MD calculations were performed by GENESIS
at K-computer. The structural difference around GTP were not significant between solution and
crowding environment. However, there was a large difference in the electrostatic potential (ESP)
imposed by the surroundings as shown in Figure[0.3] This large ESP change suggests that there must
be significant differences in the free energy barrier between crowding and solution environments.
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9.4 Schedule and Future Plan

So far, GENESIS has been optimized mainly on K computer. In this year or later, we consider other
platforms than K, such as intel CPU cluster, nvidia GPU processor, and post K. Since these CPU (or
GPU) architectures are quite different with each other, a single MD kernel does not work well for all
the different computational platforms. So, GENESIS will have multiple kernels that are optimized
to one of the computational platforms. The disadvantage of this approach is that we have more
effort on programming, reducing potential bugs for each kernel, and so on. It should be hard task
for our team, but there is no other good ways to improve the performance of GENESIS in multiple
platforms.

We would like to simulate more and more large biological systems for investigating slow biological
dynamics. For this purpose, we need to develop multi-scale and multi-resolution programs that
are scalable on K or post-K computers. Currently, GENESIS/SPDYN is useful for all-atom MD
simulations on these supercomputers, but does not show good performance on CG-modeling and
simulations of biological systems due to the small number of particles and load-balance problems.
We need a new program that is suitable for such CG-modeling and simulations by introducing a
different parallelization scheme. Such new program, which we call CGDYN, will be developed soon.

Another important aspect is the introduction of quantum effect to investigate the chemical reac-
tions in enzymes. Bond-formation or breaking can not be simulated by using classical force fields,
but should be investigated by using ab initio Quantum theory. Considering the large system size in
biological systems, only possible approach is to use QM/MM hybrid calculations. We have a basic
QM/MM code for computing potential energies of QM/MM systems and optimizing the systems
based on the hybrid QM/MM potential energy functions. We plan to extend the calculations for
larger periodic boundary systems and to allow the reaction calculations in proteins.
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Patents and Deliverables
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