Programming Environment Research Team

1. Team members

Mitsuhisa Sato (Team Leader)

Hitoshi Murai (Research Scientist)

Miwako Tsuji (Research Scientist)
Masahiro Nakao (Postdoctoral Researcher)
Tomotake Nakamura (Research Associate)
Takenori Shimosaka (Research Associate)
Laurence Beaude (Research Trainee)
Swann Perarnau (Visiting Researcher, JSPS Research Fellow)
Masahiro Yasugi (Visiting Researcher)
Hitoshi Sakagami (Visiting Researcher)
Hiroaki Umeda (Visiting Researcher)

Horitz Helias (Visiting Researcher)

Susanne Kunkel (Visiting Researcher)

Tomoko Nakashima (Assistant (Concurrent))

2. Research Activities
The K computer system is a massively parallel system which has a huge number of processors
connected by the high-speed network. In order to exploit full potential computing power to
carry out advanced computational science, efficient parallel programming is required to
coordinate these processors to perform scientific computing. We conducts researches and
developments on parallel programming models and language to exploit full potentials of
large-scale parallelism in the K computer and increase productivity of parallel programming.

In 2013FY, in order to archive these objectives above, we carried out the following researches:

1) We continued the development of XcalableMP(XMP) programming languages. XcalableMP
is a directive-based language extension which allows users to develop parallel programs for
distributed memory systems easily and to tune the performance by having minimal and
simple notations. The specification has been designed by XcalableMP Specification Working
Group (XMP Spec WG) which consists of members from academia and research labs to
industries in Japan. We have been working with XMP Spec WG to improve the specification.
In this year, we studied the optimization of reflect communication, and one-sided
communication, and applications of climate applications using the XcalableMP. As an
extension to exascale computing, we are designing a new programming model and

developing its compiler for emerging accelerator clusters, by combining XcalableMP and

22

3)

4)

5)

6)

OpenACC. W have released the version 0.7.0 in November 2013, and deployed it to the K
computer. We submitted the results to SC13 HPCC class 2 competition, and awarded "HPCC
Class2 Award".

We have working for Japan-France project FP3C, "Framework and Programming for Post
Petascale Computing", from 2012, and have been developed the integrated programming
environment, called FP2C, of XcalableMP and YML which is developed by the French team.
In this year, we carried out performance evaluation of FP2C programming using the K
computer.

For large-scale parallel applications, we investigate a new parallel communication library to
support the communication between a set of multiple processes in Multiple processes
Multiple Data (MIMD)

For the research for performance tuning tools for large-scale scientific applications running
on the K computer, we are supporting the Scalasca performance turning and analysis tool
developed by JSC, Germany, on the K computer. We have deployed it on the K computer as
our AlCS-supported software.

Aiming to explore runtime technologies of post-petascale computing, we studied the
performance of work-stealing on the K computer for dynamic distributed load balancing. In
this year, we designed a new load balancing efficiency metric to evaluate the performance
of work-stealing.

We conducted several collaborations on the performance evaluation with JSC, University of

Tsukuba and other groups.

In addition to the research activities, we conduct promotion activities to disseminate our

software. To promote XcalableMP as a means for parallelization of programs, we made the

XcalableMP workshop, seminars or lectures as follows.

XcalableMP workshop (Nov. 1)
FOCUS seminar (July 16, Sep. 18, Dec. 18)

Earth Simulator user meeting (Oct. 17)

The seminar or lecture consists of both classroom and hands-on learning

3. Research Results and Achievements

3.1. Development of XcalableMP compiler

We are developing Omni XcalableMP that is an open-source XcalableMP compiler, in

cooperation with Tsukuba University, and released the version 0.7.0 in November 2013.

23

3.1.1 Optimization of Reflect communication in stencil computation
The key changes in this version are the improvements of stencil communications in
performance and conformance to the language specification, which is related with XMP’s
shadow and reflect directives [1]. First, three methods of data transfer in stencil communication
were implemented:
* Based on the MPI’s derived datatype: Array elements on distribution boundary are
transferred in a batch as a derived datatype. The performance depends on the
implementation of MPI, but it is an advantage that it can be applied in any environment.

* Based on parallel packing/unpacking: Data is packed to a buffer with multithreading
before communication and unpacked from a buffer. This can be effective in multicore
environments.

* Based on RDMA of the K compute: Using the extended interface of RDMA available on
the K computer, stencil communications can be implemented more efficiently than using
MPI. Each contiguous block of array elements is put to the corresponding location in the
stencil area on the neighbor node.

Users can select with an environment variables which method is to be used in their XcalableMP

program.

Secondly, functions of the reflect directives are fully implemented for XMP/Fortran. The
function includes:

* the width clause

* the periodic modifier

* theasyncclause

3.1.2 Evaluation of productivity and performance of XcalableMP: HPCC Class2

In order to evaluate productivity and performance of XcalableMP, we have implemented HPC
Challenge (HPCC) benchmarks. The HPCC benchmarks are a set of benchmarks to evaluate
multiple attributes of an HPC system. The HPCC benchmarks consist of RandomAccess, Fast
Fourier Transform (FFT), High Performance Linpack (HPL), and STREAM. We have implemented
them by using XcalableMP. In addition, we have implemented the Himeno Benchmark, which is
a typical stencil application. Table 1 shows the source lines of code (SLOC) of our
implementations. The SLOCs of XcalableMP are smaller than those of the reference

implementations by using MPI.

24

Table 1: Source lines of code of HPCC and HIMENO benchmarks.

HPL RandomAccess FFT+ STREAM HIMENO
XcalableMP 306 250 70 66 137
Reference 8,800 938 101 329 380
TOnly kernel implementation

All benchmarks were compiled by using the Omni XMP compiler 0.7.0-alpha. In order to
evaluate the performances of these benchmarks, we used all compute nodes at a maximum on
the K computer. For comparison, we also evaluated the some reference implementations. For
HPL, we compared our performance with the theoretical performance. Fig. 1 shows the
performance results. The performances of XcalableMP implementations are almost the same as

those of the reference implementations.

Through these implementations and performance evaluations, we have revealed that
XcalableMP has good productivity and performance. We have submitted the results to the SC13
HPC Challenge Benchmark Class2 Competition, and we have awarded the HPC Challenge Class 2

Award.

25

100
RandomAccess

0.1

Performance (GUPs)

0.01

1 4 16 64 256 1024 4096
Number of Nodes

16384

100

0.1

Performance (TFlops)

0.01

36 360 3600
Number of Nodes

36000

1000
1000

— 0 STREAM
(7] ~
Q m 100
1.% 100 = *\\Q
=
o S 10
§ 10 £
£ e
5 o 1
5 &
o
0.1 01
1 4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384

Number of Nodes Number of Nodes

1000

HIMENO

100

Performance (TFlops)
N 5

o
o

1 16 256 4096

65536
Number of Nodes

Fig 1. Performance results of HPCC benchmarks and HIMENO benchmark.

3.1.3 Evaluation of climate applications on the K computer
Exascale computing will enable us to predict a high-precision climate change by using very
high-resolution model. In this study, we have ported following existing climate applications to
the K computer and evaluated their performance.

* CGPOP Miniapp (CGPOP) : Mini application of global ocean modeling.

* NICAM : Global cloud resolving model.

* CICE:Seaice model.
In order to improve productivity, we have used coarray syntax provided by XcalableMP for the
porting. This study is a part of “G8 ESC - Enabling Climate Simulations at Extreme Scale,” project

with partners of US, France, Germany, Spain, and Canada.

The CGPOP needs a reduction operation by all compute nodes. We have implemented to use

26

hardware support of the reduction operation provided by the K computer. Next, the all
applications need a sleeve exchange operation. We have implemented the exchange operation
by using RDMA API provided by the K computer. This operation is supposed to use the coarray
syntax. Finally, we have added OpenMP directives in CGPOP to perform thread-parallelization.
Fig. 2 shows the performance results. We achieve 84% speed up in CGPOP, and 7% speed up in
NICAM, and 15% speed up in CICE. In addition, by using coarray syntax, the codes of them are

simpler than those of original ones.

CGPOP : 7500 nodes NICAM : 640 nodes CICE : 1024 nodes
) 5.88 84% speed up = glalc. = glther
. GlobalSum eeve comm. eeve comm.
5 M Sleeve comm. 79 speed up 15% speed up
— 4 . T P gma 2
§ 3.20 4 348 3.27 40 . 36.0
L 3
()] 3 30
£
= 2 20
1 1 10
0 0 0
Original Optimization Original Optimization Original Optimization

Fig 2. Performance results of Climate applications.

3.1.2 Extensions for Tightly Coupled Accelerators

We are designing a new programming model and developing its compiler for emerging
accelerator clusters. Specifically, out target is accelerator clusters that are capable of direct
communication between two accelerator devices on different nodes, called Tightly Coupled
Accelerators (TCA). TCA is a next-generation device for communication between accelerators. In
order to improve productivity of applications using TCA and accelerators, we have developed a

new programming model as an extension of XcalableMP.

Our basic idea is combining XcalableMP and OpenACC. OpenACC is a directive-based API for
offloading programs written in C, C++ and Fortran programs from a host CPU to an attached
accelerator device. In our approach, XcalableMP directives are used to specify
global-view-based parallel processing among nodes and OpenACC ones to control accelerator
devices. The function of direct communication between accelerators is also provided as an
extension to XcalableMP. This new programming model can significantly improve productivity in
writing programs for accelerator clusters. Fig. 3 shows an example of the proposed
programming model. Programmer only adds XcalableMP directives and OpenACC directives,

and programmer can develop applications using TCA and accelerators.

27

#pragma acc data copy(u) copyin(uu) | Transfer distributed arrays declared by
{ XcalableMP to memory on accelerators
for(k=0; k<MAX_ITER; k++){
#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
for(x=1; x<XSIZE-1; x++)
for(y=1; y<YSIZE-1; y++)
uu[x1ly]l = ulx1ly];

7 Parallelize a loop statement

#pragma xmp reflect_tca (uu) Synchronization of sleeve region of

/ an array by using TCA
#pragma xmp loop (y,x) on t(y,x)

#pragma acc parallel loop collapse(2)
for(x=1; x<XSIZE-1; x++)
for(y=1; y<YSIZE-1; y++)
ulx1Lyl = (uulx-11LyJ+uulx+1][yl+
uulxJLy-1]+uulx]Ily+11)/4.0;
} // end k
} // end data

Fig 3. Example of the proposed programming model for TCA.

We have evaluated its performance on HA-PACS/TCA cluster, which is the demonstration system
with TCA. As a result, the performance of the proposed programming model is almost the same
as that of the application that directly uses native APIs of TCA.

This research is supported by CREST, JST.

3.2 FP3C Project & FP2C Software

FP3C (Framework and Programming for Post Petascale Computing) project is a
French-Japanese collaborative research project involving INRIA, CNRS, CEA, and Maison de la
Simulation (in France) and University of Tsukuba, University of Tokyo, Institute of Technology of
Tokyo, the University of Kyoto and RIKEN AICS (in Japan). The project started on September
1st, 2010, and continued until March 31th, 2014. The aim of the project was to establish software
technologies, to propose languages and programming models to explore extreme performance

computing beyond petascale computing.

It is expected that post-petascale systems will be a huge, heterogeneous and highly hierarchical
architecture with nodes of general processing cores and accelerator cores. For the
programming models currently considered, for example the hybrid programming model of
MPI+OpenMP, it would be sometimes difficult to exploit such systems efficiently. It would be
essential to use multiple programming methodologies across multiple architectural levels.
Based on this new programming model, we have developed the FP2C (Framework for
Post-Petascale Computing) software to develop and execute applications on large, hierarchical

and heterogeneous systems.

28

a group of
a group of nodes:
groups: distributed
workflow parallel

accelerator,
general

<TASK 1>

<TASK 6> \ StarPU
XMP-dev

<TASK 7> %%% p. &;W

RIKEN

Fig 4. Overview of FP2C software.

Fig. 4 shows the overview of FP2C, which consists of workflow (supported by YML), distributed
parallel programming model (supported by XMP) and shared memory/GPPGU programming
model (supported by XMP-dev/StarPU). Within a group of tightly connected nodes, we adopt
distributed programming model, and within a node composed of processing/accelerator cores,
we adopt shared-memory/GPGPU programming model. These hybrid distributed parallel
programs are considered to be tasks of a workflow. Therefore, between the groups of node,
there is a workflow programing model, to manage and control these tasks. In order to develop
FP2C software to realize the hierarchical programming model, we combine many Japanese and

French techniques described above during this collaborative project.

One advantage of FP2C over the traditional workflow is that we can extend tasks by introducing
distribute parallel programming model into its tasks to speed-up the tasks and overall
application. Another advantage of FP2C over the traditional distributed parallel programming
model is that we can divide a large parallel program into several moderate sub-programs to
avoid the communication cost in the large program. Additionally, we can construct a
complicated program easily by combining existing parallel programs and parallel libraries (such

as Scalapack) based on the workflow paradigm.

We have performed experiments on the K-computer with Block-Gauss-Jordan problem in order
to investigate the different levels of hierarchical parallelisms. Therefore, in our experiments,
while the matrix size is fixed, the number of blocks is varied. Also, while the total number of
processors for a workflow application is fixed, the number of processers for each task is varied.
As shown in the Fig. 5, the best result has been obtained from the mixture of different

programming paradigms which realized based on our framework.

29

Block Gauss Jordan on K-computer. 32768x32768
Matrix is divided into 1x1, 2x2, 4x4, 8x8, 16x16 blocks

3000
2500
2000
1500
1000 L
500
——1x1 —2x2 4x4 —=—8x8 -m-16x16
of procs/task
0
8 16 64 256 512 1024 2048 4096

Fig 5. Performance of Block Gauss Jordan Method using FP2C on the K computer.

We have also implemented multiple implicitly restarted Arnoldi methods (MIRAM) with FP2C.
The MIRAM is an eigen-solvers investigated by another group of the FP3C project. The MIRAM,
which invokes two or more interacting restarted Arnoldi solvers, was particularly designed to be
suited for environments that combine different parallel programming paradigms, i.e. coarse and
fine grain parallelisms. Inside each solver, fine grain parallelism such as distributed parallel
model is realized by XMP or MPI. The solvers communicate each other based on coarse grain
parallelism realized by YML. The MIRAM for dense and sparse matrices are implemented with

YML, XMP, MPI, and external libraries such as Petsc, Slepc, and PARPACK.

residual MIRAM 3 independent IRAMs

1.E+00

1.-01 —m=24

1.E-02 —m=32

1.E-03 ny: m=40 Y

L, - .' A
1.E-04 w —tol " /7%
LE-
05 —m=24

1.E-06
1.E07 —m=32
1.E-08 m=40
1.E-09 —tol
1.E-10
1.E-11
1 101 201 301 401 501 1 101 201 301 401 501
iterations iterations

Fig 6. Performance of MIRAM using FP2C on the K computer.

30

Fig. 6 shows the experimental result of MIRAM for the sparse matrix called “Schenk/nlpkkt240”
(Rows x Colmns = 27,993,600 x 27,993,600, 760,648,352 non-zero elements) provided by UF
Sparse Matrix Collection. According to the evaluation on the K computer, 2 different kinds of
speedup based on 2 different parallel models have been observed:
* Speedup convergence by the interactions of multiple solvers based on the cause grain
parallelism

* Speedup each iteration based on the fine grain parallelism.

3.3 Communication Library between Multiple Sets of MPI Processes for MPMD model

An MPMD programming model is widely used as a master-worker program or a coupling
program for multiple physical models. Recent high-end parallel computers have more than
several thousand nodes. In order to utilize the parallel computers for an MPMD model, we
proposed the communication library MPMPI between different multiple sets of MPI processes

for the MPMD model.

We designed the basic MPMPI function MPMPI_Send and MPMPI_Recv. In order to effectively
develop the interface specification of MPMPI_Send/Recv, we referred to the concept of some
basic MPI functions. One of the features of the MPMPI functions is the exchange of distributed
data between sets of processes having different shapes or different distribution methods. We
also designed the MPMPI interfaces for the XcalableMP PGAS language. MPMPI_Send and
MPMPI_Recv have been currently implemented in C language and the MPI_Send/Recv functions.

They currently support one and two dimensional block distribution methods.

Fig. 7 shows the performances of the master-worker program with the Block Gauss Jordan
algorithm using our library. We programs are implemented in XcalableMP/C (XMP/C). An
experimental environment is the K computer system. Fig.7 shows the basic performance of
MPMPI_Send/Recv. We assume that a whole matrix is stored in multiple main memories. For
matrix products on each process of worker programs in the BGJ program, we utilized the thread
parallelized LAPACK and the BLAS library provided by the K computer system. The sizes (n x n)
of the input matrix A in the BGJ program are 16384 x 16384, 32768 x 32768 and 65536 x 65536.
They are distributed onto 32 x 32 nodes in the master program. The numbers of nodes that one

MPMPI communication uses are 2x2, 4x4, 8x8, 16x16 nodes.

31

Performance of BGJ (the node size 32x32 of A)

10000.0
<
% 1000.0
:
= 1000 _ mn=16384
g
: mn=32768
g 100 - -
% n=65536
[}
1.0 -

2x2 4x4 8x8 16x16
The node size invoking MPMPI_Send/Recv

Fig 7. Performance of the master-worker program with Block Gauss Jordan algorithm using

MPMPI

We found that the elapsed times of the master-worker program decrease as the numbers of
nodes that one MPMPI communication uses increases. The percentages of the MPMPI

communications are less than 10% for all cases.

3.4 Performance Study and Optimization of Distributed Load Balancing on the K computer

Distributing computations, in particular irregular ones, at such scale requires increasingly
complex and dynamic load balancing systems. Work stealing is a provably efficient scheduling
algorithm for such distributed, dynamic load balancing requirements. It is becoming increasingly
popular, both for shared memory systems (intra-node load balancing) and in distributed
settings (inter-node load balancing). We studied the performance of work-stealing on the K
Computer in regards to a previously overlooked issue in High Performance Computing settings:
the impact of large scale latencies. Using the publicly available, MPI-based implementation of
the Unbalanced Tree Search (UTS) benchmark, we evaluated the performance of work stealing

at the scale of several thousands compute nodes.

This implementation of UTS follows the general structure of any work stealing application.
When work is available, a process retrieves a node from its stack. This node’s data is then used
to compute its children, which are pushed into the stack. If no work is available, a victim process
is selected, and work is fetched from its stack. This process continues until all work is exhausted.
Such condition is detected by a token-ring distributed termination algorithm. Fig. 8 presents the
speedup of this same benchmark between 1024 and 8192 MPI Processes, for 3 process
allocations (1 rank per node, 8 ranks per node in round robin, 8 consecutive ranks per node).
This figure demonstrates that this UTS implementation does not scale past 2048 nodes.

Additionally, it appears that the benchmark performance is severely impacted by the way in

32

which processes are distributed among compute nodes. In particular, allocating successive

ranks to different compute nodes results in the worse performance observed.

1,536

1,024

Speedup

—e— Reference 1/N
—m— Reference 8RR
512 || _@— Reference 8G

1,024 2,048 4,096 8,192
Number of MPI Processes

Fig 8. Speedup of the reference MPI work stealing implementation in the K computer.

To explain those results, we designed a new load balancing efficiency metric. The role of a
dynamic load balancing scheme is to maximize the amount of processes having work at any
given time. Thus, if a problem is comprised of enough work items, the state of an application
should roughly be separated in three phases: the starting phase where work is distributed to all
processes, the finishing phase during which work becomes scarce and the number of active
processes decreases and the middle phase for which most processes are processing work. If
work generation is irregular, as with UTS, balancing is also needed during the middle phase, but
an efficient framework should be able to maintain a reasonable amount of processes busy. This
intuition drives the definition of our performance metric. If one was to trace the active and idle
phases of each process participating in the computation, it should be possible post-mortem to

determine the number of active processes at any time during execution of the application.

We define here active phases as periods of time during which a process’s stack contains work.
Thus, in the chosen UTS implementation, all the time where a process is generating new nodes
or handling MPI operations in between, (responding to steal requests for example) count as
active. Similarly, a process is inactive if it does not have work locally. It should be noted that
with such definition, most types of load balancing operations can be counted in either type of
phase. Assuming there exists a trace of all processes indicating the time of each transition from
one type of phase to the other, with the starting time of the application as t = 0, we now define

the following metrics.

First, let workers(t) be the number of processes in an active phase at time t. From this number

33

we derive the maximum number of workers at any given time during execution Wmax and an
occupancy ratio O(t) = workers(t)/N, N being the number of processes executing the application.
Second, let the starting latency be SL(x) = min(t,0(t)=x) /T, with T the total execution time of
the application. This measure computes, for a given occupancy ratio, the first time it was
exceeded during execution and represent it as a ratio of the total execution. Similarly, we define
the ending latency as EL(x) = (T -max(t,0(t)=x))/T . Intuitively, the starting latency gives us the
speed, relative to the total execution time of the application, at which a number of processes
becomes active. The ending latency reflects a similar idea: how far away in the execution the
framework is able to maintain a number of processes active. Fig. 9 shows the results of starting
and ending latencies for an execution of the reference implementation with 8192 MPI processes,

1 process per node in the K computer. Data is limited to latencies lower than 10%.

10

—e— Reference (1/N) SL
—m— Reference (1/N) EL

Latency (% of runtime)
e

0 2 4 6 8 10 12
Occupancy (%)

Fig 9. Starting and Ending latencies in the K computer.

On the K computer, latencies between nodes in the same blade are lower than inside the cube
or across racks. Furthermore, the number of compute nodes inside a rack (only 96) means that
an allocation of 8192 nodes can easily span across more than 80 racks, and in practice we

observed that a communication between two processes can go through more than 10 hops.

To reflect these variations in response times for a steal, we designed a random selection
strategy using a biased distribution. The idea is the following: while preserving the ability to
steal any process, weight the probability of one process stealing another by the distance
between those two. The farther a process is, the lower the probability of being chosen. As the
Fujitsu MPI implementation provide extensions to query the 6D coordinates in the Tofu network
of any MPI rank, we used the Euclidean distance between nodes to weight the probability. Fig.

10 shows the results improved by this approach, as indicated as "Tofu".

34

4,096
3,072 r
4
o
=
g 2,048
[
o))
n /
1,024 —8— Reference (1/N) »
—m— Reference Half (1/N)
—e— Tofu (1/N)
—#— Tofu Half (1/N)
1(3024 2,048 4,096 8,192

Number of MPI Processes

Fig 10. Speedup of the MPI work stealing implementations by using topology of Tofu network.

4. Schedule and Future Plan
One of important archivement of this year was that our XcalableMP submission was awarded

HPCC Class2 Awards to be given for high productivity and performance. To extend this
acheivement, the important action is to disseminate our XcalableMP to applications users.
Actually, in this year, we organized several schools and hands-on, workshop with potential users.
We will continue these promotion activities for the next year while we will study more
optimization technique of XcalableMP compiler to improve the performance. As a research
agenda especially for the K computer, we will contribute the scalability of large-scale

applications for the K computer.

For the performance turning tools, we have been supporting Scalasca for the K computer. The
next step will be to integrate with XcalableMP to make the performance tuning process easily.
We have already done this partially for C, and will extend it to real large applications written in
Fortran for more integrated programming environment for larege-scale parallel computing.
Through these case studies, we will extend it for valuable performance analysis in the K

computer.

The programming models for post-petascale will be investigated, including programming
models and runtime techniques to support dynamic load balancing in large-scale parallel
programs, and parallel programing supports for new communication devices, TCA, in advanced

GPU clusters.

35

5. Publication, Presentation and Deliverables

(1) Conference Papers

[1] Hitoshi Murai, Mitsuhisa Sato. "An Efficient Implementation of Stencil Communication for
the XcalableMP PGAS Parallel Programming Language", 7th International Conference on
PGAS Programming Models, Edinburgh UK, Oct. 2013.

[2] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, and Mitsuhisa Sato. “Productivity and
Performance of the HPC Challenge Benchmarks with the XcalableMP PGAS Language”, 7th
International Conference on PGAS Programming Models, Edinburgh UK, Oct. 2013.

[3] Serge Petiton, Mitsuhisa Sato, Nahid Emad, Christophe Calvin, Miwako Tsuji and Makarem
Dandouna, Multi-level programming Paradigm for Extreme Computing, Joint International
Conference on Supercomputing in Nuclear Applications + Monte Carlo,2013.10.27-31, Paris
France.

[4] Miwako Tsuji, Mitsuhisa Sato, Maxime Hugues and Serge Petiton, Multiple-SPMD
Programming Environment based on PGAS and Workflow toward Post-Petascale Computing,
Proceedings of the 2013 International Conference on Parallel Processing (ICPP-2013),
480--485,2013.10.01-04, Ecole Normale Superieure de Lyon Lyon France.

[5] Miwako Tsuji, Makarem Dandouna and Nahid Emad,Multi level parallelism of Multiple
implicitly/explicitly restarted Arnoldi methods for post-petascale computing,Proceedings of
the 8" IEEE International Conference on P2P Parallel Grid Cloud and Internet Computing
(3PGCIC-2013),158-165,2013.10.28-30,University of Technology of Compiegne Compiegne

France.

[not refereed, in Japanese]

[6] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Yuetsu Kodama,
Taisuke Boku, Mitsuhisa Sato, “Extension of XcalableMP for Tightly Coupled Accelerators”,
IPSJ SIG Technical Report, Mar. 2013 (in Japanese).

[7] Masahiro Nakao, Mitsuhisa Sato, “Implementation of NICAM by using PGAS model language
on the K computer”, Vol.2013-HPC-140, pp.1-5 Aug. 2013 (in Japanese).

[8] Masahiro Nakao, Mitsuhisa Sato, “Performance measurement of CGPOP Mini-application on
the K computer”, IPSJ SIG Technical Report, May 2013 (in Japanese).

[9] T. Shimosaka, M. Sato, T. Boku, W. Tang. Evaluation of the nuclear fusion simulation code

GTC-P on the K computer. IPSJ SIG Technical Report, May. 2013 (in Japanese).
(2) Invited Talks

[10] Mitsuhisa Sato, Issues for Exascale Accelerated Computing - system architecture and

programming, 7th Int'l. Conf. on PGAS Programming Models.

36

(3) Posters and Presentations

[11] Masahiro Nakao, Hitoshi Murai Takenori Shimosaka Mitsuhisa Sato. “XcalableMP for
Productivity and Performance in HPC Challenge Award Competition Class 2", SC13 The 2013
HPC Challenge Awards BoF, Denver, Colorado, USA, Nov., 2013.

[12] Masahiro Nakao, “Performance and productivity of XcalableMP”, 5" cross-disciplinary
symposium of computational science - development, assimilation, and construction of new
knowledge”, Nov. 2013 (in Japanese).

[13] Nahid Emad, Leroy Drummond, Miwako Tsuji and Makarem Dandouna, Tuning
Asynchronous Co-Methods for Large-scale Eigenvalue Calculations 16th SIAM Conference on
Parallel Processing for Scientific Computing, 2014.02.18--21, Portland Marriott Downtown
Waterfront Portland OR USA, 2014.

[14] T. Shimosaka, H. Murai and M. Sato, A communication library between multiple sets of MPI
processes for a MPMD model, pp. 147-148(poster), EuroMPI2013, 2013.

[15] Swann Perarnau, Mitsuhisa Sato, Weighted Distribution for Random Victim Selection in
Distributed Work Stealing, HPC in Asia Workshop, International Supercomputing Conference

(ISC), Leipzig Germany, June 2013.

(4) Patents and Deliverables

[16] Omni XcalableMP compiler ver. o.7for the K computer (registered as AlCS-supported
software)

[17] Scalasca performance analysis tool for the K computer (registered as AICS-supported

software)

37

	aics_annualreport_fy2013 23
	aics_annualreport_fy2013 24
	aics_annualreport_fy2013 25
	aics_annualreport_fy2013 26
	aics_annualreport_fy2013 27
	aics_annualreport_fy2013 28
	aics_annualreport_fy2013 29
	aics_annualreport_fy2013 30
	aics_annualreport_fy2013 31
	aics_annualreport_fy2013 32
	aics_annualreport_fy2013 33
	aics_annualreport_fy2013 34
	aics_annualreport_fy2013 35
	aics_annualreport_fy2013 36
	aics_annualreport_fy2013 37
	aics_annualreport_fy2013 38

