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Overview of MD



Molecular Dynamics (MD)

1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion
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Equation of motion Integration Long time MD trajectory
=> Ensemble generation
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Long time MD trajectories are important to obtain
thermodynamic quantities of target systems.
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Non-bonded interaction

1. Non-bond energy calculation 1s reduced by introducing cutoff
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2. The electrostatic energy calculation beyond cutoff will be done in the reciprocal
space with FFT
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3. Further, it could be reduced by properly distributing over parallel processors, in
particular good domain decomposition scheme. 5



Difficulty to perform long time MD simulation

1. One time step length (4¢) 1s limited to 1-2 fs due to vibrations.

2. On the other hand, biologically meaningful events occur on the time scale of
milliseconds or longer.
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How to accelerate MD simulations?
=> Parallelization

Serial
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Good Parallelization ;
1) Small amount of
computation in one CPU

2) Small amount of
communication time
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Parallelization



Shared memory parallelization (OpenMP)

* All processors share data in memory

* For efficient parallelization, processors should not access the same memory address.

e It is only available for multi-processors in a physical node



Distributed memory parallelization (MPI)

Processors do not share data in memory

We need to send/receive data via communications

For efficient parallelization, the amount of communication data should be minimized



Hybrid parallelization (MPI+OpenMP)

* Combination of shared memory and distributed memory parallelization.

It is useful for minimizing communicational cost with very large number of processors



SIMD (Single instruction, multiple data)

Al + B/ = |( A, B, G
Al + B | = |G, A, B,| |G,
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No SIMD " SIMD
4 times faster

Same operation on multiple data points simultaneously
Usually applicable to common tasks like adjusting graphic image or volume
In most MD programs, SIMD becomes the one of the important topics to increase the

performance



SIMT (Single instruction, multiple threads)

SIMD hardware with MIMD programming model
Ex) if then .. end if => SIMD (X))
SIMT (O)
SIMT execution model is usually implement on GPUs and related with GPGPU
(General Purpose computing on Graphics Processing Units)

Currently, CUDA allows 32 threads for SIMT (warp size =32)
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Parallelization of MD (real space)



Parallelization scheme 1 :
Replicated data approach

1. Each processor has a copy of all particle data.
2. Each processor works only part of the whole works by proper assign in do
loops.
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Hybrid (MPI+OpenMP) parallelization of the
Replicated data approach

1.  Works are distributed over MPI and OpenMP threads.
2. Parallelization is increased by reducing the number of MPIs involved in

communications.

my rank = MPI Rank
proc = total MPI

do i = my rank+l, N, proc
do j = i+1, N

energy (i, J)
force (i, ])

end do
end do

MPI reduction
(enerqgy, force)

"

my rank = MPI Rank
proc = total MPI
nthread = total OMP thread

!Somp parallel
id = omp thread id
my i1d = my rank*nthread + 1id
do i = my id+l,N,proc*nthread
do 7 = i+1l, N
energy (1, J)
force (i, ])
end do
end do
Openmp reduciton
!'Somp end parallel

MPI reduction (energy, force)



Advantage/Disadvantage of
the Replicated data approach

1. Advantage : casy to implement

2. Disadvantage
1) Parallel efficiency 1s not good
a) Load imbalance
b) Communication 1s not reduced by increasing the number
of processors

2) Needs a lot of memory
b) Memory usage is independent of the number of processors



Parallelization scheme 2 :
Domain decomposition

1. The simulation space is

divided into subdomains

according to MPI

A
T 2. Domain size is usually

‘l' Y equal to or greater than
the cutoff value.

1‘ A Simulation domain

Subdomain assigned by MPI

Cell

<«—» MP| communication



Advantage / Disadvantage of
the domain decomposition approach

1. Advantage
1) Parallel efficiency 1s very good compared to the replicated
data method due to small communicational cost

2) The amount of memory 1s reduced by increasing the number
of processors

2. Disadvantage
1) Difficult to implement



Comparison of two parallelization scheme

Replicated data O(N/P) O(N) O(N)

Domain

2/3
decomposition O(N/E) O((N/P)™") O(N/P)



Parallelization of MD
(reciprocal space)



Smooth particle mesh Ewald method

N ql.qjerfc(a
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The structure factor in the reciprocal part 1s approximated as

S(k,,k, k) = b, (k, )b, (k, )b, (ky \F (O) Kk, , k, , ;)

Using Cardinal B-splines of ordern ———> Fourier Transform of
charge

It is important to parallelize the Fast Fourier transform efficiently in PME!!

Ref : U. Essmann et al, J. Chem. Phys. 103, 8577 (1995)



Parallel 3D FFT — slab(1D) decomposition

1. Each processor 1s assigned a slob of size
N X N X N/P for computing an N X N
X N FFT on P processors.

2. The parallel scheme of FFTW

3. Even though it is easy to implement, the

scalability is limited by N, the extent of

the data along a single axis

4. In the case of FFTW, N should be
divisible by P
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1D decomposition of 3D FFT
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Reference: H. Jagode. Master’s thesis, The University of Edinburgh, 2005
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1D decomposition of 3D FFT (continued)

Slab decomposition of 3D FFT has three steps
2D FFT (or two 1D FFT) along the two local dimension

Global transpose
1D FFT along third dimension

Advantage : The fastest on limited number of processors because it only needs
one global transpose

Disadvantage : Maximum parallelization is limited to the length of the largest
axis of the 3D data ( The maximum parallelization can be increased by using a
hybrid method combining 1D decomposition with a thread based
parallelization)



Parallel 3D FFT -2D decomposition
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1. Each processor is assigned a slob of size N X N/P X N/Q for computing an N

X N X NFFTonP XQ processors.
2. Current GENESIS adopt this scheme with 1D FFTW



2D decomposition of 3D FFT

Proc § 0 s segHy s g [ T
gl " gl
WITHIN ~  BETWEEN T .
Proc B EACH sub-groups ﬁ'
Proc¥ . —— sub-group -~ mEm
Proc 10 _BSEEEEsal _ to get data over T
Proc 11 érﬁl?i;ﬁié E‘: :I to ﬂEIt data over ¥-dimension EEEE
ENENREEE’ z-dimension locally | [
Proct s e e ]
Proc 13 """ig-l
Proc 14  SESESE sl
Proc15 HENE .
X o 2 o
perform 10-FFT perform 10-FFT - perform 10-FFT
along y-dimension 2 along z-dimension X along x-dimension
[a) (b) (3]

Reference: H. Jagode. Master’s thesis, The University of Edinburgh, 2005



2D decomposition of 3D FFT (continued)

2D decomposition of 3D FFT has five steps
1D FFT along the local dimension

Global transpose

1D FFT along the second dimension
Global transpose

1D FFT along the third dimension

Global transpose

0 0600 06—

N

The global transpose requires communication only between subgroups of all nodes
Disadvantage : Slower than 1D decomposition for a number of processors possible with
1D decomposition

Advantage : Maximum parallelization is increased

Program with this scheme

Parallel FFT package by Steve Plimpoton (Using MPI Send and MPI Irecv)[1]

FFTE by Daisuke Takahashi (Using MPI AlltoAll)[2]

P3DFFT by Dmitry Pekurovsky (Using MPI Alltoallv)[3]

(V)

00+

[1] http://www.sandia.gov/~sjplimp/docs/fft/README.html
[2] http://www.ffte.jp
[3] http://www.sdsc.edu/us/resources/p3dfft.php




2D decomposition of 3D FFT (pseudo-code)

I compute Q factor
doi=1, natom/P
compute Q_orig
end do
call mpi_alltoall(Q_orig, Q_new, ...)
accumulate Q from Q_new
IFFT : F(Q)
doiz =1, zgrid(local)
do iy =1, ygrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local
end do
end do
call mpi_alltoall(Q, Q_new,...)
do iz =1, zgrid(local)
do ix = 1, xgrid(local)
work_local = Q_new(my_rank)
call fftw(work_local)
Q(my_rank) = work_local
end do
end do
call mpi_alltoall(Q,Q_new,..)

do iy =1, ygrid(local)
do ix = 1, xgrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local
end do
end do

I compute energy and virial
doiz =1, zgrid
do iy = 1, ygrid(local)
do ix = 1, xgrid(local)
energy = energy + sum(Th*Q)
virial = viral + ..
end do
end do
end do

| X=F_1(Th)*F_1(Q)

I FFT (F(X))

do iy =1, ygrid(local)
do ix = 1, xgrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local
end do
end do
call mpi_alltoall(Q,Q_new,..)
do iz =1, zgrid(local)
do ix = 1, xgrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local
end do
end do
call mpi_alltoall(Q,Q_new)
do iz =1, zgrid(local)
do iy =1, ygrid(local)
work_local = Q(my_rank)
call fftw(work_local)
Q(my_rank) = work_local
end do
end do
compute force



Parallelization scheme of existing MD
programs



Gromacs

1. Gromacs makes use of multiple parallelism scheme

e AR e T T It
Ensemble Dom. Decomp. GPUs CPUs SIMD
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SIMD register : cluster interaction kernel or bonded interaction
OpenMP multithreading : inside domain decomposition

Nonbed interactions by GPU if GPU cards exist

MPI for each single domain

Ref : M. J. Abraham et al, Software X, 1-2, 19-25 (2015)



Gromacs

2. Gromacs makes use of the 8-th
shell scheme as the domain
decomposition scheme

8th shell scheme

Coordinates in zones 1 to 7 are

communicated to the corner cell 0 Ref : B. Hess et al. J. Chem. Theor. Comput. 4, 435 (2008)



Gromacs

3. Gromacs assigns kernels according to available SIMD / SIMT widths

Classical 1x1 nF_:iqt‘d:ludist on 4-way SIMD 424 setup on SIMT-8
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Ref : M. J. Abraham et al, Software X, 1-2, 19-25 (2015)



NAMD

1. NAMD is based on the Charmm++ parallel program system and runtime
library.

2. Subdomains named patch are decided according to MPI

3. Forces are calculated by independent compute objects

[
Bonded Force Objects (‘JJ

Patch Patch

~~~~~~~~~~

Proxy
D |
Ref :
Non-bonded Non-bonded Non-bonded Non-bonded L. Kale et al. J. Comput. Phys. 151, 283 ((1999)
“Ghiecn Toeen )\ Sonmpe e .(12 0((?).;)’hillips et al. J. Comput. Chem. 26, 1781

PROCESSOR |




Desmond

1. Midpoint method

* Two particles interact on a particular box if and only if the midpoint of the
segment connecting them falls within the region of space associated with that

box
a b C
1
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d \ie *;\.3‘3 f
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1

Each pair of particles separated by a distance less than R (cutoff distance) is connected by a dashed line segment,
with “x” at its center lying in the box which will compute the interaction of that pair

* This scheme applies not only for non-bonded but also bonded interactions.

Ref : KJ. Bowers et al, J. Chem. Phys. 124, 184109 (2006)



Desmond

2. FFT scheme

* Not distribute the data (not to use all-to-all communications)
* Parallelization of one dimensional FFT by performing directly the butterfly

communications
Decimation in Frequency Transform Decimation in Time Transform

Proc 0

\\// XX X X\\//

Proc 1

AAAN R AAA
Proc 2

[ /NN X 00X X //\\

Proc 3

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Ref : KJ. Bowers et al, Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM, 2006



GENESIS

| d-d
C. N

Subdomain assigned by MPI

(Computation is assigned to one CPU)
Cell ‘

Boundary cell

.

Midpoint cell method

Partitioning space into fixed size
boxes, with dimension larger than
the cutoff distance.

We need only information of
neighbor space(domain) for
computation of energies.

Communication is reduced by
increasing process number .

Efficient for good parallelization
and suitable for large system with
massively parallel
supercomputers.
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2.  Volumetric decomposition
FFT

e  More communications than
existing FFT

« MPI Alltoall
communications only in one
dimensional space

* Reduce communicational
cost for large number of
pProcessors

Ref) J. Jung et al. Comput. Phys. Comm.
200, 57-65 (2016)



FFT in GENESIS (2 dimensional view)
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SIMD in GENESIS (developer version)

* Array of Structure (AoS)

X1V 21| X2 2| 22 Xv| Yn| 2N

In GENESIS, it 1s expressed as coord pbc(1:3,1:natom,l:ncell)

4

* Structure of Array (SoA)

X1 X2 | X3 | X4 ZN2 | 2N-1| 2N

In updated GENESIS source code for KNL, it will be expressed as
coord pbc(l:natom,1:3,1:ncell)

* For Haswell/Broadwell/KNL machines, SoA shows better performance
than AoS due to efficient vectorization (SIMD)



Further improvements in
Parallelization of MD :

MPMD (Multiple Program and
Multiple Data)



Multiple program/multiple data (MPMD) scheme

1. A subset of nodes are dedicated to real space and another set of nodes are dedicated to
reciprocal space interactions.

2. Representative program : Gromacs, CHARMM.

3. Usually different domain decomposition of real space is different from that of reciprocal
space => reciprocal space nodes is used only for calculation (not integration).
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MPMD scheme of Gromacs : 3D domain decomposition in real space combined with 2D
pencil decomposition in reciprocal space (ref : Bioinformatics, btt055 (2013)



What is the problem of existing MPMD scheme?

(a) MPMD with same decomposition

Send real

space force
—_—

<«
Send reciprocal
space force

Real space Reciprocal space
(Same integration as real space)
(b) MPMD with different decomposition
Send coordinags
Send reciprocal
space force
Real space Reciprocal space

Subdomain assigned by MPI

(Different integration from real space)

D Cell in each subdomain

Different domain decomposition
between real and reciprocal space
=> Large amount of
communication

Integration of reciprocal space is
not possible => RESPA cannot be
implemented.

Communication pattern between
real and reciprocal nodes is
dependent on the number of

Pprocessors

To overcome the problem, we
suggest a new MPMD scheme
where real and reciprocal space
have same domain decomposition.



MPMD scheme with multiple time step integrator

> subspace 1

> subspace 2

1,2 ||
1 | 2| 3] 4 )
51 6| 71 8 173
(2,4)

o | 10| 11] 12 sl
(14,15)
13 14 15] 16 (14,16)

(15,16) |

Real space Interaction space

1. Both real and reciprocal space nodes are involved in integrator (it is possible by same

domain decomposition between two spaces).

2. Real space non-bonded interactions are divided into two subspaces.

3. When reciprocal space interaction is not necessary, real and reciprocal space nodes
are assigned to the evaluation of subspace 1 and subspace 2, respectively.



Flowchart of MPMD scheme
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(b)
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Multiple time
step integrator



Benchmark performance



Gromacs

physical cores
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Ref: S. Pall et al., International Conference on Exascale Applications and Software, EASC 2014
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Simulation time (ns/day)

GENESIS 1.1
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GENESIS MPMD performance
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MPMD is not suitable for small number of processors.
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2. MPMD could be a good solution for very large number of processors.
3. MPMD even increases the available number of processors.
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Summary

. Parallelization : Distributed memory (MPI), shared memory (OpenMP),
hybrid (MPI+OpenMP), SIMD, SIMT, etc.

. Real space parallelization => Mainly domain decomposition scheme
. Reciprocal space parallelization => Parallelization of FFT

. Further improvements : MPMD, GPU, and so on.



