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2. Research Activities

In molecular biology, atomic structures of proteins and other biomolecules provide essential
information for understanding their biomolecular functions. Recently, MD simulations of
biomolecules in solution or in biological membrane are often performed to elucidate the
relationship between conformational dynamics and biomolecular functions. However, the
conventional approaches have, at least, two major difficulties and cannot be compared directly
to the experimental data. The first one is that simulation time of all-atom MD simulation is
limited to about microsecond and this time scale is much shorter than that of slow
conformational dynamics of proteins. The second difficulty is that the cellular environments are
hardly involved in the MD simulations due to the size limitation of MD simulation. In this team,
we have developed novel high-performance MD software, which we call GENESIS, to perform
MD simulations of biomolecules efficiently on K computer. We aim to perform biomolecular

simulations under realistic cellular environments as long as possible. The development of new
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algorithms and the use of multi-scale and multi-resolution models are effective for large-scale
MD simulations. In this team, we develop these methods and models in biomolecular

simulations, also.

3. Research Results and Achievements

3.1. New Inverse Lookup Table for the evaluations of nonbonded interactions

We have developed a new lookup table for efficient short-range non-bonded interactions. Major
bottleneck in MD is the calculation of non-bonded interactions of van der Waals and
electrostatic. With spherical truncation (cutoff approximation) and particle mesh Ewald (PME),
calculation order or van der Waals and real space electrostatic is reduced from O(n2) to O(n).
However, these interactions are still the main bottleneck of MD, and they include very
time-consuming inverse square roots and complementary error functions. To avoid such
time-consuming operations while keeping accuracy, we proposed a new lookup table for
short-range interaction in PME by defining energy and gradient as a linear function of inverse
distance squared. In our lookup table approach, the table density is proportional to the inverse
of squared distance. The new table increases accuracy by assigning large number of points at
small pair distances where energy/gradients changes rapidly (Figure 1a). Despite of inverse
operations in our approach, the new lookup table scheme allows fast evaluation due to small
cache misses (Figure 1b). Overall, linear 1/R2 lookup table is highly promising for MD from the

point of view of both accuracy and efficiency.
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Figure 1. (a) Energy drift value according to the number of table points in unit section. (b)

Computational time for one step calculation.

3.2 Midpoint Cell Method for hybrid parallelization

We have developed a new hybrid (MP1+OpenMP) parallelization scheme for molecular dynamics
(MD) simulations by combining a cell-wise version of the midpoint method with pair-wise Verlet
lists. In this scheme, which we call the midpoint cell method, simulation space is divided into

subdomains, each of which is assigned to a MPI processor. Each subdomain is further divided
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into small cells. The interaction between two particles existing in different cells is computed in
the subdomain containing the midpoint cell of the two cells where the particles reside. In each
MPI processor, cell pairs are distributed over OpenMP threads for shared memory
parallelization. The midpoint cell method keeps the advantages of the original midpoint method,
while filtering out unnecessary calculations of midpoint checking for all the particle pairs by
single midpoint cell determination prior to MD simulations. Distributing cell pairs over OpenMP
threads allows for more efficient shared memory parallelization compared with distributing
atom indices over threads. Furthermore, cell grouping of particle data makes better memory
access, reducing the number of cache misses. The parallel performance of the midpoint cell
method on the K computer showed scalability up to 512 and 32,768 cores for systems of 20,000
and 1 million atoms, respectively. One MD time step for long-range interactions could be
calculated within 4.5 ms even for a 1 million atoms system with PME electrostatics (Figure 2).
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Figure 2. Simulation time (ms/step) for (a) 22,000 and (b) 1 million atoms systems.

3.3 Development of high-performance software GENESIS

GENESIS (Generalized Ensemble Simulation System) is a suite of computer program for carrying
out MD for biomolecular systems. While most of MD programs have been parallelized for
distributed memory parallelization for small and intermediate size systems (< 1 million atoms),
GENESIS is optimized with hybrid parallelization by combining MPI with OpenMP for large-scale
simulations. For fast evaluation of MD, we introduced lookup table approach and domain
decomposition named midpoint cell method, which are already written in the above sections. In
GENESIS, we have two simulators: ATDYN (atomic decomposition dynamics) and SPDYN (spatial
decomposition dynamics). The former is easy to be modified for developing new methods due
to simple parallelization using atomic decomposition, and enhanced sampling algorithms like
replica-exchange molecular dynamics (REMD) is available. In ATDYN, in particular, there are

special generalized ensemble algorithms named “surface-tension replica-exchange” developed
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in our group. SPDYN was written mainly for efficient parallelization and fast evaluation for large
systems. For efficient parallelization, Fast Fourier Transform (FFT) that shows the best parallel
performance out of all MD programs is also optimized. SPDYN is optimized for K supercomputer,
leading 6 ns/day for 100 million atoms system. This is an impressing result because the
performance is almost twice faster than that of NAMD on Blue Gene/Q.

GENESIS has the following features:

1) Coarse-grained as well as explicit all-atom MD is available in ATDYN.

2) Parallel input/output (1/O) is available for very large system for efficient memory usage

and fast setup.
3) GENESIS is optimized for K supercomputer, but it is also available on PC-clusters.
4) Everything is written in Fortran 90/95/2003 with dynamics memory allocation.

5) GENESIS is free software licensed under GPL version 2.

3.4 Data assimilation algorithm for analyzing conformational dynamics of biomolecules

We have been developing an algorithm for data-assimilation simulations incorporating
single-molecule Forster resonance energy transfer (smFRET) measurements. SmFRET
measurement is a powerful technique to investigate dynamic behavior of biomolecules as a
function of time. However, the interpretation of smFRET data is sometimes difficult since the
information is limited only to the distance-like information between two fluorescence dyes. We
have been developing a data-assimilation technique, based on the particle filter, to interpret the
smFRET data in terms of coarse-grained protein models. This year, we have formulated a
likelihood function for smFRET photon counting data, by modeling the numbers of observed
photons from the two dyes as inhomogeneous Poisson processes. We have implemented the
likelihood function in GENESIS and tested the performance of the algorithm by using a
simulated FRET-like photon counting data on K computer. Using polyproline as a test case, we
have confirmed the performance using 131,072 replicas (particles) and 8,192 nodes of K

computer.
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Figure 3. (a) Schematic picture of smFRET photon counting data. (b) Inference for the distance

between two fluorescence dyes attached to polyproline from simulated smFRET photon
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counting data. The red line indicates the true answer, and black lines are replicas (particles).

3.5 Motion tree algorithm for analysis of large domain motions of proteins

Proteins are known to take their own three-dimensional structures in physiological conditions.
The structures are experimentally determined in crystal conditions (with X-ray crystallography)
or in solution (with NMR or others). However, in physiological conditions or in cellular
environments, proteins don’t behave as rigid bodies but show significant flexibility due to
thermal noises. Furthermore, some proteins undergo large domain motions in their reaction
cycle, utilizing ATP hydrolysis or proton motive forces. Sarco(endo)plasmic reticulum
Ca*-ATPase (SERCA), which transports Ca*" across biological membranes against a large

concentration gradient, is one of the

best-studied membrane proteins. In
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To characterize its conformational motions, we illustrate ‘Motion Tree (MT)’ based on seven
crystal structures of SERCA. MT is a tree diagram that represents hierarchical domain-motion.
(Koike et al., J. Mol. Biol., 2014) We investigate the relationship between local conformational
changes and function of SERCA based on MTs. In addition, we determine ‘common rigid
domains (CRD)’ that keep their structural rigidity during the whole reaction cycle. The analysis
allows discussion of how the protein utilizes both structural rigidity and flexibility for pumping
Ca*" across the membrane. We also investigate local conformational changes upon a
dissociation of Pi and Mg from the nucleotide-binding site using atomistic molecular dynamics
(MD) simulations. The simulations reinforce the notion of a conformational change upon
binding/dissociation of the ligands. We emphasize that MT detects such motions automatically
without extensive biological knowledge, suggesting general applicability to domain movements

in other membrane proteins to deepen the understanding of protein structure and function.
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3.6 Development of new meta-dynamics algorithms

The understanding of biological systems by atomistic-level simulations requires free energy
calculations, which inherently is a problem of conformation space sampling. Metadynamics, an
adaptive-biasing technique, has proven its efficiency to accelerate sampling. The method
estimates the free energy by iteratively updating a biasing potential in a predefined collective
variable space. In particular, we were focused on the multi-replica algorithms of metadynamics,
which could be efficiently implemented on the massively parallel computers (such as K
computer). Currently ATDYN supports several mutil-replica algorithms: multiply-walker,
parallel-tempered, and bias-exchange. We have demonstrated the advantages of metadynamics
to enhance and parallelize sampling effort with several systems, including alanine pentapeptide
(Figure 5). Finally, novel replica-exchange schemes are being investigated to increase efficiency
of the multi-replica metadynamics by optimizing exchange rates and patterns. Additionally, this
allows a larger number of collective variables to be used, enabling the efficient simulations of

more complex systems and phenomena.
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Figure 5. Free energy surface along two backbone dihedral angles (¢;, (,) of alanine
pentapeptide (Alas) obtained from (a) 40 ns and (b) 100 ns of 10-replica bias-exchange
metadynamics (BE-MTD) simulations, and, for comparison, from (c) 400 ns of an MD simulation

(adapted from R.B. Best, et al., J. Chem. Theory Comput., 2012, 8(9): 3257-3273).

3.7 Computational analysis of low-resolution structural data from XFEL and EM

We have been developing algorithms to construct atomistic models from low-resolution
structural data. Cryo-EM and newly emerging XFEL experiments provides new structural
information that are not available in traditional X-ray crystallography, since these experiments
can be performed without the crystallization of target systems. However, on the other hand,
the data from Cryo-EM and XFEL are at low-resolution without atomic details, and thus need to
be complimented by other information to construct atomic models. We have been
implementing the algorithms in GENESIS to perform flexible fitting of atomic structures into
such low-resolution data. Using generalized ensemble algorithms embedded in GENESIS, the

accuracy and efficiency of fittings can be enhanced.
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Figure 6. A result of flexible fitting using GENESIS. The original structure (left) is deformed using

molecular dynamics simulation to fit the low-resolution data.

4. Schedule and Future Plan

We have released the first version of GENESIS program as free software under GPL license v2.
We continue to develop the software for improving its performance in MD simulations and
adding new functions and molecular models. To show the performance and reliability of
GENESIS on K computer, we will perform simulations of large biomolecules like Ribosomes,

membrane proteins, and so on.

We have already implemented the efficient evaluations of non-bonded interactions and their
forces. Another time consuming part is non-bonded reciprocal interactions in particle mesh
ewald (PME) approximation. In PME, the reciprocal interaction is evaluated using FFT (Fast
Fourier Transform) computation, which usually show poor parallel scalability. We plan to

improve the performance of FFT on parallel computers.

Multi-scale and multi-resolution models are important to simulate large-scale conformational
changes of membrane proteins or protein complexes under cellular environment. In GENESIS,
we will introduce these models for efficient conformational sampling of large biomolecular
systems. We also plan to implement QM/MM hybrid simulations on GENESIS for simulating

enzyme reactions.
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