AICS TECHNICAL REPORT
NO. 2016-002

UsSErR MANUAL KMATH FFT3D VERSION 1.0
By

TOSHIYUKI IMAMURA, YUSUKE HIROTA, DAICHI MUKUNOKI,
YOSHIHARU OHI, AND YIYU TAN

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE,

7-1-26 MINATOJIMA-MINAMI-MACHI, CHUO-KU, KOBE, HYOGO 650—0047, JAPAN

SUBMITTED ON 22/02/2017
ACCEPTED ON 14/03/2017

Published and copyrighted by
® OIII RIKEN Advanced Institute for Computational Science (AICS)
RIKEN Alcs 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan

User Manual KMATH_FFT3D Version 1.0

Toshiyuki Imamura, Yusuke Hirota, Daichi Mukunoki,
Yoshiharu Ohi, and Yiyu Tan

RIKEN Advanced Institute for Computational Science,
7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan

Abstract

KMATH_FFT3D is a library for realizing the cubic-decomposition method, 3D-FFT on a mas-
sively parallel supercomputer such as the K computer. When the number of processes partici-
pating in 3D-FFT is quite large, we usually suffer from large comunication overhead. Supposed
that the number of processes in all-to-all can be broken down into factors, operations corre-
sponding to all-to-all collectives are extended in order to facilitate division into several rounds,
thus enabling reduction of the communications overhead. In addition, KMATH_FFT3D adopts
Jung’s approach to reduce the tremendus cost which comes from data-redistribution.

This document is a user manual of KMATH_FFT3D, and it describes the technical issues such
as module interface and algorithms used for computation of 3D-FFTs related to KMATH _-
FFT3D, and a benchmark program used to verify the operations.

Keywords: 3D data transformation, volumetric FFT, distributed-memory parallel computing,
MPI, FFTE, KMATH_FFT3D, the K computer

User Manual

KMATH FFT3D

Version 1.0

Toshiyuki Imamura*, Yusuke Hirota, Daichi Mukunoki,
Yoshiharu Ohi, and Yiyu Tan
Large-Scale Parallel Numerical Computation Technology Research Team
RIKEN Advanced Institute for Computational Science

February 22, 2017

Contents

1 Summary of parallel 3D FFT 5
1.1 Introduction e e 5

1.2 Usage Consent/ Copyright e 7

2 Getting Started 9
2.1 Software Required for Installation 9

2.2 Obtaining KMATH_FFT3D e 9

2.3 KMATH_FFT3DDirectory Configuration 9

2.4 Compilation and Installation Procedure 9
2.4.1 Configure: Preparation of Makefile for Standard Compilation 10

242 UsingFFTES.0. 11

243 Make e e 11

244 Instllationo e 11

2.5 ApplicationBuilds L 11

3 Simple Tutorial 13
3.1 WarmUp e 13
3.1.1 Initialization e e 13

3.1.2 Calling the Computation Routine 15

3.1.3 EndProcessing 15

3.2 Description of Benchmark Program 15
3.2.1 Program Function 15

3.2.2 Description of Each Argument oo, 15

4 API of KMATH _FFT3D 17
4.1 Main Module kmath_fft3d_ mod e 17

42 KMATH_FFT3D_Init o i ittt e e e e e e e e e e s e e 17

43 KMATH_FFT3D_FinalizZe v v v v i it it et et et e e e e e e 18
44 KMATH _FFT3D_Transform o v v v v v v e e e e s s e e 19

5 Parallel Algorithm and Implementation Method 21
5.1 Three-Dimensional Fourier Transform 21

5.2 Multistage Transposition Processing in One Axis 22
5.2.1 (Note 1) Transposition Operation in One Axis of Three-Dimensional Data 23

5.3 One-Dimensional FFT 25

5.4 Implementation of ‘Communication Reduction’-oriented High Performance Transposition 25
54.1 (Note?2)Handling Internal Data 26

542 (Mote3)Array Size 28

CONTENTS

6 Conclusion

6.1 Current State and Future of KMATH_FFT3D

6.2 Acknowledgments

Chapter 1

Summary of parallel 3D FFT

1.1 Introduction

In numerical science and technology, there exist many simulation codes that make use of higher-order
differential or convolution operations. In these kinds of computations, substitutions are often performed
in frequency spaces based on Fourier transforms to reduce computational complexity and ensure compu-
tation accuracy.

N-1 -
Xp=Y e TV fork=0,...,N - L (1.1)
=0

The Discrete Fourier Transform (DFT) defined in the above formula uses the Fast Fourier Transform
(FFT), derived by Cooley-Tukey et al., to significantly reduce the computation volume from O(N?) to
O(N log, N) (see Press et al. [1] and Loan [2] for details on the numerical computation method and
explanation of the solution). FFT, a lightweight and extremely effective computation tool, is used in
many computational science simulations and data analysis programs. There are many proposals for even
higher performance FFT algorithms, and the existence of Open Source Software (OSS) such as FFTW
[4], FFTE [3], and SPIRAL [6] has offered a situation in which ordinary users can easily utilize an FFT
library.

Meanwhile, in large-scale supercomputers, as represented by the K computer, the selection from mul-
tiple FFT libraries such as single-node content and distributed parallel processing is significant. Whereas
the presence of either of state-of-the-art FFT libraries would be adequate, with user problem establish-
ment, and the characteristics of computer networks, etc., being limited to a single library is difficult. In
particular, the three-dimensional data FFT (3D volumetric FFT) often used in scientific computation has
its performance affected by the data decomposition method for one-dimensional FFT, and also by the
combination of collective communications among multiple nodes. In many FFT libraries, implementa-
tion utilizes the ease of single-dimensional domain decomposition (stub decomposition), for example, in
the above-mentioned FFTW [4]. Because this decomposition method does not have parallelism to a de-
gree of resolution higher than the dimension of the axial direction selected in the easy data decomposition
implementation, its unsuitability for highly parallel processing is well-known. An implementation based
on two-dimensional domain decomposition (pencil decomposition) can be used to rectify this defect.
FFTE [3] and 2decomp [5] are representative FFT libraries that utilize the pencil-decomposition. With
this decomposition method, because the degree of resolution spanned by two-axial directions selected
corresponds to the maximum degree of parallelism, a higher degree of parallelism is preserved than with
single-dimensional decomposition. Moreover, three-dimensional domain decomposition (hereafter, cu-
bic decomposition), in which three axes are selected to do the domain-decomposition at the same time to
guarantee a high degree of parallelism also exists

CHAPTER 1. SUMMARY OF PARALLEL 3D FFT

When performing highly parallel processing in a distribute parallel environment, the tradeoff between
reduction in operation time as a result of the high degree of parallelism and increase in node-to-node com-
munication costs has to be considered. In the 3D FFT distributed parallel implementation, in particular,
all-to-all collective communication is required. In the Message Passing Interface (MPI), this is the stan-
dard for distributed parallel processing, corresponding to MPI_Alltoall. The cost of the all-to-all
process between P number of processes arrayed in a one-dimensional topology (set as a ring linked to a
terminus) is

(ap + aP) + BN (1.2)

Here, N is the data length, and « and 3 are, respectively, the coefficients related to communication start-
up and the transfer time per unit data length. The above formula shows that the communication overhead
increases in proportion to P. In general, in the above formula, « is a scale that plays a dominant role, and
concealing this requires a sufficiently large IV to ensure large-scale computational complexity.

In the cubic decomposition method, when the number of nodes used (the number of processes) is
fixed at a constant value, increasing the numbers of split axes to two and three naturally reduces the
number of processes participating in the group when viewed from each axial direction, compared to the
decomposition on one axis. As a result, reduction of the all-to-all overhead cost can naturally be expected.
In other words, increasing the number of split axes to two and three axes can be expected to be more
effective not only in high parallelism, but also in reduction of the communications overhead. On the other
hand, when a lot of axises are decomposed, extra data re-distribution should be issued in order to reflesh
the data reordering. In the two-axial decomposition of FFTE[3] by Takahashi and 2decompl5], they
already supported the communication reduction technique for data re-distribution function MPI_Alltoall
by omitting the ordering of intermidiate data. For the three-axial decomposition for three dimension data
described in this manual, Jung’s approach [8] is adopted for the implementation of the 3D-FFT to reduce
unnecessary data redistribution operations (details are presented in Section 5.4).

Furthermore, when the all-to-all collective communication in the P processes is applied to the two-
dimensional process grid of P = P; X P, units (here, as well, it is set as a torus linked to a terminus), the
parallel all-to-all operation for the P and P, process groups existing within the vertical and horizontal
one-dimensional ring continue to be executed, and the data can be rearranged to realize the same process.
At this point,

(200 + (P + P2)) + 28BN (1.3)

is the cost of the communication portion corresponding to all-to-all implemented by a two-round opera-
tion. Assuming that P; > 2 and P, > 2, because P = P, P» > P + P>, if a single round of all-to-all
is divided into two rounds, it results in reduction of the communication overhead portion (for example,
in P = 100 = 10 x 10, because P; + P, = 10 4+ 10 = 20, the result is 1/5). What is more, if P can
be broken down into even more factors, the items applying to « decrease, but the items applying to (3
increase. While this induces a certain type of tradeoff problem, in general, when N is small, the effect of
« is large and quite dominant. In this way, responding as much as possible to the processes with a number
of direct-product topologies, implementation after dividing all-to-all communication into multiple rounds
can be expected to bring about general cost reductions demonstrated as in [9].

KMATH_FFT3D is a library for realizing the above-mentioned cubic-decomposition method, 3D-
FFT. When the number of processes participating in all-to-all can be broken down into factors, operations
corresponding to all-to-all collectives are extended in order to facilitate division into several rounds, thus
enabling reduction of the communications overhead. In addition, KMATH_FFT3D adopts Jung’s ap-
proach [8] to reduce the number of data-redistribution. This document describes the technical issues such
as module, interface and algorithmes, which are used for computation of 3D-FFTs related to KMATH_
FFT3D. A benchmark program is also explained in order to verify the operations.

6

CHAPTER 1. SUMMARY OF PARALLEL 3D FFT

1.2 Usage Consent / Copyright

Consent to use KMATH_FFT3D is based on the BSD 2-Clause License (noted in the LICENCE.txt file
in the tarball of the library). Use of lower-level routines (one-dimensional FFT kernels) called from the
KMATH_FFT3D library shall be in accordance with each individual FFT kernel. Note that the KMATH_
FFT3D tarball incorporates FFTE-6.0 source code, and that FFTE was developed by Prof. Daisuke
Takahashi of Tsukuba University. Further, the consent conditions as regards its use and redistribution are
in accordance with the license shown below, and listed at the distribution source, http://www.ffte.

jp/.

/ LICENCE.txt for KMATH_FFT3D N

Copyright (C) 2014-2016 RIKEN.

Redistribution and wuse 1in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this 1list of conditions and the following disclaimer.
* Redistributions in Dbinary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘*AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

. License for FFTE ~N
License

Copyright (C) 2000-2004, 2008-2014 Daisuke Takahashi
(e-mail: daisuke[at]cs.tsukuba.ac.jp or fftelat]ffte.jp)

You may use, copy, modify this code for any purpose (include
commercial use) and without fee. You may distribute this ORIGINAL
package.

Chapter 2

Getting Started

2.1 Software Required for Installation

A number of dependent software packages are required to compile KMATH_FFT3D. The software pack-
ages confirmed to be currently in operation are shown in Table 2.1.

Table 2.1: Operating software packages already confirmed, required to install KMATH_FFT3D

FFTE FFTE version 6.0 (bundled with KMATH_FFT3D tarball)
With a patch, it can also run on version 5.0
MPI MPICH2 version 1.5 or later, MPICH version 3.0.2 or later

OpenMPI version 1.6.4 or later
GNU Compiler gcc, gfortran, g++ version 4.1.2 or later
Intel Compiler icc, ifort version 13.0 or later
Fujitsu Compiler mpifrtpx, mpifccpx, mpiFCCpx (cross-compilers for K and FX10)

2.2 Obtaining KMATH FFT3D

Information related to KMATH_FFT3D can be obtained at the following URL:
http://www.aics.riken.jp/labs/lpnctrt/KMATH_FFT3D.html

In addition to tarball, bug and version data provision are also planned.

2.3 KMATH FFT3D Directory Configuration

The directory configuration for this program is shown in Table 2.2. The configuration includes the src/
directory for storing the FFT library body and the directory doc/ for documents. Underneath those direc-
tories are working places for the library creation. In addition, a test program (bench/) for development
users, and the directory ffte-6.0 for FFTE 6.0 and its tarball are included. Please note that deployment of
the FFTE 6.0 directory is necessary in order to compile standard KMATH_FFT3D.

2.4 Compilation and Installation Procedure

A number of steps are required in order to compile KMATH_FFT3D. Please proceed in accordance with
the procedure below.

CHAPTER 2. GETTING STARTED

Table 2.2: KMATH_FFT3D version 1.0 directory configuration

Directory Storage and files

KMATH_FFT3D/ Directory storing the FFT3D library main body
src/ FFT3D source code
bench/ Source code for operations verification
ffte-6.0/ FFTE 6.0 source code
doc/ Document storage directory

2.4.1 Configure: Preparation of Makefile for Standard Compilation

For KMATH_FFT3D (the current version 1.0), use a configure script to detect the differences in each
environment and automatically create a Makefile. By default, a Makefile is organized in and for the
cross-compiler environment, which is standard on the K computer, and the optimization option for the
test objective receives the effects of —g, corresponding to —0O0. For this reason, as is also written in the
README file, a suitable optimized option is specified by setting the appropriate environment variables.

1. FC (Fortran 90 compiler for MPI)

2. FCFLAGS (option passed to FC compiler)

3. F77 (Fortran 77 compiler for MPI, usually designates the same item as FC)
4. FFFLAGS (option passed to FF compiler)

5. LDFLAG (option passed during test program linking)

e Configure execution (example in K) ~

export FC=mpifrtpx

export FCFLAGS=’-Kopenmp -Cpp -Kfast’
export F77=mpifrtpx

export FFLAGS=’-Kopenmp -Cpp —-Kfast’
export LDFLAGS='-Kopenmp’

./configure ——host=K —--prefix=$HOME

o o° o° o° o oe

-

J

The details for the configure script option can be viewed by attaching ——help option. An effective
options for ordinary users are probably the cross-compile instruction based on the option ——host=(host
name or architecture name) or ——{enable|disable}-openmp on whether to activate thread paral-
lelism. Moreover, install root directory can be disgnated by the option ——prefix=(install root direc-
tory).

Enable/disable OpenMP

./configure --enable-openmp
./configure --disable-openmp

[}
°
%

If there is a problem that might happen due to version differences, etc., and the configure execution
fails, first execute auto.sh to regenerate the configure script in the environment, and then retry
execution.

Execution of auto.sh
(% ./auto.sh]

10

CHAPTER 2. GETTING STARTED

24.2 Using FFTE 5.0

While use of the latest version, FFTE 6.0, is recommended, if FFTE 5.0 is being used for mutual com-
patibility of applications, first deploy ffte-5.0 and then execute patch—-ffte5. sh. This script changes
the references for the symbolically linked directory, ffte, to ffte-5.0, and performs a process that absorbs
the differential in the differing file configurations (in fact, it performs factor. f processing).

Following script execution, carry out this procedure starting from configure, in the same way as
the normal compile procedure.

. FFTES validation ~N

o)

% pwd

/home/foo/KMATH_FFT3D-1.0

% tar zxf ffte-5.0.tar.gz

% 1s -1 ffte

lrwxrwxrwx 1 foo foo 8 Feb 3 17:40 ffte —> ffte-6.0
% ./patch-ffteb5.sh

lrwxrwxrwx 1 foo foo 8 Feb 3 23:02 ffte —> ffte-5.0

2.4.3 Make

Use the Makefile created by the configure script to perform make.

Make
[% make)

The make command generates 1ibkmath_fft_3d.a inthe src/ directory. In addition, a bench-
mark program is generated in the bench/ directory.

2.4.4 Instllation

By the issue of ‘make install’ command, 1ibkmath_fft_3d.a and related module files are installed.
Under the install root directory, which is designated on the options of the configure script, subdirectories
lib/ and bin/ are generated, then the related library modules and the benchmark program are installed
on the subdirectories, respectively.

Install
[% make install)

2.5 Application Builds

When building applications using this routine on the K computer, the respective parameters below must
be specified during compilation and linking. Note that the library option specification order is important,
and the linking process may fail if the example below is not followed. The module file (* .mod) ref-
erenced during the fortran90 compile process must have been installed in the directory specified during
the compile process (an option specification example for the Fujitsu cross compiler in the K computer is
shown below; note that this may vary in other environments or compilers).

Compile:

-M<kmath fft3d root directory>/1lib

11

CHAPTER 2. GETTING STARTED

Link:

-L<kmath fft3d root directory>/1lib -lkmath_fft_3d

12

Chapter 3

Simple Tutorial

3.1 Warm Up

Figure 3.1 shows a program that displays a minimum portion of the software framework required for
starting KMATH_FFT3D.

3.1.1 Initialization

MPI Initialization
First,use MPI_TInit or MPI_TInit_thread to perform MPI initialization.

KMATH_FFT3D Initial Settings
Immediately following MPI initialization, set the following three arrays and store the X, Y, Z axial
direction values in the array elements in the order 1, 2, 3, respectively;

e Targeted 3D data size nsize (1:3),
e Process grid shape nproc (1:3), and

e Specification of multistage transposition frequency nstage (1:3).

Targeted 3D data size specifies the size of each X, Y, Z direction of the three-dimensional data that
become the FFT transform target. Process grid specifies the number of processes in each X, Y, Z direction
when the transform target three-dimensional data is decomposed into three axes. Multistage transposition
will be discussed later, but if this function is not particularly necessary, setting the frequency in each axial
direction as ‘1’ is advised.

KMATH_FFT3D Initialization and Handle Acquisition

Call the initialization routine KMATH_FFT3D_Init, and acquire the handle. This routine is a col-
lective operation, and all processes participating in the communicator must be called at the same time.
The operation of each communicator specified by KMATH_FFT3D at initialization can be performed in
parallel. The handle links the FFT routine to the data shape, process grid, and multistage transposition
action information, and if these three conditions are the same, it does not matter if data differing from the
same handle are called to the FFT call function KMATH_FFT3D_Transform, shown as follows:

13

CHAPTER 3. SIMPLE TUTORIAL

use MPI
use kmath_fft3d_mod

! local variables

complex (kind (0d0)), allocatable :: X(:), F(:)

! handle and arguments

integer :: handle

integer, dimension(l:3) :: nsize, nproc, nstage

! MPI initialization and setup

call MPI_Init_thread (MPI_THREAD_MULTIPLE, provided, ierr)
call MPI_Comm_size (MPI_COMM_WORLD, comm_size, ierr)
call MPI_Comm_rank (MPI_COMM_WORLD, comm_rank, ierr)

! read the information about process grid and data dimension
read*, (nsize(I), I=1, 3)
readx, (nproc(I), I=1, 3)
readx, (nstage(I), I=1, 3)

! Init KMATH_FFT3D and get a handle
|

call KMATH_FFT3D_Init (handle, MPI_COMM_WORLD, nsize, nproc, nstage)
// X(:), F(:) must be allocated by appropriate data length

! Run FFT

|

call KMATH_FFT3D_Transform(handle, X, F, .true.)

! Finalize FFT
call KMATH_FFT3D_Finalize (handle)

call MPI_Finalize(ierr)

\» end <)

Figure 3.1: KMATH_FFT3D simple exercise program

14

CHAPTER 3. SIMPLE TUTORIAL

3.1.2 Calling the Computation Routine

Specify the handle variable, the array storing the input data, the array storing the output data, and the
order and the inverse transform, into KMATH_FFT3D_Transform, and call to execute the cubic-
decomposition FFT. Because the internal processes of this routine are collective, the processes found
in the communicator specified at handle acquisition must also call this routine at the same time. In ad-
dition, because this routine has a blocking action, after the internal processes of this routine have ended,
call the controls from the routine, and return to the origin.

3.1.3 End Processing

Handle Release

When the handle is released or FFT ends, call KMATH_FFT3D_Finalize. The handle released by
the end process is invalid even if used after that time in KMATH_FFT3D_Transform. If the FFT process
is being used again after the end process, a handle needs to be acquired from KMATH_FFT3D_Init.

MPI End
Finally, at the end of the MPI program, call MPI_Finalize.

3.2 Description of Benchmark Program

3.2.1 Program Function

In this section, we describe the benchmark program bench_km_ f £t 3d function in the tarball package.
Benchmark execution is performed via the following command. In the program, generate random number
data and use the FFT routine provided with KMATH_FFT3D to perform the computation. In addition,
perform a comparison of the results sequentially computing DFT, and confirm the computation accuracy.
Note that, for DFT sequential computation, the same computation is performed at all nodes, and for large
amounts of data, caution is necessary because of the computation burden.

The benchmark program has 11 argument items, but the final five items are possible to omit.

Benchmark execution

mpirun -n NP ./bench_km_fft3d NSIZE_X _Y _7Z NPROC_X _Y _7%
[NSTAGE_X NSTAGE_Y NSTAGE_Z INVERSE CHECK]

3.2.2 Description of Each Argument

1. NSIZE_X: Size of data in X direction (represented by 27 x 39 x 5%, P, Q, R are integers greater
than zero.)

2. NSIZE_Y: Size of data in Y direction (represented by 27 x 39 x 57)
3. NSIZE_7: Size of data in Z direction (represented by 2 x 39 x 57
4. NPROC_ X: Process size in X direction
5. NPROC_Y: Process size in Y direction
6. NPROC__Z: Process size in Z direction

Note Must be NPROC_X+*NPROC_Y*N_PROC_Z = NP.

(The following can be omitted)

15

CHAPTER 3. SIMPLE TUTORIAL

7.

8.

9.

10.

11.

NSTAGE_X: Multistage transposition frequency in X direction (Default 1)
NSTAGE_ X: Multistage transposition frequency in Y direction (Default 1)
NSTAGE_X: Multistage transposition frequency in Z direction (Default 1)

(Note) The multistage transposition frequency must be a number that is less than the
total individual number of factors.

[Example] If NPROC_X = 8, because 8 = 23, NSTAGE_X = 3 is acceptable, but
NSTAGE_X = 4 1isnot.

INVERSE:
0: FORWARD (Default)
1: INVERSE
2: FORWARD — INVERSE
(Note) Calculate Mode 2 in FORWARD, and compute the result in INVERSE, to verify
that it returns to the origin.
CHECK:

0: NO CHECK

1: CHECK (Default)

This is a flag that indicates whether an accuracy check was performed. When it is set
to 1, a comparison is conducted with a simple computation (if the INVERSE flag is
2, check whether it returns to the origin). When it is set to 0, only computation is
performed; no comparison is carried out. If a check is performed (CHECK == 1), the
result is output to a file. Note that outputting the file is a process only for rank 0. The
output file consists of the following two types:

e File 1 dif_fft3d_dft3d: The difference from the simple computation value is
output. On the final line, the maximum value of the error (by real and imaginary) is
output. If INVERSE ==2, only the final line is targeted. Note that a small number
means that the computed result is correct.

e File 2 _out_ fft3d: The computed result is output as is (arranged in the X direc-
tion — Y direction — Z direction).

16

Chapter 4

API of KMATH FFT3D

This chapter explains user interfaces of the cubic-decomposition FFT

Note: Function described in this document is not thread-safe in the current version (ver 1.0). While it
is also possible to call the functions inside the OpenMP parallel domain, ensure that the internal loop that
originally was subjected to thread parallel processing is processed sequentially. In addition, the thread
parallel processing depends on the KMATH_FFT3D internal loop and on the FFT library called at the

lower software layer.

4.1 Main Module kmath fft3d mod

When compiling source code using KMATH_FFT3D, use the module kmath_fft3d_mod. When this
module is used, an option suitable for the command line argument during program compilation needs to
be specified. An option specification example for the Fujitsu cross compiler on the K computer is shown

below. Please note that this may vary in other environments and compilers.

Include path:
Library file:

-M<Install directory>/1lib
-L<Install directory>/1lib -lkmath_fft_3d

In the program, import the cubic-decomposition FFT module, as shown below:

use kmath_fft3d_mod

4.2 KMATH_FFT3D_Init

use kmath_fft3d_mod
subroutine KMATH_FFT3D_Init (handle, comm,
box_size, num_proc, num_stage)

Argument Type 10 | Descriptions

handle integer Out | Handle

comm integer In MPI communicator

box_size integer (1:3) | In Size of 3D data in each XYZ axis
num_proc integer (1:3) | In Number of processes in each XYZ axis
num_stage | integer (1:3) | In | Number of stages in multistage transposition

of each XYZ axis

17

CHAPTER 4. API OF KMATH_FFT3D

Specify the communicator comm, initialize the cubic-decomposition FFT, and return a valid handle.

This subroutine is a collective operation, and all processes found in the group must be called at the

same time.

e box_size,num_proc, num_stage are arrays of length three, and the X, Y, Z axis information

is stored, respectively.

satisfy 27 x 39 x 5% (P,Q,R > 0).

Each box_size in XYZ axis value must be a product of the FFT base or, in other words, must

Each num_proc in XYZ axis value product must be the same as the number of ranks within

the group. Note that, in the current version, even if comm is Cartesian, the process topology

information is dealt with independently.

The 3D data granted to the subroutine KMATH_FFT3D_Transform(), described below, must

have an assured array, with ceil (box_size/num_proc) setto the length of each axial direc-
tion, if box_size/num_proc cannot be divided. This rule corresponds to the block decomposi-
tion, and as regards, for example, the X axis direction (in the figure below, the horizontal direction),

if the data size is 64 and process number is 3, give the input data as shown below.

data size 64
rank 0 rank 1 rank 2
blank 2
array size 22 array size 22 array size 22

e For num_stage, allocate the results of factor number analysis of the number of processes (the
value of num_proc) for each axis, for each stage, to determine the number of transposition pro-
cesses in the stage. In this instance, if a stage exists in which the number of transposition processes
is one, an error occurs. However, when the number of processes is one or, in other words, when
limited to execution of a single process, even if the transposition process size is one, exceptionally,

no error will result.

Example: If num_proc (1) =40,
Performing an analysis of factor number yields (2,2,2,5). If the number of stages,
num_stage, is set to three, the values will be assigned as shown below:

Stage Factor Transposition process size
Iststage 2,5 10

2nd stage 2 2

3rd stage 2 2

4.3 KMATH_FFT3D_Finalize

use kmath_fft3d_mod
subroutine KMATH FFT3D_Finalize (handle)

18

4.4

CHAPTER 4. API OF KMATH_FFT3D

Argument | Type 10 | Description
handle | integer | In | Handle

Specify the handle obtained by the initialization, and perform the cubic-decomposition FFT. This
subroutine is a collective operation, and all processes found in the communicator group specified
at time of initialization must be called at the same time.

KMATH FFT3D Transform

use kmath_ fft3d _mod
subroutine KMATH_FFT3D_Transform(handle, X, F, mode)

Argument | Type I0 | Description

handle | integer In Handle

X complex (kind (0d0)) (:) | In Input 3D data array

F complex (kind (0d0)) (:) | Out | Output 3D data array

mode logical In Forward or Inverse transform

Specify the handle obtained by the initialization, and execute the cubic-decomposition FFT.

This subroutine is a collective operation, and all processes found in the communicator group spec-
ified at time of the initialization must be called at the same time.

Both input data X and output data F must be arrays of the same size or larger than the overall
cubic-decomposed data in the total process number. For example, if the size of the overall three-
dimensional data is 60 x 60 x 60, and the number of processes is 4 x 4 x 4, then the input array
size should be set to 15 x 15 x 15. In addition, if the process number is 7 x 7 x 7, the input array
size should be set to 9 x 9 x 9. The specific method of computation is described in Section 5.4.2.

In addition, the data use the same rules as the Fortran three-dimensional array with size expressed
as a group of three indices in the order X axis direction, Y axis direction, Z axis direction, and
requires storage linked to memory.

Use mode specification to select the forward transform ([mode=].TRUE.) and the inverse trans-
form ([mode=].FALSE.). This is optional and default is forward.

This subroutine uses OpenMP to conduct parallel execution of multistage transposition processing
in the forward direction, and FFT processing. As a result, the effects are received in the environment
variable OMP_NUM_THREADS setting. In addition, if this subroutine has already been called within
the parallel execution domain, these processes are sequentially executed.

In actual implementation, the error process is not internally performed. For example,

— if data size is inadequate,

— the process number product does not match the total number of processes in the communicator
group,
— and the data size is not factored by the radices; 2, 3, and 5,

and it is the user’s responsibility to confirm this.

19

Chapter 5

Parallel Algorithm and Implementation
Method

5.1 Three-Dimensional Fourier Transform

As shown in the following formula, the three-dimensional Fourier transform carries out a Fourier trans-
form along the respective directions of the three-dimensional data, and generally can be realized by
performing FFT in the order XYZ:

Ny—1Ny—1N,—1

2n /T
g k)= > > XU J Koy, wi, wy=e V! (5.1)
I=0 J=0 K=0

The naive implementation method of the cubic-decomposition Fourier transform is realized through the
following procedure. Note that, in the description below, when the process is started the input data are
expressed in a group of three indices in the order X axis direction, Y axis direction, and Z axis direction,
and assumed to be stored following the same rules as the Fortran three-dimensional arrays, linked to
memory.

1. Multistage transposition processing in one axis with respect to the X axis direction
2. One-dimensional FFT with respect to the X axis direction
3. Multistage transposition processing in one axis with respect to the X axis direction
4. Data linkage in the Y axis direction
5. Multistage transposition processing in one axis with respect to the Y axis direction
6. One-dimensional FFT with respect to the Y axis direction
7. Multistage transposition processing in one axis with respect to the Y axis direction
8. Data linkage in the Z axis direction
9. Multistage transposition processing in one axis with respect to the Z axis direction
10. One-dimensional FFT with respect to the Z axis direction
11. Multistage transposition processing in one axis with respect to the Z axis direction

12. Data linkage in the X axis direction

21

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

5.2 Multistage Transposition Processing in One Axis

In this section, we provide an example to illustrate the flow of the multistage transposition processing in
one axis, which was proposed in [9].

In essence, the transposition processing in one axis, as seen in MPI_Alltoall, is an operation
items are rearranged with matching the factor number and rank, with respect to the factor number of the
vector data held by each process. In general, the factor data suffix (rank, factor number) becomes the
same transposition operation after replacement.

The course of the processing for a two-stage transposition in the 8 = 4 x 2 process is shown below. In
the first stage, a 4 x 4 transposition operation is performed, and a 2 x 2 transposition operation is utilized
in the second stage.

1. Initial state
rank0 rank] rank 2 rank 3 rank 4 rank 5 rank 6 rank 7

2. Global transposition by 4 processes (distance 2) x 4 sets (2 words per set) x 2 groups

3
4
I;
two groups (red or blue circle)
8
8

3. Local transposition in node ((2 words, 4 processes) — (4 processes, 2 words))

[==1 Y = Y [o (90 N

eo (-1 o |wn | o ra | =
£o -1 | w4 |ua ra | =

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

4. Global transposition by 2 processes (distance 1) x 2 sets (4 words per set) x 4 groups

5. Local transposition in node ((4 words, 2 processes) — (2 processes, 4 words))

In the case that data more than the number of processes are stored in one node, in fact, a block (couple of
elements) is handled as one factor. Performing a local transposition once in a node positions the block in
order to sort the data by index, when the initial state. Next step is a suitable rearrangement of transposition
operations in the node after global transposition needs to be performed.

5.2.1 (Note 1) Transposition Operation in One Axis of Three-Dimensional Data

In the cubic-decomposition Fourier transform, the above-mentioned transposition operation in one axis
collects a long string of data that has been distributed and positioned in each process with respect to
one axis into one process (or performs the inverse operation). This corresponds to the preparation for
performing a one-dimensional FFT. As shown in the figure below, we consider the data transposition
operation of the distributed and held data.

23

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

3D data for
one process

\ J
Y

4 processes in an axis 4} transposition by all-to-all

| 7
AL A 4/]/

\/2 equally divided into
4 in the depth size

In the above figure, the X, Y, and Z axes are, respectively, the flat direction, the perpendicular direction,
and the depth direction. Using the Fortran notation method, when writing the three-dimensional array
holding each process as X (1:1X, 1:LY, 1:LZ), we consider the transposition operation making
the block (1:LX, 1:LY, 1:LZ/4) size as a unit.

If the depth size is 12, the size three per process (same color) is a transposition operation stacking
the blocks of each color in the depth direction, with the remainder value of three obtained as the quotient
of 12 and four as the basic unit. The figure below shows the appearance of the data distribution when
viewed from directly above.

(view from above)

>

{} transpositio

If the depth size is nine, then the size per process is three.

(view from above)

{L transposition

In this case, because the depth size is not divisible by the number of processes, the remainder value of
three becomes the block size for one process. However, because 3 x 4 = 12 > 9 = 3 x 3, the data
corresponding to the left-hand process are eliminated. This generates a load imbalance in the parallel
processing, leading performance degradation. Therefore, dividing the data size and process number by
combinations with respect to an axis is desirable.

24

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

Note that, with respect to the standard axis and the remaining two axes, as shown by the data in the
above figure, a degree of freedom to select between the ‘depth direction’ and ‘height direction’ exists. In
the current implementation, the response to the multistage transposition axis, and to the depth direction
and height direction, becomes as shown below:

Multistage

transposition axis Depth direction Height direction
X axis Z axis Y axis

Y axis X axis Z axis

Z axis X axis Y axis

5.3 One-Dimensional FFT

Following the transposition operation outlined above, the data are rearranged to appear as shown in the
figure below, the one-dimensional array cut along the decomposing axis is linked and stored in a bundle
(depth size x height/4) of one-dimensional arrays not cut in the long direction (corresponding to the center
panel in the figure). The FFT operations for each one-dimensional array are respectively independent,
enabling parallel processing. Therefore, in the current implementation, OpenMP is used to execute the
one-dimensional FFT in thread level parallel processing.

N
N pyr—
.

5.4 Implementation of ‘Communication Reduction’-oriented High Per-
formance Transposition

In this section, we describe the high-performance transposition implementation that reduces the transpo-
sition operations count. In naive implementation, perform the FFT after the transposition operation in one
axis, and carry out a transposition operation in one axis with data of the same shape as the data structure
in the original cubic-decomposition. In other words, in the FFT execution in the direction of one axis,
two rounds of transposition operations (all-to-all) are required. If three axes are utilized, perform a total
of six rounds of transposition operations (all-to-all). If there is no need to match the data array trans-
formed to the frequency domain of the original space data, the pair of forward and inverse transposition
operations in one axis is not necessary. The figure below shows an implementation method in which the
transposition operations in one axis have been reduced to four rounds. We refer to a method to reduce the
number of all-to-all operations by Jung et al.[8]. They devised a method for implementing the last two
rounds of all-to-all in one round; however, in the current implementation, we use a method that configures
a single-axis direction in all-to-all.

25

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

y4

@ 1 FFT (x)
I =

All-to-all (x/z

(,
[1:Nx/Px][1:Ny/Py][1:Nz/Pz] ' g : 2

All-to-all (y/x) — o8
Transp.(1-2) ’ [ng]cglr;Tg)/(E:/)][l.Nz/(Pz Px)]

Qs
/// ///'///// | All-to-all (z/y) @

—t—t— L—LE
[1:Ny][1:Nx/Py][1:Nz/(Pz*Px)] l
@(q,0,p+Px*r)

All-to-all (z/y) [1:Ny/Px][1:Nx/Py][1:Nz/Pz]
@ Transp. (1-3) ’ @(q,p,r)

FFT (z) | Problem shape: (Nx, Ny, Nz)
I Process shape: (Px, Py, Pz)

@(i, j, k) expresses the relative
position in the imaginary process

[1:Nz][1:Nx/Py][1:(Ny/Px)/Pz] grid of the process in (p, g, 1).
@(q,r+P*Pz,0)
Loy
X

Figure 5.1: Summary of the transposition processing of FFT3D in which communication is reduced

5.4.1 (Note 2) Handling Internal Data

Input data, intermediate data, and output data are all allocated to each of the processes. In the communi-
cation reduction-type implementation, the data storage position cannot easily be determined. To access
the data setting or specific frequency component, the process grid and data size relationship must be
accurately understood.

Consider the rank (p, ¢, r) process in the P, x P, x P, process grid. When the general size of the
data is set to N, x N, x N, the size of the input data held by each process is L, x L, x L., (where
L,=N.;/P;,L,=N,/P,,L, = N,/P.). A description of this process is given below.

26

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

Process Grid

The process grid in the initial state, which is presented in the figure, is a (P, P, P.) rectangle. The
first transposition operation and process rearrangement operation results in (1, Py, P, - P,). This is a
logical rearrangement in one dimension of the process that positions (P, P,) in two dimensional plane,
and reattaches the indices. Focusing on the (p, g, r) process within the initial state, reattachment and
restacking of the index in an X-Z plane arrangement, is performed, and mapped to (0, ¢, p + P,r). In the
second round transposition operation, the process grid corresponds to (P, 1, P, - P;), and the (p, ¢,)
process to (¢,0,p + P.r). In the third and later rounds, the respective (P, P;, P.) and (¢, p,) are
grouped with (P, P, - P, 1) and (g, r + P,p, 0). These series of operations are summarized in Table 5.1
below.

Table 5.1:
Logical Process Grid Rank Note
Initial state (Py, Py, Py) (p,q,r)

1st round (1, Py, P. - P) (0,q,p + Pyr) (Stack&Rearrange)(X/Z)
2nd round (Py,1,P, - Pp) (q,0,p+ Pyr) Swap(X,Y)

3rd round (Py, Py, P.) (¢,p,7) Inv(Stack&Rearrange)(Y/Z)
4th round (Py, Py - P, 1) (g, + P.p,0) (Stack&Rearrange)(Z/Y)

Array Shape

Next, we discuss the array shapes held by the individual processes, and the corresponding relationships
of the space index and the array index in the frequency domain!. The array shape at each stage is shown
in Table 5.2. First, we assume that the (p, g,) process holds the global index (I, J, K) of the frequency
domain in the fourth round.

Table 5.2:

Array state Notes
Initial state | (N/Py, Ny/P,, N./P.)
Istround | (N, N,/P,,N./(PyP.)) X-axis continuation
2nd round | (Ny, N;/P,, N./(P,P.)) Y-axis continuation+XY axis switch
)
)

3rdround | (Ny/Py,N,/P,,N./P,

4thround | (N, N,/P,, N,/(P,P.)) Z-axis continuation+YZ axis switch

In the spatial grid, because the process rank corresponds to (I/(Ny/Py), J/(Ny/(P.P.)),0) = (¢, +
P.p,0), the owner process (p, g, r) of the global index (1, J, K) is set as

b= (J/(Ny/(Psz)))/sz (5.2)
q=1/(Nz/Py), (5.3)
r = (J/(N,/PsP.))%P. (5.4)

"However, there may be cases in which the FFT implementation differs in the array index. Here, we proceed with the
discussion assuming that the frequency index based on FFT is a rising sequence.

27

CHAPTER 5. PARALLEL ALGORITHM AND IMPLEMENTATION METHOD

The local index (1, I3, I3) corresponding to the global index (1, J, K) is as

I =K, (5.5)
Iy = I%(N./P,), (5.6)
I3 = J%(Ny/(P.Py)), (5.7)

if be the owner process. Inversely, the local index ([, I2, I3) in the process (p, g,) corresponds to the
global index (I, J, K) such as:

I=1I+qx(Ng/P,), (5.8)
J =I5+ (r+p*P.)x (N,/(P.P,)), (5.9)
K=1I. (5.10)

5.4.2 (Note 3) Array Size

In the above discussion, array size is argued on the presumption that it is allocated by the process number
or process grid size. In fact, inability to allocate according to multiple of Px is a common occurrence. In
such cases, the array size must be determined by the remainder (ceil) in the integer division. As a result,
computation of the array size has a partially complex surface. Further, it is suggested that it should exceed
the remainder values computed in all integer divisions appearing in the above-mentioned array shapes.
Therefore, the data in the global data in the (N, Ny, N.) data are each processed in the (P, P, P,)
process grid.
In an individual process, an array must be prepared enabling to hold the

max {maX{Dx/ny/y, Dy/xD:c/y}Dz/zv
maX{Nny/y, NyDz/y} [DZ/Z/PI] ,
N.D,,[Dy./P.1} (5.11)

elements, and passed to KMATH_FFT3D_Transform, where D, ;, denotes [N,/ F].

28

Chapter 6

Conclusion

6.1 Current State and Future of KMATH _FFT3D

In the current KMATH_FFT3D implementation, the functions discussed below are studied as constraints
or additions, and it is possible that these will be rapidly improved and realized.

First, the current implementation does not perform concealment owing to communication and com-
putation overlap. As a result, the FFT process has to be split into suitably sized granurality in order
for communication and computation to be performed at the same time and implementation that conceals
communication to proceed.

Second, as is also described in this manual, load imbalances occur too easily in the intermediate
processing stage. There is much room for improving the performance through introduction of a suitable
dynamic load balancing technology.

Third, in the current manual, FFTE is used as a one-dimensional FFT kernel implementation; how-
ever, if a complex FFT were to be implemented for support, this would become optional. In fact, a careful
reading of the current implementation source code shows that it is usable even with the FFTW [4] or
Fujitsu SSL II [7] implementations as the single dimensional FFT kernel. This should be set such that
a configure script can be used for suitable selection of these options. We plan to introduce a plug-in
structure or other method to respond to multi-implementation FFT kernel environments.

In addition, the utility functions also needs to be maintained. The local array size or data size to be
obtained, etc., is currently the responsibility of the user. Further, because error checks, etc., are almost
never carried out, we wish to proceed with function improvements that take convenience into account,
while also considering versatility and migration ability.

6.2 Acknowledgments

KMATH_FFT3D development was achieved by utilizing the RIKEN K supercomputer (with the sup-
port of ‘the K computer system, improvement and user support framework: issue No. ra000005 from
FY2013’). The present implementation adopted the method to reduce the number of data re-distribution
reported by Jung Jaewoon in AICS, which was one of the biggest themes in the joint work. We are grateful
for the support received from the members of the RIKEN Advanced Institute for Computational Science.
In addition, we received feedback from many users regarding bug data and quality improvement. Without
the efforts of many related members, we would surely not have arrived at this software publication, and
so we would like to express our sincere appreciation here.

29

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, the Art of
Scientific Computing, third edition, Cambridge University Press, 2007.

C. V. Loan, Computational Frameworks for the Fast Fourier Transform, Frontiers in Applied Math-
ematics, SIAM, 1992.

D. Takahashi, FFTE: A Fast Fourier Transform Package. http://www.ffte. jp/.

F. Matteo, and J. G. Steven, The Design and Implementation of FFTW3, Proceedings of the IEEE,
Special issue on Program Generation, Optimization, and Platform Adaptation, Vol. 93, No. 2, 2005,
Pages 216-231.

Library for 2D pencil decomposition and distributed Fast Fourier Transform, http://www.
2decomp.org/.

J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. K. Prasanna, M. Piischel, and M.
Veloso, SPIRAL: Automatic Implementation of Signal Processing Algorithms, Proceedings of
High Performance Embedded Computing (HPEC), 2000, See also the SPIRAL project page,
http://www.spiral.net/.

Fujitsu SSL II User’s Handbook, 1999, Fujitsu SSL II/MPI User’s Handbook, 2008, (both in
Japanese).

J. Jung, C. Kobayashi, T. Imamura, and Y. Sugita, Parallel implementation of 3D FFT with vol-
umetric decomposition schemes for efficient molecular dynamics simulations, Computer Physics
Communications, Vol. 200, March 2016, Pages 57-65.

S. Yamada, T. Imamura. and M. Machida, Parallelization Design on Multi-core Platforms in Density
Matrix Renormalization Group toward 2-D Quantum Strongly-correlated Systems, Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and Analy-
sis Date of Conference (SC11), 12-18 Nov. 2011

31

