
Parallelization of
molecular dynamics

2017年 7月 13日

Jaewoon Jung

(RIKEN Advanced Institute for Computational Science)

計算科学技術特論Ａ

Overview of MD

Molecular Dynamics (MD)

1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion

Long time MD trajectories are important to obtain
thermodynamic quantities of target systems.

i i

i
i

d

dt m
d

dt





r p

p
F

Equation of motion
Long time MD trajectory
=> Ensemble generation

() ()

() ()

i
i i

i i i

t t t t
m

t t t t

    

    

p
r r

p p F

Integration

Potential energy in MD

4

2
total 0

bonds
2

0
angles

dihedrals

12 61
0 0

1 1

()

()

[1 cos()]

2

b

a

n

N N
ij ij i j

ij
ij ij ijj i j

E k b b

k

V n

r r q q

r r r

 

 




  

 

 

  

                        







 

O(N)

O(N)

O(N)

O(N2)
Main bottleneck in MD

12 6 2 2
0 0

2
0

erfc() exp(/ 4)
2 FFT(())

ij ij i j ij
ij

ij ij iji j R

r r q q r
Q

r r r

 
  

                         
 

k

k
k

k

Real space, O(CN) Reciprocal space, O(NlogN)

Total number of particles

Non-bonded interaction

1. Non-bond energy calculation is reduced by introducing cutoff

௜௝
଴௜௝

௜௝

ଵଶ
଴௜௝

௜௝

଺
௜ ௝

௜௝

ே

௜ୀ௝ାଵ

ேିଵ

௝ୀଵ

௜௝
଴௜௝

௜௝

ଵଶ
଴௜௝

௜௝

଺

௘௟௘௖

ே

௜ି௝ ழோ

2. The electrostatic energy calculation beyond cutoff will be done in the reciprocal
space with FFT

3. Further, it could be reduced by properly distributing over parallel processors, in
particular good domain decomposition scheme. 5

௘௟௘௖
௜ ௝

଴

௜௝

௜௝|௜ି௝|ழோ

ଶ ଶ

ଶ
ஷ଴

௜ ௝

଴௜௝
௜௝

௜ ௜

଴௜

Real part Reciprocal part Self energy

O(N2)

O(N1)

Difficulty to perform long time MD simulation

1. One time step length (Δt) is limited to 1-2 fs due to vibrations.

2. On the other hand, biologically meaningful events occur on the time scale of
milliseconds or longer.

fs ps ns μs ms sec

vibrations

Sidechain motions

Mainchain motions

Folding

Protein global motions

How to accelerate MD simulations?
=> Parallelization

Serial Parallel

16 cpus

X16?

1cpu

1cpu

Good Parallelization ;
1) Small amount of

computation in one CPU
2) Small amount of

communication time

C

CPU

Core
MPI
Comm

Parallelization

Shared memory parallelization (OpenMP)

Memory

P1 P2 P3 PP-1 PP

• All processors share data in memory

• For efficient parallelization, processors should not access the same memory address.

• It is only available for multi-processors in a physical node

Distributed memory parallelization (MPI)

M1

P1

M2

P2

M3

P3

MP-1

PP-1

MP

PP

…

• Processors do not share data in memory

• We need to send/receive data via communications

• For efficient parallelization, the amount of communication data should be minimized

Hybrid parallelization (MPI+OpenMP)

M1

P1

M2

P2

M3

P3

MP-1

PP-1

MP

PP

…

• Combination of shared memory and distributed memory parallelization.

• It is useful for minimizing communicational cost with very large number of processors

SIMD (Single instruction, multiple data)

• Same operation on multiple data points simultaneously

• Usually applicable to common tasks like adjusting graphic image or volume

• In most MD programs, SIMD becomes the one of the important topics to increase the

performance

SIMDNo SIMD
4 times faster

SIMT (Single instruction, multiple threads)

• SIMD hardware with MIMD programming model

Ex) if then .. end if => SIMD (×)

SIMT (○)

• SIMT execution model is usually implement on GPUs and related with GPGPU

(General Purpose computing on Graphics Processing Units)

• Currently, CUDA allows 32 threads for SIMT (warp size =32)

Grid 1

Block
(0,0)

Block
(0,1)

Block
(1,1)

Block
(1,0)

Block (1,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(1,2)

Thread
(2,0)

Thread
(2,1)

Thread
(3,0)

Thread
(3,1)

Thread
(2,2)

Thread
(3,2)

Thread
(0,2)

Parallelization of MD (real space)

Parallelization scheme 1 :
Replicated data approach

1. Each processor has a copy of all particle data.
2. Each processor works only part of the whole works by proper assign in do

loops.

do i = 1, N
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

my_rank = MPI_Rank
proc = total MPI

do i = my_rank+1, N, proc
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

MPI reduction (energy,force)

Hybrid (MPI+OpenMP) parallelization of the
Replicated data approach

1. Works are distributed over MPI and OpenMP threads.
2. Parallelization is increased by reducing the number of MPIs involved in

communications.

my_rank = MPI_Rank
proc = total MPI

do i = my_rank+1, N, proc
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

MPI reduction
(energy,force)

my_rank = MPI_Rank
proc = total MPI
nthread = total OMP thread
!$omp parallel
id = omp thread id
my_id = my_rank*nthread + id
do i = my_id+1,N,proc*nthread

do j = i+1, N
energy(i,j)
force(i,j)

end do
end do
Openmp reduciton
!$omp end parallel

MPI reduction (energy,force)

Advantage/Disadvantage of
the Replicated data approach

1. Advantage : easy to implement

2. Disadvantage
1) Parallel efficiency is not good

a) Load imbalance
b) Communication is not reduced by increasing the number
of processors

2) Needs a lot of memory
b) Memory usage is independent of the number of processors

Parallelization scheme 2 :
Domain decomposition

1. The simulation space is
divided into subdomains
according to MPI

2. Domain size is usually
equal to or greater than
the cutoff value.

Advantage / Disadvantage of
the domain decomposition approach

1. Advantage
1) Parallel efficiency is very good compared to the replicated
data method due to small communicational cost
2) The amount of memory is reduced by increasing the number
of processors

2. Disadvantage
1) Difficult to implement

Comparison of two parallelization scheme

Computation Communication Memory

Replicated data O(N/P) O(N) O(N)

Domain
decomposition

O(N/P) O((N/P)2/3) O(N/P)

Parallelization of MD

(reciprocal space)

Smooth particle mesh Ewald method

Real part Reciprocal part Self energy

The structure factor in the reciprocal part is approximated as

Using Cardinal B-splines of order n Fourier Transform of
charge

  2 2 2
2 2

2
' , 1 1

'

erfc1 1 exp(/)
() ()

2 2
i j c

N N
i j i j

i
i j ii j

r

q q
E S q

V

   
   

  

  
  

 
   
n k 0

r r n

r r n k
r k

kr r n

1 2 3 1 1 2 2 3 3 1 2 3(, ,) () () () ()(, ,)S k k k b k b k b k F Q k k k

It is important to parallelize the Fast Fourier transform efficiently in PME!!

Ref : U. Essmann et al, J. Chem. Phys. 103, 8577 (1995)

Parallel 3D FFT – slab(1D) decomposition

1. Each processor is assigned a slob of size
N × N × N/P for computing an N × N
× N FFT on P processors.

2. The parallel scheme of FFTW

3. Even though it is easy to implement, the
scalability is limited by N, the extent of
the data along a single axis

4. In the case of FFTW, N should be
divisible by P

1D decomposition of 3D FFT

Reference: H. Jagode. Master’s thesis, The University of Edinburgh, 2005

1D decomposition of 3D FFT (continued)

1. Slab decomposition of 3D FFT has three steps
 2D FFT (or two 1D FFT) along the two local dimension
 Global transpose
 1D FFT along third dimension

2. Advantage : The fastest on limited number of processors because it only needs
one global transpose

3. Disadvantage : Maximum parallelization is limited to the length of the largest
axis of the 3D data (The maximum parallelization can be increased by using a
hybrid method combining 1D decomposition with a thread based
parallelization)

Parallel 3D FFT –2D decomposition

1. Each processor is assigned a slob of size N× N/P× N/Q for computing an N
× N× N FFT on P ×Q processors.

2. Current GENESIS adopt this scheme with 1D FFTW

2D decomposition of 3D FFT

Reference: H. Jagode. Master’s thesis, The University of Edinburgh, 2005

2D decomposition of 3D FFT (continued)

1. 2D decomposition of 3D FFT has five steps
 1D FFT along the local dimension
 Global transpose
 1D FFT along the second dimension
 Global transpose
 1D FFT along the third dimension
 Global transpose

2. The global transpose requires communication only between subgroups of all nodes
3. Disadvantage : Slower than 1D decomposition for a number of processors possible with

1D decomposition
4. Advantage : Maximum parallelization is increased
5. Program with this scheme
 Parallel FFT package by Steve Plimpoton (Using MPI_Send and MPI_Irecv)[1]
 FFTE by Daisuke Takahashi (Using MPI_AlltoAll)[2]
 P3DFFT by Dmitry Pekurovsky (Using MPI_Alltoallv)[3]

[1] http://www.sandia.gov/~sjplimp/docs/fft/README.html
[2] http://www.ffte.jp
[3] http://www.sdsc.edu/us/resources/p3dfft.php

2D decomposition of 3D FFT (pseudo-code)

! compute Q factor
do i = 1, natom/P

compute Q_orig
end do
call mpi_alltoall(Q_orig, Q_new, …)
accumulate Q from Q_new
!FFT : F(Q)
do iz = 1, zgrid(local)

do iy = 1, ygrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q, Q_new,…)
do iz = 1, zgrid(local)

do ix = 1, xgrid(local)
work_local = Q_new(my_rank)
call fftw(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new,..)

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local

end do
end do

! compute energy and virial
do iz = 1, zgrid

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

energy = energy + sum(Th*Q)
virial = viral + ..

end do
end do

end do

! X=F_1(Th)*F_1(Q)

! FFT (F(X))

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new,..)
do iz = 1, zgrid(local)

do ix = 1, xgrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new)
do iz = 1, zgrid(local)

do iy = 1, ygrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local

end do
end do
compute force

Parallelization scheme of existing MD
programs

Gromacs

1. Gromacs makes use of multiple parallelism scheme

Ref : M. J. Abraham et al, Software X, 1-2, 19-25 (2015)

• SIMD register : cluster interaction kernel or bonded interaction
• OpenMP multithreading : inside domain decomposition
• Nonbed interactions by GPU if GPU cards exist
• MPI for each single domain

Gromacs

Coordinates in zones 1 to 7 are
communicated to the corner cell 0

2. Gromacs makes use of the 8-th
shell scheme as the domain
decomposition scheme

Rc

8th shell scheme

Ref : B. Hess et al. J. Chem. Theor. Comput. 4, 435 (2008)

Gromacs

3. Gromacs assigns kernels according to available SIMD / SIMT widths

Ref : M. J. Abraham et al, Software X, 1-2, 19-25 (2015)

NAMD
1. NAMD is based on the Charmm++ parallel program system and runtime

library.
2. Subdomains named patch are decided according to MPI
3. Forces are calculated by independent compute objects

Ref :
L. Kale et al. J. Comput. Phys. 151, 283 ((1999)
J. C. Phillips et al. J. Comput. Chem. 26, 1781
(2005)

Desmond

1. Midpoint method
• Two particles interact on a particular box if and only if the midpoint of the

segment connecting them falls within the region of space associated with that
box

• This scheme applies not only for non-bonded but also bonded interactions.

Each pair of particles separated by a distance less than R (cutoff distance) is connected by a dashed line segment,
with “x” at its center lying in the box which will compute the interaction of that pair

Ref : KJ. Bowers et al, J. Chem. Phys. 124, 184109 (2006)

Desmond

2. FFT scheme
• Not distribute the data (not to use all-to-all communications)
• Parallelization of one dimensional FFT by performing directly the butterfly

communications

Ref : KJ. Bowers et al, Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM, 2006

GENESIS

1. Midpoint cell method

• Partitioning space into fixed size
boxes, with dimension larger than
the cutoff distance.

• We need only information of
neighbor space(domain) for
computation of energies.

• Communication is reduced by
increasing process number .

• Efficient for good parallelization
and suitable for large system with
massively parallel
supercomputers.

GENESIS

2. Volumetric decomposition
FFT

• More communications than
existing FFT

• MPI_Alltoall
communications only in one
dimensional space

• Reduce communicational
cost for large number of
processors

Ref) J. Jung et al. Comput. Phys. Comm.
200, 57-65 (2016)

FFT in GENESIS (2 dimensional view)

GENESIS
(Identical domain

decomposition
between two space)

NAMD, Gromacs
(Different domain
decomposition)

SIMD in GENESIS (developer version)

• Array of Structure (AoS)

x1 y1 z1 x2 y2 z2 xN yN zN

• Structure of Array (SoA)

In GENESIS, it is expressed as coord_pbc(1:3,1:natom,1:ncell)

In updated GENESIS source code for KNL, it will be expressed as
coord_pbc(1:natom,1:3,1:ncell)

x1 x2 x3 x4 zN-2 zN-1 zN

• For Haswell/Broadwell/KNL machines, SoA shows better performance
than AoS due to efficient vectorization (SIMD)

Further improvements in
Parallelization of MD :

MPMD (Multiple Program and
Multiple Data)

Multiple program/multiple data (MPMD) scheme

MPMD scheme of Gromacs : 3D domain decomposition in real space combined with 2D
pencil decomposition in reciprocal space (ref : Bioinformatics, btt055 (2013)

1. A subset of nodes are dedicated to real space and another set of nodes are dedicated to
reciprocal space interactions.

2. Representative program : Gromacs, CHARMM.
3. Usually different domain decomposition of real space is different from that of reciprocal

space => reciprocal space nodes is used only for calculation (not integration).

What is the problem of existing MPMD scheme?

1. Different domain decomposition
between real and reciprocal space
=> Large amount of
communication

2. Integration of reciprocal space is
not possible => RESPA cannot be
implemented.

3. Communication pattern between
real and reciprocal nodes is
dependent on the number of
processors

To overcome the problem, we
suggest a new MPMD scheme
where real and reciprocal space
have same domain decomposition.

MPMD scheme with multiple time step integrator

1. Both real and reciprocal space nodes are involved in integrator (it is possible by same
domain decomposition between two spaces).

2. Real space non-bonded interactions are divided into two subspaces.

3. When reciprocal space interaction is not necessary, real and reciprocal space nodes
are assigned to the evaluation of subspace 1 and subspace 2, respectively.

Flowchart of MPMD scheme

Conventional integrator

Multiple time
step integrator

Benchmark performance

Gromacs

Ref : S. Pall et al., International Conference on Exascale Applications and Software, EASC 2014

NAMD

NAMD 2.11 on TACC Stampede
(PME every 3 steps)

(From NAMD webpage)

NAMD 2.10
(PME every 3 steps)

(In proceedings of the 2014 International
Conference for High Performance

Computing, Networking, Storage, and
Analysis (SC14))

GENESIS 1.1

GENESIS 1.1 on PC clusters
(1M system)

GENESIS 1.1 on K
(28M system)

GENESIS MPMD performance

1. MPMD is not suitable for small number of processors.
2. MPMD could be a good solution for very large number of processors.
3. MPMD even increases the available number of processors.

ApoA1 ACRB STMV

27_STMV8_STMV

GENESIS performance on KNL

1 2 4 8 16 32 64 128

1

2

4

8

16

32

P
er

fo
rm

an
ce

 (
ns

/d
ay

)

Number of Nodes

 GENESIS (VVER)
 GENESIS (RESPA,2)
 GENESIS (RESPA,4)

64 128 256 512 1024
0.5

1

2

4

8

P
er

fo
rm

an
ce

 (
ns

/d
ay

)
Number of Nodes

 GENESIS (VVER)
 GENESIS (RESPA,2)
 GENESIS (RESPA,4)

1 STMV (1M) 64 STMV (66M)

Summary

1. Parallelization : Distributed memory (MPI), shared memory (OpenMP),
hybrid (MPI+OpenMP), SIMD, SIMT, etc.

2. Real space parallelization => Mainly domain decomposition scheme

3. Reciprocal space parallelization => Parallelization of FFT

4. Further improvements : MPMD, GPU, and so on.

