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1.2 Research Activities

The system software team focuses on the research and development of an advanced system software
stack not only for the ”K” computer but also for towards exascale computing. There are several
issues in carrying out future computing. Two research categories are taken into account: i) scalable
high performance libraries/middleware, such as file I/O and low-latency communication, and ii) a
scalable cache-aware, and fault-aware operating system for next-generation supercomputers based
on many core architectures.

1.3 Research Results and Achievements

1.3.1 PRDMA (Persistent Remote Direct Memory Access)

The PRDMA (Persistent RDMA)[§] is an enhancement of MPI persistent communication primi-
tives to reduce the communication latency and to improve the overlap between computation and
communication over an RDMA-enabled interconnect. The RDMA-base transfers can progress the
non-blocking communication without CPU intervention, and reduce extra copy overheads and mem-
ory consumption for data transfers due to the Zero-Copy feature. The MPI persistent communication
is defined in MPI standard since MPI version 1.1 specification. For example, when calling with the
same communication parameters from an iterative stencil loop, the MPI persistent communication
can avoid the redundant setup cost on every call, including the RDMA buffer address exchanges.
Also, the initial costs to schedule the communication requests are amortized over a number of stencil
iterations.

We implemented the prototype of the PRDMA protocol over the Open MPI provided on the
K computer in FY2012. In FY2013, We improved the performance in the ghost cell exchange
pattern, such as derived datatype handling and special handling upon non-periodic boundary con-
dition. Furthermore, we applied the PRDMA to an optimized prototype implementation of MPI-3
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Figure 1.1: Benchmark Result of MPI_Win_lock / unlock with empty critical section
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Figure 1.2: Relationships between applications, communication libraries and network driver

Neighborhood Collectives, as known as MPI_Neighbor_alltoallw, over MPICH on the K computer in
FY2014.

In FY2015, we improved the quality of the MPICH on K computer, and made it available for
public use on the K computer. In addition, we have been implementing the prototype of the PRDMA-
based MPI-RMA implementation on the Tofu2 interconnect of FX100 to compare with the MPI-3
neighborhood collectives. The MPI-RMA passive synchronization such as MPI_Win_lock / unlock
does not require the involvement of target process. To implement a truly passive locking on the
FX100, we designed a distributed lock queue using RDMA Atomic operations of Tofu2 interconnect.
In Figure [I.T] the vertical axis shows the elapsed time in second for 1000 calls of MPI_Win_lock
and MPI_Win_unlock with MPI_.LOCK_SHARED, and the horizontal axis shows the number of MPI
processes which acquires the same lock. The FX10 indicates the result of the Open MPI based
generic implementation without RDMA Atomics. The FX100 indicates the result of the MCS-based
Readers-Writer lock (Readers Preference) implementation using Tofu2 RDMA Atomics. The FX100
achieves 130 [us] at 256 processes (114 [s] in FX10).

1.3.2 OFI/LLC and RMPI

Two communication libraries have been developed. The first one is called Low-Level Communication
Library, which will adopt Open Fabric Interface (OFI) and is called OFI/LLC. The second one is
called RIKEN-MPI (RMPI) which is based on MPICH. The relationships between applications,
RMPI, OFI/LLC and network drivers are explained by using Figure A network driver provides
communication functions to OFI/LLC. OFI/LLC provides communication functions to both parallel
language runtimes (e.g. MPI library) and applications (e.g. visualization) via a low-level interface.
RMPI provides communication functions to applications via a high-level interface.

Two optimizations are performed in FY2015. The first optimization finds the proper numbers
for different kinds of hardware contexts at run-time. The purpose is to maximize the performance
while limiting its memory consumption to the amount at which it is possible to run parallel appli-
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Figure 1.3: Communication latency in all-to-one and one-to-all communication patterns

Table 1.1: Memory consumption per compute node of MPICH and LLC

Software object type Existing Technique (MiB) | Proposed (MiB)
Communication participants 3,322 204
Software-level communication contexts 15,905 34.5
Hardware-level communication contexts 2,152 106
Buffers for eager protocol 150 151
Buffers for shared-memory 521 118
Table for process management 0.215 0.216
Dynamic buffer and HW context management - 407
Others 53.3 53.3
Total 22,103 1,074

cations with millions of compute nodes.

The conventional network hardware provides a communication model in which the memory-area
for communication information for an end-point pair (called context) is never released at run-time.
The next generation network hardware adds a new communication model in which the memory-
area can be allocated and released at run-time to save memory. However, you lose performance
just to make all end-point pairs use the new model because it has a certain amount of performance
overhead when allocating. Therefore, it is needed to find how many end-point pairs should use
the conventional model and how many the new model. We propose a method to find the proper
combination of the number-pair at run-time. This is done by calculating the benefits of different
combinations of the number-pair at run-time by using the communication statistics and an analytic
model. It was implemented in OFI/LLC and evaluated using two micro-benchmarks performing
all-to-one and one-to-all types of communications. The latency is reduced by up to 19% and 13%,
respectively, as shown in Figure (1.3

The second optimization is for the both OFI/LLC and RMPT libraries. It tries to keep only active
software contexts in memory. The purpose is to limit the per-node memory consumption with the
same target as the first optimization.

The conventional communication libraries prepare software contexts of the number proportional
to the number of MPI processes. The proposed method only keeps a constant number of software
contexts in memory by releasing inactive contexts when necessary. The mechanism was evaluated
by using an analytic model of the memory consumption which is created by analyzing source code
of OFI/LLC and MPICH. Table shows the memory consumption with 4,194,304 MPI processes
on 1,048,576 compute nodes. The proposed method reduces the memory consumption per compute
node from 22 GiB to 1 GiB when compared to the existing technique.
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Figure 1.5: 1/O throughput of collective write

1.3.3 Scalable MPI-10 Using Affinity-Aware Aggregation

A commonly used MPI-IO library named ROMIO has the two-phase I/O (TP-I0) scheme to improve
collective I/O performance for non-contiguous accesses. This research is addressing to optimize TP-
IO implementation for further I/O performance improvements than the original one. In the FY2015,
we have proposed enhanced TP-IO approach named EARTH (Effective Aggregation Rounds with
THrottling) in the MPI library at the K computer. It has been arranged to have cooperative
stepwise data exchanges based on the optimized aggregator layout and I/O throttling approach done
in the FY2014. Its I/O throttling scheme and stepwise data exchanges are illustrated in Figure

Figure a) illustrates I/O throttling approach of the EARTH using token-relay. EARTH
divided processes into groups which are associated with target Object Storage Target (OST) of the
FEFS file system on the K computer. Then the EARTH throttles I/O request generation of each
process, where process that receives a token issues I/O request. As a result, network and I/O request
contention can be minimized. Furthermore, stepwise data exchanges in Figure b) improve data
exchange times by splitting all-to-all manner data exchanges into sub-groups which are associated
with I/O throttling. This stepwise data exchange scheme has two advantages compared with the
original all-to-all manner data exchanges. One is minimization in waiting time to complete data
exchanges. Another is mitigation of network contention.

Performance evaluation was carried out using computing nodes ranged from 192 to 3,072 nodes.
I/0 performance evaluation was done by using the HPIO benchmark with non-contiguous access
patterns on a local file system of the FEFS on the K computer. The number of nodes was arranged
not to have any interference from other users’ applications. In the K computer case, we specified
the number of nodes in a 3D manner node allocation, where we chose the following five patterns;
2x3x32, 4x3x32, 8x3x32, 8x6x32, and 8x12x32. We deployed one MPI process per one computing
node, thus the number of MPI processes was the same with that of used computing nodes. Figure
shows I/O throughput values relative to the number of MPI processes.

In this evaluation, we examined the number of I/O requests for 1, 2, 4, and 8 in the I/O throt-
tling scheme indicated by EARTH(req=1), EARTH(req=2), EARTH(req=4), and FARTH(req=38),
respectively in addition to the original implementation indicated by original and aggregator layout
optimization only version (agg-aw). The EARTH optimization outperformed the original one and
aggregator layout optimization only version. From this evaluation, one I/O request case in the
EARTH optimization was the best when we had 3,072 processes. Our future work is the way for
tuning the number of I/O requests to gain the best 1/O performance.

1.3.4 New Process / Thread Model

From FY2012, we have been developing a new process/thread model that is suitable for the many-
core architectures. The many-core architectures are gathering attention towards the next generation
supercomputing. Many-core architectures have a large number of low performance cores, and then
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Figure 1.6: Partitioned Virtual Address Space

the number of parallel processes within a single node becomes larger on many-core environments.
Therefore, the performance of inter-process communication between the parallel processes within the
same node can be an important issue for parallel applications.

Partitioned Virtual Address Space (PVAS) is a new execution model to achieve high-performance
inter-process communication on the many-core environments. With PVAS, multiple processes run in
the same virtual address space as shown in Figure to eliminate the communication overhead due
to the process boundaries that the current modern OSes introduce for inter-process protection. In
PVAS, the data owned by the other process can be accessed by the normal load and store machine
instructions, just like the same way accessing the data owned by itself. Thus, high-performance
inter-process communication is achieved.

We implemented the prototype of the PVAS execution model in the Linux kernel in FY2012.
We improved its quality and published it as open source software in FY2013. To demonstrate the
potential of PVAS, Open MPI has been modified to utilize PVAS since then|1]. Especially in FY2015,
proposed and developed PVAS was ported to McKernel.

It is already known that process oversubscription, which binds multiple parallel processes to one
CPU core, can hide the communication latency and reduce CPU idle time. However, the lightweight
OS kernels for Exascale systems may no longer support OS task scheduling to reduce OS noise.
Without OS task scheduling, only one parallel process per CPU core is allowed to run, and the
process oversubscription is impossible. Even if the OS task scheduling is supported, the overhead of
the context switch hinders the application performance and ruins the advantage of process oversub-
scription.

To tackle this issue, we proposed user-level process (ULP) in FY2015. The user-level process is
a process which can be scheduled in the user-space. The ULP was implemented as an extension of
PVAS. ULP has the beneficial features of the user-level thread. Meanwhile, it has its own program
code and data like a traditional process. By assigning a role of a parallel process to a user-level
process, high-performance process oversubscription can be achieved without OS task scheduling.
Moreover, the process oversubscription utilizing ULP does not change the programming model of
the parallel application.

The context switching times of conventional Linux process, Linux thread and ULP over the
number of execution entities are compared in Figure Theoretically, there is no need of calling
any systemcall to switch user-level processes, however, the privileged FS segment register is used to
point Thread Local Storage (TLS) must be switched at the time of context switch on the x86 CPU
architecture. As shown in Figure the fastest one is ULP without switching the F'S register, and
send fastest one is ULP with the FS switching. Anyway the context switching times of conventional
processes (KLP) and threads (KLP) are much higher than those of ULPs.
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Figure 1.8: Message collisions by substituting a failed node (5P-stencil)

1.3.5 Fault Resilience

With the increasing fault rate on high-end supercomputers, the topic of fault tolerance has been
gathering attention. To cope with this situation, various fault-tolerance techniques are under inves-
tigation; these include user-level, algorithm-based fault-tolerance techniques and parallel execution
environments that enable jobs to continue following node failure. Even with these techniques, some
programs, such as stencil computation, having no dynamic load balancing function may underper-
form after a failure recovery. Even when spare nodes are present, they are not always substituted
for failed nodes in an effective way.

There are some questions of how spare nodes should be allocated, how to substitute them for
faulty nodes, and how much the communication performance is affected by such a substitution. The
third question stems from the modification of the rank mapping by node substitutions, which can
incur additional message collisions. In a stencil computation, rank mapping is done in a straight-
forward way on a Cartesian network without incurring any message collisions. However, once a
substitution has occurred, the node-rank mapping may be destroyed. Therefore, these questions
must be answered in a way that minimizes the degradation of communication performance.

Several spare-node allocation and node-substitution methods had been proposed, compared and
analyzed in terms of communication performance(Figure [L.8)[2].

In FY2015, the proposed methods were evaluated using BlueGene Q (JUQUUEN at Jiilich Su-
percomputing Center) and the K computer. Figure shows the communication performance
degradation on the K computer|3]. The black lines represent the simulation results with 3D mesh
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Figure 1.9: Proposed Three Failed Node Substitution Methods
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Figure 1.10: Communication Performance Degradation by Using Spare Nodes the K computer
(12x12x12)

network having the same size with the K computer evaluation (12x12x12) and the red lines represent
the evaluation results of the K computer. In all cases, the hybrid sliding method is used. Left graph
shows the cases with 7P stencil communication pattern (4 MiB), upper right graph shows the cases
with the barrier collective communication, and the lower right graph shows the allreduce collective
communication (16 KiB). Figure shows the communication performance on BG/Q with the
same way as in Figure citefig:resilience2, unless otherwise noted.

As shown in Figures and the actual patterns of the stencil communication performance
degradation can vary in the K computer and BG/Q. The collective communication performance
degradation, however, is relatively constant over the number of failed nodes.

1.3.6 Big data processing on the K computer

This research was conducted by collaboration between the Data Acquisition team of RIKEN SPring-
8 Center and the System Software Research team of RIKEN AICS. The goal of this project is to
establish the path to discover the 3D structure of a molecule from a number of XFEL (X-ray Free
Electron Laser) snapshots. The K computer will be used to analyze the huge data transmitted from
RIKEN Harima where SACLA XFEL facility is located.

10
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Figure 1.11: Communication Performance Degradation by Using Spare Nodes the K computer
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In order to reduce quantum noise, each representative image must be averaged out more than
hundred images. In addition to this, the sampled X-ray images must cover all possible orientations
of the molecule. The number of images, although it depends on desired accuracy and the size of the
molecule, can be one million in typical cases. Thus, the massive power of the K computer is needed.

We had developed a parallel software running on the K computer to analyze images obtained
by a light source, SACLA. The developed software consists of two components as shown in [1.12
The first phase is to select the representative images by a classic clustering computation. Thus,
all images must be compared with all others. The second phase is to classify the rest of images
into the representative images. In this stage, we need to calculate for all possible combinations of
representative images and rest of the images.

After developing the first version of the program, we started to develop a new framework, named
pCarp|6], to analyze any possible combination of two records in a dataset processed by all partici-
pating processes. This parallel processing can be used not only our target application (XFEL), but
also can be used to analyze gene sequencing data, images obtained by electron microscopes, and so
on. The pCarp framework takes care of parallelization and I/O minimization, while sequential input
program to read data from a file and sequential output program to do the computation of two image
data and to output the result (Figure . The most benefit of this framework is that the users
do not need to write any parallel programs, but write just two sequential programs; the input and
output programs.

11
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Figure 1.13: I/O minimization and load balancing

In FY2015, we found that the performance of the first version of pCarp was no good because there
was a large overhead to transfer data between the pCarp framework and user sequential programs.
This overhead, however, was successfully reduced by introducing new data transfer mechanism. New
version of pCarp can not only on the K computer, but also on the conventional clusters.

1.4 Schedule and Future Plan

Results of the System Software Research Team are being taken over by the System Software Devel-
opment Team of Flagship 2020 project. The members mainly will work for the Flagship 2020 project
from the next year. The MPI-IO library with the EARTH optimization will be available at the K
computer in the next year. The team will mainly maintain the published software.
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[6] Carp framework (available since 2016).
[7] MPICH: AICS Software MPICH on K computer (available since 2015).
[8] PRDMA: AICS Software PRDMA library (available since 2013).
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