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2. Research Activities

The system software team focuses on the research and development of an advanced system
software stack not only for the "K" computer but also for towards exascale computing. There
are several issues in carrying out future computing. Two research categories are taken into
account: i) scalable high performance libraries/middleware, such as file 1/0 and low-latency
communication, and ii) a scalable cache-aware, power-aware, and fault-aware operating system

for next-generation supercomputers based on many core architectures.

Parallel file I/O is one of the scalability issues in modern supercomputers. One of the reasons is
due to heavy metadata accesses. If all processes create and write different files, the metadata
server receives so many requests by all processes not only at the creation time but also at
writing data to each file. Three approaches have been conducted to mitigate this issue. One
approach is to introduce a file composition technique that gathers multiple data generated by
an application and stores these data into one or a few files in order to reduce the number of
files accessed by processes. Another approach is to provide multiple metadata server in which
the requests for metadata are sent to a metadata server resolved using hash function. The third
approach is to provide a smart MPI-IO implementation for applications using MPI-IO functions.

Increasing number of cores and nodes enforces strong scaling on parallel applications. Because
the ratio of communication time against local computation time increases, a facility of
low-latency and true overlapping communication and computation communication is desired. A
communication library, integrated to the MPI library implementation in K computer, has been
designed and implemented, that utilizes DMA engines of K computer. Each compute node of K
computer has four DMA engines to transfer data to other nodes. If a communication library
knows communication patterns in advanced, it may utilize the DMA engines. Indeed, the feature

of MPI persistent communication allows the runtime library to optimize data transfers involved



in the persistent communication using the DMA engines.

System software stack developed by our team is designed not only for special dedicated
supercomputers, but also for commodity-based cluster systems used in research laboratories.
The system will be expected to be used as a research vehicle for developing an exascale

supercomputer system.

3. Research Results and Achievements

3.1. PRDMA (Persistent Remote Direct Memory Access)

The goal of this research is to design and evaluate an efficient MPI implementation for
neighborhood communication by taking advantage of the Tofu interconnect, which has multiple
RDMA (Remote Direct Memory Access) engines and network links per MPI process. The
neighbor communication pattern is commonly used in the ghost (or halo) cell exchanges. For
example, the SCALE-LES3 includes the multiple stencil computations for weather and climate
models. So, the neighborhood communication is a dominant communication pattern within the
SCALE-LES3. Specifically, it is the two dimensional 8-neighbors ghost cell exchanges with
periodic boundary conditions. Also, it occupies about ten percent of the execution time.
Nowadays, supercomputers using three-or-higher dimensional torus have been deployed, such
as the Blue Gene / Q and the K computer. For instance, the Torus Fusion (called Tofu)
interconnect employed by the K computer has 6 dimensional torus and mesh as a physical
topology and its node controller has 4 RDMA engines and 10 network links. These networks are
possible to improve the neighborhood communication performance when MPI ranks are
properly mapped on the network topology and the transfer requests are properly scheduled on
the multiple RDMA engines. Unfortunately, the transfer-scheduling algorithm in the default MPI
implementation provided on the K computer uses a simple round-robin method to distribute the
transfer requests among the multiple RDMA engines. For neighborhood communication on the
Tofu interconnect, there are major two scheduling issues; (1) load imbalance and (2) network
resource contentions. In the former case, the loads between RDMA engines may be imbalance if
the transfer requests are distributed to RDMA engines in round-robin fashion. In the latter case,
the network link is congested if a network link is shared by some outgoing messages at the
same time. Also, Contention of the RDMA engine in the receiver side occurs if some incoming
messages try to request the same RDMA engine of the receiver side at the same time. Especially,
the sender must specify the receiver-side RDMA engine explicitly in the RDMA transfer request
of the Tofu interconnect. However, it is not clear how to distribute the receiver-side RDMA

engines among senders.



Proposed Scheduling Algorithm

One of the straightforward ways to solve these scheduling issues is to model as a
two-dimensional strip-packing problem. For simplicity and speed, we selected the Bottom-Left
heuristic algorithm to solve this packing problem. The Bottom-Left algorithm sorts the input
RDMA commands (transfer requests), and packs them at the open bottom-most and left-most
position in the scheduling table, such as (a), (b), and (c) in Figure 1. In addition, we added a
constraint to avoid the network resource contentions into the basic Bottom-Left algorithm. This
constraint assures that two or more RDMA commands using a same network link are not
scheduled at the same time. So, in the Figure 1 (d), a rectangle indicates an RDMA command,
and the rectangles with the same color indicates that these commands use the same network
link. The command #4 is scheduled on the RDMA engine #2 because the contention happens if it

is scheduled on the RDMA engine #3.
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Figure 1. Scheduling by proposed Modified Bottom-Left algorithm.

Implementation and Evaluation
The proposed scheduler has been implemented and integrated into the persistent
communication primitives in Open MPI on the K computer. This implementation is called

PRDMA (Persistent Remote Direct Memory Access).

We measured three implementations in ghost cell exchange of SCALE-LES3: Original PC,
Round-Robin, and Modified Bottom-Left. The first two implementations were measured to
compare to proposed Modified Bottom-Left implementation. The first one, called Original PC, is

the default Open MPI based implementation provided on the K computer. And the second one,



called Round-Robin, is the same as Modified Bottom-Left except the scheduler uses a simple
Round-Robin algorithm similar to Original PC. In Figure 2, the horizontal axis shows the
aggregate transfer size in a ghost cell exchange corresponding to the grid size in SCALE-LES3.
The vertical left axis shows the elapsed communication time for the forty one thousands
exchanges, and vertical right axis shows the percentage change against the first two
implementations. The Round-Robin is 20 to 70 % better than Original PC in communication time.
The Modified Bottom-Left is up to 32 % better than Round-Robin and about 50 % better than
Original PC.
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Figure 2. Evaluation of Three Scheduler implementations in Ghost Exchange.

3.2. New Process [ Thread Model

Partitioned Virtual Address Space

From FY2012, we have been developing a new process [ thread model that is suitable for the
many-core architectures. The many-core architectures are gathering attention towards next
generation supercomputing. Many-core architectures have a large number of low performance
cores, and then the number of parallel processes within a single node becomes larger on
many-core environments. Therefore the performance of inter-process communication between
the parallel processes within the same node can be an important issue for parallel applications.
Partitioned Virtual Address Space (PVAS) is a new process model to achieve high-performance
inter-process communication on the many-core environments. On PVAS, multiple processes run
in the same virtual address space as described in Figure 3 to eliminate the communication
overhead due to the process boundaries that the current modern OSes introduce for

inter-process protection. In PVAS, the data owned by the other process can be accessed by the



normal load and store machine instructions, just like the same way accessing the data owned by

itself. Then, high-performance inter-process communication is achieved.

We implemented the prototype of the PVAS process model in the Linux kernel in FY2012. We

improved its quality and published it as open source software in FY 2013.
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Figure 3. Semantics view of the conventional process model and PVAS.

User-level Process

Process oversubscription, which invokes a larger number of parallel processes within a
computing node than the number of available CPU cores, results in better load-balance and
latency hiding, and then it may improve the performance of multi-process programs. In this case,
parallel processes within a computing node must be scheduled by the OS kernel. However,
lightweight OS kernels that are developed for exascale systems may no longer support task
scheduling, because it is one of the most resource consuming and noisy operation. In this
situation, only one parallel process per CPU core is allowed, and then process oversubscription
is impossible. To solve this problem, we developed user-level process. User-level process is a
“process” that can be scheduled in user-space, then multiple user-level processes per CPU core
can be allowed without help of OS task scheduler as described in Figure 4. Multi-process
programs running on the lightweight OS kernels for exascale systems will be able to do process
oversubscription by binding one parallel process to one user- level process even if those OS

kernel does not support task scheduling.
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Figure 4. Semantic view of the User-level Process.

The use of userlevel process also provides favorable side effects to the process
oversubscription. When doing process oversubscription, the performance of context switch
between parallel processes affects the overall performance of the program, because so much
number of parallel processes may be invoked within a computing node. The context switch
between user-level processes is faster than the context switch between traditional processes,
because it is operated in user-space. As shown in Figure 5, the preliminary evaluation results
show that the context switch between user-level processes is approximately 2.6 times faster

than the context switch between traditional processes in the best case.
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Figure 5. Elapsed time for operating 1000 times context switches.
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3.3. Scalable MPI-10 Using Multithreaded Scheme

A commonly used MPI-IO library named ROMIO has the two-phase I/O (TP-I0) scheme to
improve collective 1/O for non-contiguous accesses. This research is addressing to have a
multithreaded scheme in the TP-10 in order to achieve higher performance than the original one

in collective I1/O for non-contiguous accesses.

In the FY2013, ROMIO in the MPICH2 library was arranged to have multithreaded operations
using Pthreads. Figure 6 shows multithreaded the TP-IO operation scheme in parallel with its

original scheme.
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(b) Multithreaded TP-10 scheme

Figure 6. Original and multithreaded TP-10 in collective write operations.

Here “H.C.” and “Exch.” stand for hole check and data exchange phases, respectively, while
“Read” and “Write” denote file read and write operations, respectively. Since every phase is
processed independently in terms of access regions (described such as (1), (2) under each phase
name), we can overlap read and write phases with hole check and data exchange phases as

shown in Figure 6(b) using multithreaded way.

Figure 7 shows a functional diagram of the multithreaded implementation. Every MPI process
invokes an 1/O thread which plays file 1/O using the pthread_create function. In processing 1/O
requests from user’s MPI programs, 1/O requests generated on every main thread are enqueued
in the read queue in the hole check phase, followed by read operations on an 1/O thread by
dequeueing 1/O requests from the read queue, and so on. Finally in the write phase, 1/O requests
are enqueued into the hole queue, then it will initiates the next hole check phase and so on.

These operations are repeated until all the target regions are accessed. With the help of the
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multithreaded way, ideally we can achieve at most twice the original TP-IO throughput. For
further performance improvements, the multithreaded scheme introduced multiple request
slots in queues. The number of slots can be managed by a key-value pair in an MPI_Info object

using the MPI_Info_set function as well as the size of collective buffer size.
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Figure 7. Functional diagram of multithreaded TP-10.

Performance evaluation was carried out on a PC cluster system at the University of Tokyo,
which is named as T2K. We used 64 PC nodes, which have 4 AMD Opteron 2.3GHz processors
with 32 GiB memory using Linux kernel 2.6.18. Interconnections between PC nodes are
Myrinet10G for MPI communications and the Lustre file system and Gigabit Ethernet for control.
I/O operations were carried out on its Lustre filesystem version 1.8.9, which has 30 OSTs in total.
In this evaluation, all the OSTs were utilized. We used HPIO benchmark, which supports unique
derived data type generations required for non-contiguous 1/O. ROMIO in MPICH2 version
1.4.1p1 with our multithreaded extension was evaluated. Figure 8 shows normalized write

throughput relative to the original TP-10 with 64, 128, and 256 MPI processes.
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Figure 8. Normalized write throughput of multithreaded TP-10 relative to the original one.

In every case, data block was configured with 256B data blank in each 488B data region, and

absolutely 1 GiB data by multiple data blocks were generated at every MPI process. File system
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cache was disabled by remounting Lustre file system prior to every MPI-IO operation run. We
also changed the number of slots in queues as 2, 4, and 8, which are indicated as ior-2, ior-4, and
ior-8, respectively in this figure. Horizontal axis of this figure stands for the number of TP-10
cycles, thus lower value means the larger collective buffer, while the larger value corresponds
to smaller collective buffer size. Through this evaluation the multithreaded TP-10 achieved up to
60% improvements relative to the original one. Higher number of slots in queues led to higher
performance gain, however it utilized larger memory resources. However, we can minimize
utilized memory resources using this multithreaded scheme because this evaluation shows
higher gains when we had around from 64 to 128 TP-1O cycles. It is also noticed that smaller
number of TP-10 cycles led to smaller performance gain or performance degradation. This was
due to imperfect overlap due to larger collective buffer size. Thus the multithreaded scheme
was not effective in such case. However, such case needs larger memory resources, so the
multithreaded scheme can have higher throughput gains without increasing memory utilization

for collective buffer.

3.4. Big data processing on the K computer

This research is conducted by collaboration between the Data Acquisition team of RIKEN
Spring-8 Center and the System Software Research team of RIKEN AICS. The goal of this project
is to establish the path to discover the 3D structure of a molecule from a number of XFEL (X-ray
Free Electron Laser) snapshots. The K computer is used to analyze the huge data transmitted
from RIKEN Harima where SACLA XFEL facility is located. Figure 9 and Figure 10 show an outline
indicating how a molecule 3D structure can be reproduced from images obtained by XFEL. Each
image size is around 20 Mbytes, but may vary depending on the resolution of image sensor. The
number of images required to develop a 3D structure of a molecule can be millions, resulting 20
PBytes of data size in total. Further, each image is classified into thousands of images to have

every possible snapshot orientations and to reduce the quantum noise.
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Single-particle coherent diffraction imaging (CDI)
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* Even when XFEL is used, diffraction is very weak because sample is just a single biomolecule.

Figure 9. How SACLA XFEL works.
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Figure 10. Obtaining electron density map from XFEL snapshots.

The developed software consists of two parts. One is to select representative images and

another is to classify images using selected representative images as shown in. The classification
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is conducted by several FFT operations on each image to have correlation. The order of the
number of this FFT operation to select thousands classification images is O(M?), followed by the
classification of the rest of the images of O(N*M) FFT operations, where M is the number of
classification and N is the number of images. SACLA XFEL is going to produce 30 images in a
second and the time to take one million images takes approximately 9 hours. There can be the
cases where the snapshots are not well enough quality to analyze. In this case, the experiment
must be stopped and tuned to obtain good quality images. Thus the image analysis must be
done as soon as possible. This heavy computation, one million images should be analyzed as
soon as possible, requires the power of the K computer. The Data Acquisition team at SCALA
has been developing a classification algorithm, while the System Software Research team at

AICS has been in charge of parallelization, performance tuning, and 1/O.

SACLA XFEL
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\
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N images .
images

Millions of images
sent from the
SACLA XFEL facility

(2) Classification of
images

v After this, quantum noise
is reduced and final
electron density of a
molecule is derived.

Figure 11. Block diagram of the procedure running on the K computer.

In FY2013, we optimized classification software developed in FY2012. In order to realize effective
parallelization, our software keeps load balance between processes and reduces file input time

by minimizing total size of the input from storage.

Figure 12 shows the workflow for classification of images. The software reads the image file only
once and read images are passed to neighbors in background at every calculation step. The
orange squares in Figure 12 are images which read from storage, and the greens are passed
from neighbor process. The calculation is finished at N, step, where N, is number of processes.
In addition, the software can utilize rank directory of K computer to reduce read time and
increase the scalability (as shown in Figure 13). By using the software, classification for one

million images can be finished in an hour on K computer.
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Figure 12. Calculation workflow for classification of images.
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Figure 13. Read time of one image on the K computer.

3.5. File Composition Library

I/O system resources such as Meta-Data Server (MDS), Object Storage Server (OSS) and Object
STorage (OST) are shared across the processes of a single parallel job. As HPC systems become
large, the amount of 1/O requests to each 1/O system resource becomes larger, and load of them
becomes heavier. The heavy loads on /O system resources cause 1/O performance degradation,
and application performance degradation. It is one of the scalability issues of leadership-class
high performance computing systems. We targeted the case that each process of the parallel
job creates its own file and writes the file. Many parallel applications adopt this 1/O pattern.
Figure 14 shows the 1/O performance of the K computer over the number of client processes,

varying the striping counts and striping sizes (for example, “C1_S16m” indicates the striping

18



count is set to one and striping size is set to 16MiB). As in this figure, the bandwidth tends to

decrease when the number of client processes increases. Thus, the idea of proposed “File

Coordination Library” is to limit the number of client processes accessing a parallel file server

simultaneously.
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Figure 14. Write Performance over the number of client threads.

Figure 15 shows the I/O performance of the K computer with the proposed file coordination

library (right graph) and without it (left graph). As shown in this figure, the average

performance with the file coordination technique exhibits about 20% better.

The average is 20 % faster.
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Figure 15. Write throughput of FClib.
4. Schedule and Future Plan
® Communication Library
PRDMA (Persistent Remote Direct Memory Access) will be enhanced with a sophisticated

data transfer scheduling algorithm, and it will be evaluated. MPICH3, an MPI
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implementation for the MPI-3 standard, will be continued to be ported to the K computer.
® Filel/O
The classification software, developed in FY2013, processes huge image files generated by
SACLA XFEL. It will be open to the users of SACLA. Based on the experience on the design
of the classification software, general file I/O functions for other classification applications
will be designed. The scalable MPI-IO will be adapted to the FEFS file system used in the K
computer.
® New process/thread Model
A new process/thread model, PVAS and its user-level thread, has been designed and
implemented in FY2013. In FY2014, an MPI runtime environment on PVAS will be

implemented and evaluated.
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Ishikawa), In Proceedings of the 20th European MPI Users' Group Meeting, ACM, 2013.

[14] Partially Separated Page Tables for Efficient Operating System Assisted Hierarchical
Memory Management on Heterogeneous Architectures (Balazs Gerofi, Akio Shimada,

Atsushi Hori, Yutaka Ishikawa), In CCGRID, 2013.

(3) Patents and Deliverables

Open Source Software Packages (http://www.sys.aics.riken.jp/releasedsoftwaref/index.html)
[15] PRDMA (for the K computer)

[16] File Composition Library (for the K computer)

[17] GDB for McKernel

[18] PVAS, M-PVAS and Agent (for the x85 and Xeon Phi CPUs)
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