Advanced Visualization Research Team

1. Team members

Keniji Ono (Team Leader)

Jorji Nonaka (Researcher)

Chongke Bi (Postdoctoral Researcher)
Hamed Khandan (Postdoctoral Researcher)
Kazunori Mikami (Technical Stuff)
Masahiro Fujita (Visiting Researcher)
Kentaro Oku (Visiting Researcher)

Naohisa Sakamoto (Visiting Researcher)

Yukiko Hayakawa (Assistant)

2. Research Activities

The purpose of our visualization team is to construct a parallel visualization environment for

large-scale datasets, which are generated from K computer, and to provide the visualization

environment for the users. Of course, the development of elemental technologies is included.

The following is the objectives of our research in FY2013.

1) Data centric approach for simulation and post-processing (Ono)

2) Development of a visualization technique for large-scale dataset (Nonaka)

3) Data compression for large-scale dataset (Bi)

4) Design of the "A-Cell' portable SIMD framework for heterogeneous computing,
development and release of a simulator for visualization and analysis of A-Cell system, and

partial development of A-Cell source-to-source compiler (Khandan)

3. Research Results and Achievements

3.1. Data centric approach for simulation and post-processing

Since simulations executed on the K computer often generate large-scale and numerous files,
once the data files are generated it is hard to copy or move the data owing to the limitation of
the storage. Thus, it is essential for us to manage such many distributed files. We developed an
efficient file management library CIOlib using meta-data information so that the library allows us
to share the data between different applications such as simulator and post-processing
programs. The meta-data is described simple YAML like notation and consists of two types of
the information: information related to the parallel process and information related to
computed results. This information is described in proc.dfi and index.dfi files respectively. One

of the useful functions in developed CIOlib is file loading. The number of execution processes

150

may vary in some cases, for instance, between simulation and data processing/visualization, or
the restart process in simulation. In many cases, file-based data processing after simulation
employs much fewer processes than the simulation itself. We consider and provide various file
loading patterns for the user’s convenience. Figure 1 shows an example of a file loading function

that CIOlib provides.

The information included in the proc.dfi can automatically process the following patterns.
a) Normal Loading
The number of processes and the situation of partitioning are the same between the previous

and the current session. Most cases choose this pattern.

b) Refinement Loading

In this refinement case as shown in Figure 1, the number of processes is the same; however, the
resolution is different. Each process in the current session reads the same file that the process
has written in the previous session. However, because the resolution is doubled, interpolation

should be performed. User can overload the interpolation method.

¢) MxN Loading

M and N denote the number of processes in the previous and current sessions, respectively.
Even if M and N are equal but the partitioning is different, the loading pattern becomes MxN
loading. Figure 1 shows this pattern for the same resolution, and Figure 1 demonstrates the case
of different resolutions and different partitioning. This loading pattern is considerably useful

when the user changes the number of processes in a successive simulation process.

d) Staging Assistance

In certain computational environments, the files required for computation need to be
transferred from the global file system to the local file system, which is a dedicated disk
partition for computations in a batch job, before the calculation begins. This file transfer
process is called a stage-in. In the MxN file loading pattern, each current process may need
different files that the process wrote in the previous session. In this case, the file that the
process needs must be determined prior to submitting a batch job. This procedure is also
performed using proc.dfi information. Figure 1 depicts an example. The previous session has M =
g processes and the current session has N = 4. For instance, the current process of rank o (N{o})
demands M{o, 1, 3, 4}. This relationship can be obtained from the information described in

proc.dfi.

151

Normal Refinement Different /w Staging
of Domain i
Saved Loading
| B
. : 1 ! 2 |3
Saved in ! ! ! 0|1
previous : :]
session 1 \ : M N
[B N{0} << M({0, 1, 3, 4}
N{1} << M{1, 2, 4, 5}
N{2} << M{3, 4, 6, 7}
N{3} << M{4, 5, 7, 8}
LFS Stage-in GFS
Loading K K
in current
session E E
same resolution | different resolution| same resolution E E

Figure 1. Four file 1/O patterns provided by CIOlib.

3.2 Development of visualization technique for large-scale dataset

The most popular approach for visualization of large datasets is the sort-last parallel
visualization pipeline depicted in Fig. 2a. Most of parallel rendering algorithms are
embarrassingly parallel in nature, however the images generated at each rendering node should
be composited together to generate the final image. Since it requires interprocess
communication among the entire nodes, it usually dominates the total cost of a parallel
rendering process. As shown in Fig. 2a, image composition process works coupled with the
rendering process, and the same node used for rendering is also used for composition. As a
result, the number of rendering nodes determines the number of composition nodes. Although
the number of rendering nodes depends on several factors, it is highly important to have a

scalable image composition algorithm that works with arbitrary number of nodes.

Parallel image composition has been studied for almost two decades and several algorithms
have been proposed so far. Currently, there exist efficient image composition algorithms for
power-of-two (2") number of nodes. However, when handling non-power-of-two number of
nodes, an additional processing is usually applied causing performance penalty. The simplest
way is to execute as a pre-processing converting to a power-of-two number of nodes. Since it
can be costly, another approach is to distribute this processing overhead to the entire parallel
image composition process. As a lightweight pre-processing approach, we investigated the use
of 2-3-4 Decomposition method to convert a given non-power-of-two number of nodes to a
power-of-two number of nodes. It is worth noting that, in the case of the K Computer, to make

full use of the allocated computational resources, multiples of 12 (non-power-of-two) might be

152

appropriate for job execution.

The 2-3-4 Decomposition works by creating groups of 2, 3 or 4 nodes as shown in Fig. 2b.
Considering a non-power-of-two number of composition nodes (m) which is bounded by two
power-of-two values, 2" < m < 2™, when applying 2-3-4 Decomposition, it will create exactly 2™,
that is, a power-of-two number of groups. By independently compositing each of these groups,
as shown in Fig. 2¢, it will generate a power-of-two number of images, and by using the local
root node at each of these groups it will be possible to apply any of the existing image
composition nodes for power-of-two number of nodes. The maximum performance penalty is
limited to the overhead of compositing four images. In the case of using Binary-Swap image
composition, which is probably the most popular image composition method for power-of-two
number of nodes, we verified a stable performance penalty in the range of 1.5 to 1.75 times as
those of Binary-Swap on a large-scale image composition environment of up to 32K thousands
of composition nodes. It is worth noting that this decomposition method does not depend on
any composition parameter to be specified by the user, and has predicable performance
behavior. Our ongoing work includes a study to further reduce this performance penalty in

certain circumstances.

1 2 3 B n BINARY-SWAP with 2-3-4 DECOMPOSITION 2 Nodes 3 Nodes 4 Nodes

Rendering & Direct-Send {

Direct-Send (Stage 1) Binary-Swap (Stage 1)

‘ Compositing 583 M < m < 20+ . . " ..
Nodes H HH H
3D Data | Groups of 2 and 3 " Groups of 3and 4 I Pre- E Q D E E i E QE Q

Rendering (Subvolume) Process - -
L?_‘ L?_‘ P E_‘@ @ - L?_‘ m Gather ."I?vlr?cl-send(stage2 _Binary-Swap (Stage 2))
e e === ==

. . .Compositing- 2DP|TT::|95 on-1 | S‘?ge . Gather Gather
Binary-Swap
. Final 2D Image logn-1) 2n i . .
a) Sort-last parallel visualization pipeline. b) An application of 2-3-4 Decomposition. ¢) Composition of 2-3-4 groups

Figure 2. 2-3-4 decomposition in sort-last approach.

3.3 Data compression for large-scale dataset

In this year, we have proposed two methods for data compression for large-scale dataset.

Firstly, we proposed a parallel data compression method using POD (Proper Orthogonal
Decomposition). However, this method can only deal with the cases that both the number of
time steps and the number of processors are power-of-two. Therefore, a 2-3-4 combination

method was proposed to resolve the problem of non-power-of-two.

153

3.3.1. A Study of Parallel Data Compression Using Proper Orthogonal Decomposition

The growing power of supercomputers continues to raise scientists’ ability to model larger,
more sophisticated problems in science with higher accuracy. Equally important is the ability to
make full use of the data output from the simulations to help clarify the modeled phenomena
and facilitate the discovery of new phenomena. However, as the scale of computing has grown,
there has been a corresponding growth in available data. Outputting most of this data is simply
not feasible, which defeats the purpose of conducting large-scale simulations. In order to
address this issue so that more data may be collected and used for extreme-scale computing,
we have developed a scalable parallel data compression solution to reduce the size of
large-scale data with low computational cost and minimal error. We use the proper orthogonal
decomposition (POD) method to compress data because this method can effectively extract the
main features from the data, and the resulting compressed data can be linearly decompressed.
Our implementation achieves high parallel efficiency with a binary load-distributed approach (as
shown in Figure 3), which is similar to the binary-swap image composition method. This
approach allows us to effectively use all of the processing nodes and to reduce the
interprocessor communication cost throughout the parallel compression calculations. The
results of tests using the K computer indicate the superior performance of the proposed design

and implementation.

3.3.2. 2-3-4 Combination for Parallel Compression on the K computer

Process 0] [Process 1] [Process 2| [Process 3 Process 0| [Process 1
_, first mAzm=f=dz=smc-domoopboood-s
pobfl pobfl popf{ poD! poofl pobfl ¢ pobfl PoD layer _Popj ___POD§ ___ Poby ____Poby __!
|
: |
1 1
1 1
: : Binary-load| u
| 1 distributed (a)
| : HE D [] §

second.---}j}---- s A g

layer 1~ PORY ___PODY ____PODY____PFO S
POD\II POD\I‘ POD\I‘ »PODI PODI
?Zﬂiﬂéufgg ? (v

Poo
P

P

P

P,

Pos
Pos
Po7
Pos
Poo
Po 10
Po 11
Poy
Po13
Po s

Base0 Basel Base2 Base3

Figure 3 Parallel POD compression| Figure 4 Two cases of non-power-of-two. (a) Thq Figure 5 The data with 15 time steps are efficiently parallel
using our proposed binary load{number of time steps. (b) Both the number of | compressed using our 2-3-4 combination approach. The best

distributed method. the time steps and the processors. load balance was achieved.

In our previous research, a parallel compression method has been proposed. However, in this
algorithm, interprocessor communication can only be carried out in the case that both the

number of time steps and processors are power-of-two (the case in Figure 3). Obviously, it is

154

impossible for the general cases, Figure 4 shows two non-power-of-two cases. A method that
can fully resolve this problem with low computational cost will be very popular. In this research,
we proposed such an approach called 2-3-4 combination approach, which can be simply
implemented and also reach high performance of parallel computing algorithms. Furthermore,
our method can obtain the best balance among all parallel computing processors. This is
achieved by transferring the non-power-of-two problem into power-of-two problem to fully use
the best balance feature of the binary load-distributed method proposed in our first research.
Figure 4 shows how to transfer the two non-power-of-two cases into power-of-two. Figure 5 is
an example to effectively compress the data with 15 time steps through using our 2-3-4
combination method. We evaluate our approach through applying it to the parallel POD

compression algorithm on the K computer.

3.4 A-Cell

An important mission of advanced visualization research team is to create reusable program
modules that could be used by AICS and the rest of HPC community. Our projects include
physics simulation and rendering. In addition we have lunched the new trend of knowledge
discovery in simulation data. In order to make our solutions available for larger portion of the
community our solutions should be completely portable and scalable to be more reusable.
Therefore we decided to focus on the fundamental problem of portability and scalability. Other
than the K computer, the visualization team uses a specific-purposed visualization cluster with
heterogeneous nodes with two high-end CPUs and one GPU per node. It is desirable that our
programs to be executable on both K computer and visualization cluster without modification
or additional setup. Furthermore, it is desired that our programs to be executed without
modification or additional setup on the next generation exa-scale supercomputer which its

exact architecture is not currently determined yet.

Unfortunately, available solutions like OpenACC, OpenMP, PGAS, and Unified Memory in CUDA
C only make the problem deeper. These technologies try to present the programmer with an
abstraction of the system that looks and feels like a sequential programming environment. Then,
the compiler will be responsible for creating a parallel program out of user code. However, most
compilers fail to perform that task properly. In addition, compile-time parameters differ from
one machine to another. That makes the program less portable. Furthermore, none of these

technologies are portable between multi-core to many-core architectures and vice versa.

We came up with a promising solution that we call A-Cell (asynchronous cells). A-Cell is a
high-level abstraction of fine-grained parallelism specifically designed to be applicable to all

range of parallel devices from super computers based on CPUs or GPUs, to network of

155

embedded devices. To achieve this, A-Cell adopts a programming model called "connectionist
computing" and with that takes a leap step farther from Turing programming model compared
to aforementioned solutions. Also, in contrast with those other solutions that are based on
holistic philosophy, the philosophy of A-Cell is reductionist. An A-Cell encapsulates a fine-grained
task with its related variables and data linkage. A source-to-source compiler translates the
program to a set of programs that are compilable to the target devices. Execution of the task is
through massive instantiation of an A-Cell. The runtime environment takes the responsibility of
distributing A-Cell instances between all available nodes, CPU cores or GPU multiprocessors
(MPs). The runtime environment also assures synchronization and consistency of data between
A-Cells.

With A-Cell two important inherent properties emerge, namely, Spatial Elasticity and Temporal
Elasticity. Spatial Elasticity makes A-Cells to fit in any heterogeneous computing environment
while Temporal Elasticity improves execution time by compensating for a part of interconnect
latency and the time wasted by unexpected system interrupts. Development of A-Cell compiler
based on LLYM/Clang compiler system has been started and it is about 20% through. A simulator
is developed as a proof of concept for A-Cell scalability and its better time performance. The

simulator is released to public and is available as an open-source project.

When the A-Cell compiler, runtime system becomes available, we will be able to produce
visualization and knowledge discovery solutions that are portable between varieties of HPC

environments and scalable to arbitrary number of nodes.

Figure 6. Left: Spatial Elasticity, Right: Temporal Elasticity in A-Cell.

4. Schedule and Future Plan
We will release our visualization software around mid. of FY2014, and have a plan to give
lectures related our released software. Research themes and developed software will be

investigated further in next year continuously, for instance, (1) Completion and release of

156

KnoRBA + A-Cell precompiler. KnoRBA is an original agent-based software development
framework that can be used for development of a scalable, extensible and portable knowledge
discovery solution, (2) Implementation of a demo user interface for wall-mounted display, and
(3) To proceed with research and implementation of multi-modal knowledge discovery and data

minding using KnoRBA and A-Cell.

5. Publication, Presentation and Deliverables
(1) Journal Papers
[1] Ono, K., Kawanabe, T., and Hatada, T., “HPC/PF - High Performance Computing Platform: An

Environment That Accelerates Large-Scale Simulations, “Lecture Notes in Computer Science,

Vol. 7851, pp. 23-27, 2013.

(2) Conference Papers

[2] Khandan, H., and Ono, K., “Knowledge Request-Broker Architecture: A Possible Foundation
for A Resource-Constrained Dynamic and Autonomous Global Network”, in Proceedings of
2014 IEEE World Forum on Internet of Things, ISBN 978-1-14799-3460-7, March 2014, Seoul,
South Korea.

[3] Bi, C., and Ono, K., “2-3-4 Combination for Parallel Compression on the K Computer,” in
Proceedings of IEEE Pacific Visualization Symposium, pp. 281-285, March, 2014.

[4] Onishi, J. and Ono, K., “Development of a CFD software for large-scale computation,”
FLUCONME 2013, Nov. 18-23, 2013.

[5] Ono, K. and Mikami, K., "High-performance application development towards exa-scale

computation" in Proceedings of 27th Computational Fluid Dynamics Symposium, Dec. 2013.

(3) Invited Talks

[6] Ono, K., “Strategy of Visualization toward Exascale Computing,” PC cluster consortium
workshop in Kyoto, Jan. 2013.

[7] Ono, K., “Life cycle management of big data for extreme-scale simulation,” Big data and
extreme-scale computing, Charleston, SC, USA, April, 2013.

[8] Ono, K., “Technology Infrastructure for Scientific Applications with Large-Scale Dataset,”
The 4th AICS International Symposium: Computer and Computational Science for Exascale
Computing, Dec. 2013.

[9] Ono, K., “Challenge for parallel visualization of large-scale dataset and current status,”
Prospects for Massively Parallel Computing in Science and Technology Calculation - Use,

Application and Problems, Tokyo Metropolitan University, March, 2014.

157

(4) Posters and Presentations

[10] Khandan, H., “Connectionism: How the World Really Computes”, Oral and poster
presentation at 11th Interdisciplinary Evening, RIKEN Wako Campus, March 2014.

[11] Bi, C.and Ono, K., “Parallel POD Compression Accelerated by Binary-Swap Compositing,”
in Proceedings of Symposium on Advanced Computing Systems and Infrastructures 2013, pp.
112, May, 2013.

[12] Bi, C., Ono, K., M3, K.-L., Wu, H., and Imamura, T., “Proper Orthogonal Decomposition Based
Parallel Compression for Visualizing Big Data on the K Computer,” in Proceedings of IEEE
Symposium on Large-Scale Data Analysis and Visualization 2013, pp. 121-122, October, 2013.

[13] Bi, C. and Ono, K., “POD-Based Parallel Compression for Visualizing Large-Scale Dataset,”

Proceedings of High Performance Computing Symposium 2013, p.83, 2013.

(5) Patents and Deliverables

[14] CPMIib Cartesian Partitioning Manager library
[15] PMlib Performance Monitor library

[16] TextParser ~ Parameter parsing library

[17] ClOlib Cartesian file 1/O library

158

	aics_annualreport_fy2013 151
	aics_annualreport_fy2013 152
	aics_annualreport_fy2013 153
	aics_annualreport_fy2013 154
	aics_annualreport_fy2013 155
	aics_annualreport_fy2013 156
	aics_annualreport_fy2013 157
	aics_annualreport_fy2013 158
	aics_annualreport_fy2013 159

