
174

Advanced Visualization Research Team

1. Team members

Kenji Ono (Team Leader)

Jorji Nonaka (Researcher)

Chongke Bi (Postdoctoral Researcher)

Hamed Khandan (Postdoctoral Researcher)

Kazunori Mikami (Technical Stuff)

Masahiro Fujita (Visiting Researcher)

Kentaro Oku (Visiting Researcher)

Naohisa Sakamoto (Visiting Researcher)

Yukiko Hayakawa (Assistant)

2. Research Activities

The purpose of our visualization team is to construct a parallel visualization environment for

large-scale datasets, which we named “HIVE”, and also to deliver this system to the users. To

achieve this aim, we are developing some fundamental technologies essential to build parallel

visualization systems for large-scale datasets, and at the same time, are integrating them into the

HIVE system. The HIVE system consists of a parallel rendering kernel named “SURFACE”, some

peripheral libraries, and a Web-based user-interface. The main idea of the SURFACE is to exploit

the sort-last parallel rendering method, which is divided into the following three tasks: data loading,

parallel rendering, and image compositing.

Figure 1. Example of high-quality ray tracing image from a molecular dynamics simulation

data. This image was generated using 82,944 nodes on K-Computer.

RIKEN AICS ANNUAL REPORT FY2014

175

Although HIVE system is still under development, we have already applied this system to visualize

some results from large-scale molecular dynamics simulations executed by other AICS teams.

Recent investigations have shown us that the HIVE system enables the users to render more than 10

million atoms on a standard computer resource, and to generate extremely high-resolution images

(over 16K resolution) in parallel. Figure 1 shows an example of high-resolution image from a

molecular dynamics simulation data.

3. Research Results and Achievements

3.1 HIVE and SURFACE

HIVE is an acronym standing for Heterogeneously Integrated Visual-Analytic Environment, which

means that the system can be operated on computer systems with heterogeneous hardware

architectures and multi-platform software systems. Figure 2 illustrates some of the appearances of

the Web-based user interface of the HIVE system. The software architecture adopted by the HIVE is

the server-client model thus it enables the users to operate the HIVE system even from their laptop

computers. Figure 3 describes the software stack of the HIVE system.

(a) Workspace for visualization workflow design. (b) Viewing window and control area .

Figure 2. HIVE Web-based user interface.

SURFACE is an acronym standing for Scalable and Ubiquitous Rendering Framework for Advanced

Computing Environments, and provides the necessary parallel rendering features to the HIVE

system. SURFACE employs the ray tracing method, which is able to generate high-quality images,

and is especially suitable for large-scale parallel processing.

Part I: Research Division

176

Figure 3. Software stack of the HIVE system.

3.2 Image Compositing

Parallel image compositing corresponds to the last stage of sort-last visualization approach where the

parallel rendered images are combined into a single final image. In this year, we worked on an

approach to convert non-power-of-two into power-of-two number of compositing nodes in order to

enable the use of efficient image compositing algorithms for power-of-two number of nodes. In

addition, we worked on an approach to execute large-scale image compositing in multiple steps in

order to achieve better scalability.

Efficient parallel image compositing algorithms are worked by exchanging portions of the data, and

combining them using appropriate image data merging techniques. It is well known that the

exchanging and merging processes work well when the number of compositing nodes is

power-of-two. Therefore, different approaches have been proposed to handle non-power-of-two

number of compositing nodes. These approaches can be divided into single and multi-stage

conversion. The single stage conversion, known as Reduced or Folded method, converts to the

closest power of two (m = 2n) smaller than the number of nodes (m < m’) by executing a reduction

process known as 2-1 elimination. We focused on the 2-3-4 Decomposition approach, shown in

Figure 4, for extending the reduction process including the 3-1 and 4-1 eliminations. The main

advantage of this approach is that the resulting number of nodes is smaller (2n-1) compared to the

Reduced method. This greatly helps to minimize the performance degradation when the number of

compositing nodes becomes large. For instance, when the performance degradation between two

consecutive power-of-two number of nodes (2n and 2n+1) is considerable, it becomes possible to

achieve faster image compositing compared to the closest power-of-two number of nodes. That is,

image compositing between 2n+1 + 1 and 2n+2 – 1 compositing nodes can be faster than using 2n+1

RIKEN AICS ANNUAL REPORT FY2014

177

compositing nodes since 2-3-4 Decomposition reduces the number of compositing nodes to 2n.

Figure 4. 2-3-4 Decomposition method with an example when n = 2 (Left), and its use in

combination with different image compositing algorithms (Right).

Although 2-3-4 Decomposition can minimize part of the performance degradation on large-scale

parallel image compositing, it becomes inefficient when a massive number of compositing nodes in

the range of tens of thousands are involved. In the case of K computer, it can reach 82,944

compositing nodes, in Hybrid MPI-OpenMP mode. Therefore, 2-3-4 Decomposition can reduce it to

32,768 compositing nodes (2n-1). It is worth to mention that the final image collecting is executed

through MPI_Gatherv collective operation, and there exists a buffer overflow problem on the current

MPI implementation for K computer, which does not allow the use of MPI_Gatherv with more than

50K nodes. Therefore, by reducing to the range of 32K compositing nodes, it becomes possible to

avoid this problem. Although this considerable reduction, it is still in the range of tens of thousands

of nodes where the performance degradation is prominent. In order to minimize this degradation, we

focused on Multi-Step approach, shown in Figure 5, where the entire image compositing nodes are

divided into smaller groups, with the size within the range where the performance is not greatly

affected. By executing the full parallel image compositing at each of the groups, at the end it will

produce partially composited images equal to the number of groups. We can recursively execute this

group creation until the number of partially composited images becomes smaller than the group size.

Since it only executes parallel image compositing using number of compositing nodes where the

performance is not greatly affected, it will result in better scalability. Therefore, the aforementioned

2-3-4 Decomposition will be greatly benefited.

Part I: Research Division

178

Figure 5. Multi-Step image compositing approach.

3.4 Compression of Large-Scale Dataset

M-Swap Method for Parallel POD Compression of Large-Scale Dataset.

In this paper, we presented a parallel data compression approach to reduce the size of time-varying

big datasets. Firstly, we employ the proper orthogonal decomposition (POD) method for

compression. The POD method can extract the underlying features of datasets to greatly reduce the

size of big datasets. Meanwhile, the compressed datasets can be decompressed linearly. This feature

can help scientists to interactively visualize big datasets for analysis. Then, we introduced a novel

m-swap method to effectively parallelize the POD compression algorithm. The m-swap method can

reach a high performance through fully using all parallel computing processors. In another word, no

idle processors exist in the parallel compression process. Furthermore, the m-swap method can

greatly reduce the cost of interprocessor communication. This is achieved by controlling the data

transfer among 2m processors to obtain the best balance of computation cost of these processors.

Figure 6. An example of parallel compressing a dataset with 36 time steps.

POD

Processor 0

P
0_

0

P
0_

1

P
0_

2

P
0_

3

P
0_

4

P
0_

5

P
0_

6

P
0_

7

P
0_

8

P
0_

9

P
0_

10

P
0_

11

P
0_

12

P
0_

13

P
0_

14

P
0_

15

P
0_

16

P
0_

17

P
0_

18

P
0_

19

P
0_

20

P
0_

21

P
0_

22

P
0_

23

P
0_

24

P
0_

25

P
0_

26

P
0_

27

P
0_

28

P
0_

29

P
0_

30

P
0_

31

P
0_

32

P
0_

33

P
0_

34

P
0_

35

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

POD POD POD POD POD

POD POD POD POD POD POD

The same region of the vectors
can be compressed again

Example of m-swap

L
a
y
e
r

0

L
a
y
e
r

1

L
a
y
e
r

2

RIKEN AICS ANNUAL REPORT FY2014

179

In our parallel framework, the compressed POD bases and POD mean vectors in different processors

will be recursively compressed, respectively. The m-swap algorithm is designed to directly send and

receive data among 2m (m >= 2) difference processors. Figure 6 shows an example of m = 3.

Furthermore, unlike most existing parallel methods that can only deal with the datasets whose time

steps number is power-of-two, the presented m-swap method can compress datasets with arbitrary

time steps. Note that the binary swap (or 2-3 swap) method cannot be directly used for the POD

compression method. Because the size of datasets does not change if two time steps are compressed

into one POD mean vector and one POD basis.

Finally, the effectiveness of our m-swap method is demonstrated through compressing several big

datasets on the K computer. Figure 7 is one of the results.

Figure 7. An example of compressing a dataset of the flow simulation in the air jet mixture of a

machine. Its size if 300*200*200*128. The rendering result, the error, and the corresponding

standard deviation of error are shown from left to right.

Fluid Data Compression and ROI Detection Using Run Length Method

Data compression and ROI (Region of Interest) detection are often used to improve efficiency of the

visualization of numerical data. It is well known that the Run Length encoding is a good technique to

compress the data where the same sequence appeared repeatedly, such as an image with little change,

or a set of smooth fluid data. Another advantage of Run Length encoding is that it can be applied to

every dimension of data separately. Therefore, the Run Length method can be implemented easily as

a parallel processing algorithm. We proposed two different Run Length based methods. When using

the Run Length method to compress a data set, its size may increase after the compression if the data

does not contain many repeated parts. We only apply the compression for the case that the data can

be compressed effectively. By checking the compression ratio, we can detect ROI. Figure 8 shows

an example of compressing a 3D fluid data using Run Length method.

�
�
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�
�
�

Part I: Research Division

180

Figure 8. An example of compressing a 3D fluid data using Run Length method.

4. Schedule and Future Plan

We will continuously improve our visualization framework by ameliorating the components of the

software stack, and by aggregating new functionalities. We also have plans to give lectures regarding

the visualization framework and its components.

5. Publication, Presentation and Deliverables

(1) Journal Papers

1. Shota Ishikawa, Haiyuan Wu, Chongke Bi, Qian Chen, Hirokazu Taki, and Kenji Ono,

“Fluid Data Compression and ROI Detection Using Run Length Method,” in Procedia

Computer Science, Vol. 35, pp. 1284-1291, 2014.

2. Kenji Ono, Yasuhiro Kawashima, and Tomohiro Kawanabe, “Data Centric Framework for

Large-scale High-performance Parallel Computation,” Procedia Computer Science, Vol. 29,

pp. 2336 – 2350, 2014.

(2) Conference Papers

1. Chongke Bi, Kenji Ono, Kwan-Liu Ma, Haiyuan Wu, and Toshiyuki Imamura, “Proper

Orthogonal Decomposition Based Parallel Compression for Visualizing Big Data on the K

Computer,” in Proceedings of Eurographics Symposium on Parallel Graphics and

Visualization, pp. 1-8, June, 2014.

2. Chongke Bi, Kenji Ono, and Lu Yang, “Parallel POD Compression of Time-Varying Big

Datasets Using m-Swap on the K Computer,” in Proceedings of IEEE International

Congress on Big Data, pp. 438-445, June, 2014.

3. Hamed Khandan, “Introducing A-Cell for Scalable and Portable SIMD Programming,”

RIKEN AICS ANNUAL REPORT FY2014

181

2014 IEEE 8th International Symposium on Embedded Multicore/Manycore SoCs

(MCSoC), pp. 275-280, 2014.

4. Jorji Nonaka, Masahiro Fujita, and Kenji Ono, “Multi-Step Image Compositing for

Massively Parallel Rendering,” in Proceedings of the International Conference on High

Performance Computing & Simulation 2014, Bologna, Italy, pp. 627-634, 2014.

5. Jorji Nonaka, Chongke Bi, Masahiro Fujita, and Kenji Ono, “2-3-4 Decomposition Method

for Large-Scale Parallel Image Composition with Arbitrary Number of Nodes,” in

Proceedings of the First International Conference on Systems Informatics, Modelling and

Simulation, Sheffield, UK, pp. 59-64, 2014.

6. Kenji Ono, Shuichi Chiba, Shunsuke Inoue, and Kazuo Minami, “Performance

Improvement of Iterative Method with Bit-Representation technique for Coefficient Matrix,”

11th International Meeting High Performance Computing for Computational Science,

Eugene, Oregon, USA, June 30 - July 3, 2014.

7. Kenji Ono and Yasuhiro Kawashima and Tomohiro Kawanabe, “Data Centric Framework

for Large-Scale High Performance Parallel Computation,” International Conference on

Computational Science, Cairns, Australia, June 10-12, 2014.

8. Hamed Khandan and Kenji Ono, “Knowledge Request-Broker Architecture: A Possible

Foundation for a Resource-Constrained Dynamic and Autonomous Global System,” 2014

IEEE World Forum on Internet of Things (WF-IoT), pp. 506-507, 2014.

9. Kenji Ono and Jorji Nonaka, “Active Subdomain Selection for Efficient Parallel

Computation of Internal Flows in Complex Geometry,” Books of extended abstracts of 26th

International Conference on Computational Fluid Dynamics, pp. 112–113, 2014.

(3) Invited Talks

1. Kenji Ono, “Design of Practical Framework to utilize Big Data on Exascale Computer,”

ORAP Forum 33, CNRS, Paris, France, April, 2014.

2. Kenji Ono, “Scalable and Ubiquitous Visualization in Extreme-Scale Computational

Environment,” Extreme Performance Computational Science French-Japanese Conference,

Embassy of France in Japan – Department for Science and Technology, Tokyo, Japan,

April, 2014.

(4) Posters and presentations

1. Chongke Bi, “An m-Swap method for Parallel POD Compression on the K Computer,” in

Proceedings of Sparse Modeling High-Dimensional Data-Driven Science, pp. 165-166,

December, 2014.

2. Chongke Bi, “In-situ Visualization of Big Data Using Sparse Modeling,” in Proceedings of

Part I: Research Division

182

Conference on Sparse Modeling, June, 2014.

3. Jorji Nonaka, Masahiro Fujita, Kenji Ono, Naohisa Sakamoto, Koji Koyamada, þA Study

on Parallel PBVR for Large Data Visualization,� Ú 42ÜPYY+,ÁGù�úû,

Tokyo, Japan, 2014.

4. Jorji Nonaka, Masahiro Fujita, Kenji Ono, “SURFACE: A Visualization Framework for

Large-Scale Parallel Simulations,” Oral presentation at Ultrascale Visualization Workshop

2014, New Orleans-LA, USA, 2014.

5. Masahiro Fujita, Jorji Nonaka, and Kenji Ono, “LSGL: Large Scale Graphics Library for

Peta-Scale Computing Environments,” Poster presentation at High Performance Graphics

2014, Lyon, France, 2014.

6. Kenji Ono, “CFD Applications for Industrial Design in Peta-Scale Computing

Environments,” International HPC Summer School 2014, Budapest, Hungary, June 2-6,

2014.

7. Kenji Ono, “Bit-Representation of Boundary Conditions for High Performance

Incompressible Thermal Flow Simulation,” 11th World Congress on Computational

Mechanics (WCCM XI), Barcelona, Spain, July 20-25, 2014.

8. Shigueho Noda, Kazuyasu Sugiyama, Yasuhiro Kawashima, , Kenji Ono, Shu Takagi, , and

Ryutaro Himeno, “Development and Applications of the Parallel Computing Middleware

for the Life Science Simulations,” 11th World Congress on Computational Mechanics

(WCCM XI), Barcelona, Spain, July 20-25, 2014.

9. Ken Uzawa, Kenji Ono, and Takanori Uchida, “Validation of Local SGS Models for High

Reynolds Number Flow,” 11th World Congress on Computational Mechanics (WCCM XI),

Barcelona, Spain, July 20-25, 2014.

10. Kenji Ono, “Challenges and Strategy to Tackle the Extreme-Scale Fluid Simulation for

Engineering Process,” Japan/United States Exascale Applications Workshop, Gatlinburg,

Tennessee, USA, September 5-6, 2014.

11. Jyunya Onishi, and Kenji Ono, “A Cartesian Grid Method for Simulating Two-Phase Flow

in Complex Geometries,” 2nd International Conference on Numerical Methods in

Multiphase Flows, Darmstadt, Germany, April, 2014.

(5) Patents and Deliverables

All released software products from this team are delivered via GitHub, and are available in the

following repository: https://github.com/avr-aics-riken/

1. PMlib

Performance Monitor library

2. SURFACE

RIKEN AICS ANNUAL REPORT FY2014

183

Scalable and Ubiquitous Rendering Framework for Advanced Computing

Environments

3. HIVE

Heterogeneously Integrated Visualization Environment

4. CDMlib

Cartesian Data Management library

5. PDMlib

Particle Data Management library

6. JHPCN-DF

Data compression library based on Jointed Hierarchical Precision Compression

Number - Data Format

7. Text Parser

Text Parser library that enables us to handle YAML-like simple text parameters

8. 234Compositor

A parallel image composition library being developed to perform sort-last image

composition on massively parallel environments.

Part I: Research Division

	aics_annualreport_fy2014 175
	aics_annualreport_fy2014 176
	aics_annualreport_fy2014 177
	aics_annualreport_fy2014 178
	aics_annualreport_fy2014 179
	aics_annualreport_fy2014 180
	aics_annualreport_fy2014 181
	aics_annualreport_fy2014 182
	aics_annualreport_fy2014 183
	aics_annualreport_fy2014 184

