
8

System Software Research Team
1. Team members

Yutaka Ishikawa (Team Leader)

Atsushi Hori (Senior Scientist)

Yuichi Tsujita (Research Scientist)

Keiji Yamamoto (Postdoctoral Researcher)

Kazumi Yoshinaga (Postdoctoral Researcher)

Akio Shimada (Research Associate)

Masayuki Hatanaka (Research Associate)

Norio Yamaguchi (Research Associate)

Toyohisa Kameyama (Technical Staff)

2. Research Activities

The system software team focuses on the research and development of an advanced system software

stack not only for the "K" computer but also for towards exascale computing. There are several

issues in carrying out future computing. Two research categories are taken into account: i) scalable

high performance libraries/middleware, such as file I/O and low-latency communication, and ii) a

scalable cache-aware, and fault-aware operating system for next-generation supercomputers based

on many core architectures.

3. Research Results and Achievements

3.1. PRDMA (Persistent Remote Direct Memory Access)

The goal of this research is to design and evaluate an efficient MPI implementation for

neighborhood communication by taking advantage of the Tofu interconnect, which has multiple

RDMA (Remote Direct Memory Access) engines and network links per MPI process. The neighbor

communication pattern is commonly used in the ghost (or halo) cell exchanges. For example, the

SCALE-LES3, weather and climate models developed at RIKEN AICS, includes the multiple stencil

computations. So, the neighborhood communication is a dominant communication pattern within the

SCALE-LES3. Specifically, it is the two dimensional 8-neighbors ghost cell exchanges with periodic

boundary conditions, which occupies about ten percent of the execution time. Nowadays,

supercomputers using three-or-higher dimensional torus have been deployed, such as the Blue Gene

/ Q and the K computer. For instance, the Torus Fusion (called Tofu) interconnect employed by the

K computer has 6 dimensional torus and mesh as a physical topology and its node controller has 4

RDMA engines and 10 network links. These networks are possible to improve the neighborhood

communication performance when MPI ranks are properly mapped on the network topology and the

transfer requests are properly scheduled on the multiple RDMA engines. Unfortunately, the

RIKEN AICS ANNUAL REPORT FY2014

9

transfer-scheduling algorithm in the default MPI implementation provided on the K computer uses a

simple round-robin method to distribute the transfer requests among the multiple RDMA engines.

Therefore, our previous work has developed an RDMA-transfer scheduling algorithm, called

Modified-Bottom-Left, to avoid the congestions on physical network links and the conflicts of

receiver-side RDMA engines. In the latest MPI specification version 3.0 (hereafter referred to as

“MPI-3.0”), neighborhood collective primitives were introduced. For example, the

MPI_Neighbor_alltoallw primitive is a neighborhood collective version of MPI_Alltoallw. These

primitives communicate with the user-defined processes instead of all participants on the

communicator. Also, non-blocking collective primitives such as MPI_Ineighbor_alltoallw primitive

are introduced in MPI-3.0. To support MPI-3.0 on K computer, we are porting MPICH-3.1, which is

one of the major MPI implementations. Since the default neighborhood collective implementation in

MPICH-3.1 is a generic implementation, we develop the optimized implementation of neighborhood

collective on Tofu interconnect using our RDMA-transfer scheduler.

Proposal of RDMA-based collective communication, Cached-Multi-W

If all point-to-point user-data transfers defined in a neighborhood collective communication are

replaced by RDMA Write (or RDMA Read) transfers as a whole, the RDMA-based transfers can

progress the non-blocking collective communication without CPU intervention, and reduce extra

copy overheads and memory consumption for data transfers due to the Zero-Copy feature. Therefore,

an RDMA-based approach, called Cached-Multi-W, is proposed to further reuse a cached series of

RDMA descriptors. In this approach (see Figure 1), once a neighborhood collective communication

function such as MPI_Neighbor_alltoallw() is called, the arguments and a series of RDMA (Write)

descriptors corresponding to the collective communication pattern are cached as a reusable entry.

And then if the subsequent collective calls match the arguments with a cached entry, the calls reuse a

cached series of RDMA descriptors, instead of generating and scheduling the RDMA descriptors.

Part I: Research Division

10

Figure 1 Cached-Multi-W (Cached Multiple RDMA Writes) approach

Implementation and Evaluation

The proposed Cached-Multi-W approach has been implemented for MPI_Neighbor_alltoallw() in

MPICH-3.1 on K computer. This implementation uses a generator and scheduler of RDMA

descriptors developed in PRDMA (Persistent Remote Direct Memory Access).

We measured two MPI_Neighbor_alltoallw implementations in a ghost cell exchange: (1) MPICH

default implementation, and (2) the proposed Cached-Multi-W implementation. The

communication pattern is a ghost cell exchange for two dimensional 9-point stencil computation, the

cell size is 800 bytes (MPI_DOUBLE � 100), the ghost width is 2, and the cell shapes per process

are 8x8, 16x16, and 32x32. In Figure 2-1 and Figure 2-2, the horizontal axis shows each call of

MPI_Neighbor_alltoall(). The vertical axis shows the elapsed time for a call. The proposed

Cached-Multi-W implementation is up to 77 % better than the MPICH original rendezvous

implementation.

��������	
����
���������
��������������	����

��������	
����
���������
��������������	����

���������
����

������������������ �������!���"����#$�
%����������������
��	&���
�

�����'�	����������
��	&���
�

��'
	���
�������
��	&���
�

���'!���������	���

���������������(�����

�����

���

)�����
�

*'���������'!���
�
+�

�������
��	&���
�

*	�
�������

RIKEN AICS ANNUAL REPORT FY2014

11

Figure 2 MPICH default implementation Figure 3 Cached-Multi-W implementation

3.2. New Process / Thread Model

Partitioned Virtual Address Space

From FY2012, we have been developing a new process / thread model that is suitable for the

many-core architectures. The many-core architectures are gathering attention towards the next

generation supercomputing. Many-core architectures have a large number of low performance cores,

and then the number of parallel processes within a single node becomes larger on many-core

environments. Therefore the performance of inter-process communication between the parallel

processes within the same node can be an important issue for parallel applications.

Partitioned Virtual Address Space (PVAS) is a new process model to achieve high-performance

inter-process communication on the many-core environments. On PVAS, multiple processes run in

the same virtual address space as described in Figure 4 to eliminate the communication overhead due

to the process boundaries that the current modern OSes introduce for inter-process protection. In

PVAS, the data owned by the other process can be accessed by the normal load and store machine

instructions, just like the same way accessing the data owned by itself. Then, high-performance

inter-process communication is achieved.

We implemented the prototype of the PVAS process model in the Linux kernel in FY2012. We

improved its quality and published it as open source software in FY 2013.

��

����

����

����

����

����

�� �� �� �� �� �� 	�
�

��
��

��
�	

�
�
�	

�
��
�

����	�����

����
�
� ����������� ����������

��

����

����

����

����

����

�� �� �� �� �� �� 	�
�

��
��

��
�	

�
�
�	

�
��
�

����	�����

����
�
� ���������� ����������

Part I: Research Division

12

Figure 4 Partitioned Virtual Address Space

In FY2014, we evaluated the PVAS model by implementing a new BTL (a low-level communication

layer of OpenMPI) to utilize the advantage of PVAS. In this implementation, the rendezvous

protocol is optimized so that only one memory copy operation takes place. Contrastingly, in the

current implementation of intra-node communication of OpenMPI, two memory copies must be

involved to transfer a message. Figure 5 show the NPB performance comparison of the conventional

sm BTL (BTL for shared memory) and our optimized PVAS BTL using the rendezvous protocol.

The advantage of PVAS is not only to reduce the number of memory copies, but also to reduce the

memory for page tables to map physical memory. In an all-to-all communication, for example, all

processes in a node communicate with each other. This results in to map memory regions in O(N2)

and to have O(N2) page table entries. Figure 6 shows the comparison of all-to-all memory

consumption between sm BTL and PVAS BTL. As shown in this graph, conventional sm BTLs

consumes memory O(N2), however, PVAS BTL consumes memory in O(N).

Figure 5 NPB Performance between sm BTL and PVAS BTL (Xeon Phi)

,�-�

,
-�

,�-�

,-�

-�

�-�

-�

�%� �%� *�� ��� ��� �	�
��

��

�
��
��
��
��
��
��
��
��

�.
��
��
��
��
��

��/
��

���������������
��

���
����� ����
	!���
���

�����

RIKEN AICS ANNUAL REPORT FY2014

13

Figure 6 Alltoall Memory Consumption Comparison between sm BTLs and PVAS BTL

 (Xeon Phi)

3.3. Fault Resilience

With the increasing fault rate on high-end supercomputers, the topic of fault tolerance has been

gathering attention. To cope with this situation, various fault-tolerance techniques are under

investigation; these include user-level, algorithm-based fault-tolerance techniques and parallel

execution environments that enable jobs to continue following node failure. Even with these

techniques, some programs that have static load balancing, such as stencil computation, may

underperform after a failure recovery. Even when spare nodes are present, they are not always

substituted for failed nodes in an effective way.

There are some questions of how spare nodes should be allocated, how to substitute them for faulty

nodes, and how much the communication performance is affected by such a substitution. The third

question stems from the modification of the rank mapping by node substitutions, which can incur

additional message collisions. In a stencil computation, rank mapping is done in a straightforward

way on a Cartesian network without incurring any message collisions. However, once a substitution

has occurred, the node-rank mapping may be destroyed. Therefore, these questions must be

answered in a way that minimizes the degradation of communication performance.

��0�1�2"3�"�

#�

"#�

3#�

$#�

4#�

%##�

%"#�

%3#�

$#� %"#� %4#� "3#�

��
��
���

��
��
��

��
��
�	

�

���

�
��
��
�

������������������������

���
���

���
����������

�����
���

������������	����������
����

���������
��

Part I: Research Division

14

Figure 7 Message collisions by substituting a failed node (5P-stencil)

In FY2014, several spare-node allocation and node-substitution methods were studied, analyzed, and

compared in terms of communication performance following the substitution. Three node

substitution methods, 0D sliding, 1D sliding and 2D sliding are proposed (Figure 8).

Figure 8 Proposed Three Failed Node Substitution Methods

It was revealed that when a failure occurs, the point-to-point (P2P) communication performance on

the K computer can be slowed by a factor of three (Figure 9). On BG/Q, P2P performance can be

slowed by a factor of five (Figure 10).

Spare Nodes

No Collisions

S

F

4 Possible Collisions

5
P

os
si

bl
e

C
ol

lis
io

ns

232

3

2

2

Migration

RIKEN AICS ANNUAL REPORT FY2014

15

Figure 9 P2P Performance Degradation by Using Spare Node(s) – the K computer

Figure 10 P2P Performance Degradation by Using Spare Node(s) - JUQUEEN (BG/Q)

3.3. Scalable MPI-IO Using Affinity-Aware Aggregation

A commonly used MPI-IO library named ROMIO has the two-phase I/O (TP-IO) scheme to improve

collective I/O performance for non-contiguous accesses. This research is addressing to optimize

TP-IO implementation for further I/O performance improvements than the original one.

In the FY2014, ROMIO in the MPI library on the K computer has been arranged to have (1)

affinity-aware data aggregation scheme and (2) I/O throttling approach.

Firstly, we focused to optimize data aggregation scheme. Figure 11 shows I/O flow of TP-IO in the

original and optimized ROMIO implementation on the K computer.

KKK

KKK

KKK
25

6K
iB

1M
iB

4M
iB --

0

1

2

3

4

R
el

at
iv

e
La

te
nc

y
KKK

KKK

KKK

25
6K

iB
1M

iB
4M

iB --

KKK

KKK
KKK

25
6K

iB
1M

iB
4M

iB --

KKK

KKK

KKK

25
6K

iB
1M

iB
4M

iB --

KKKKKKKKK

25
6K

iB
1M

iB
4M

iB --

K

K
K

KKKKKK

25
6K

iB
1M

iB
4M

iB --

0

1

2

3

4

R
el

at
iv

e
La

te
nc

y

1F 2F 1F 2F 1F 2F
0D 1D 2D

K
KK

KKK

K
KK

2
5

6
K

iB
1

M
iB

4
M

iB --

0

1

2

3

4

5

6

R
e

la
tiv

e
 L

a
te

n
cy K

KK

KKK

K
KK

2
5

6
K

iB
1

M
iB

4
M

iB --

K
KK

KKK

K
KK

2
5

6
K

iB
1

M
iB

4
M

iB --

K
KK

KKK

K
KK

2
5

6
K

iB
1

M
iB

4
M

iB --

K
KK

KKK

KK
K

2
5

6
K

iB
1

M
iB

4
M

iB --
K
K
K

KKK

KK
K

2
5

6
K

iB
1

M
iB

4
M

iB --
0

1

2

3

4

5

6

R
e

la
tiv

e
 L

a
te

n
cy

1F 2F 1F 2F 1F 2F
0D 1D 2D

Part I: Research Division

16

(a) Original data aggregation scheme

(b) Optimized data aggregation scheme

Figure 11 Original and optimized data aggregations in collective write operations

This figure depicts data flow from three MPI processes with the same number of aggregator

processes. Figure 11 (a) illustrates TP-IO data flow done in the original implementation on the K

computer. In this case, data stream from aggregators are going to each Object Storage Target (OST)

of the FEFS file system. As a result, network contention occurs in such data transfer pattern. While

in Figure 11 (b) that we adopted based on the similar optimization done for a Lustre file system,

each aggregator collects data from every MPI process in order to form striped data layout. Therefore

every aggregator just writes collected data to the target OST only, and network contention can be

alleviated.

Furthermore, we have focused to have aggregator process layout which suits to the Tofu

interconnect configuration of the K computer. Figure 12 shows examples of aggregator process

layout and data transfer with striping-oriented aggregation only and with both striping-oriented

aggregation and affinity-aware aggregator assignment.

RIKEN AICS ANNUAL REPORT FY2014

17

(a) Striping-oriented only (default)

(b) Both striping-oriented & affinity-aware aggregator layout

Figure 12 Aggregator layout and data flow in TP-IO with 2x3x4 process layout

In this figure, data transfers in the first and second rounds of striping accesses on an FEFS file

system are illustrated as a simple example. Numbers in circles stand for MPI rank. Since aggregator

layout of the former case is based on MPI rank ascending order from zero, network contention or

unbalanced network utilization may happen if the aggregator layout does not suit to FEFS’s striping

layout. On the other hand, the latter case adopts new aggregation layout whose order is independent

of user’s process layout. The new scheme implemented in a ROMIO library layer checks a 6-D

position information, and arranges new groups consisting of MPI processes which are on the same

Tofu z-axis. The new scheme finally deploys aggregator task to each MPI process in a round-robin

manner crossing Tofu z-axis in order to form FEFS striping layout-aware aggregator layout as

shown in Figure 12 (b). As a result, we can eliminate network contention or unbalanced network

utilization remarked in Figure 12 (a).

Secondly, I/O throttling was adopted in the above optimized TP-IO implementation. According to

previous study about POSIX-I/O on the FEFS file system done in our team, I/O throttling approach

succeeded to improve I/O performance. Along with this approach, we implemented a function to

control the number of I/O requests generated from computing nodes to a target OST of an FEFS file

system in the ROMIO library. Here the I/O request generation is aligned to data access layout on

each OST not to have unnecessary file seek operations. Since TP-IO carries out data exchange

Part I: Research Division

18

phases between file read and write phases in a read-modify-write manner, we also implemented

step-by-step data exchanges aligned to the I/O throttling scheme for further improvements. Thus

MPI process that generates an I/O request can go to the next data exchange phase not to have a long

waiting time for a forthcoming data exchange phase.

Performance evaluation was carried out using computing nodes ranged from 192 to 3,072 nodes. I/O

performance evaluation was done by using the HPIO benchmark with non-contiguous access

patterns on a local file system of the FEFS on the K computer. The number of nodes was arranged

not to have any interference from other users’ applications. In the K computer case, we specified the

number of nodes in a 3-D manner node allocation, where we chose the following five patterns;

2x3x32, 4x3x32, 8x3x32, 8x6x32, and 8x12x32. We deployed one MPI process per one computing

node, thus the number of MPI processes was the same with that of used computing nodes. Figure 13

shows I/O throughput values relative to the number of MPI processes.

Figure 13 I/O throughput of Collective write

In this evaluation, we examined 4 and 8 for the number of I/O requests in the I/O throttling scheme

indicated by “nblk_wr_4” and “nblk_wr_8”, respectively in addition to the original implementation

indicated by “original.” The I/O throttling scheme with affinity-aware aggregation (“nblk_wr_4” and

“nblk_wr_8”) outperformed the original one and performed higher scalability. We have already

observed that the number of I/O requests with 4 or 8 performed the best, but we have not realized

why the numbers were the best at this moment. Examinations of properties of the I/O throttling

scheme is our future work.

3.4. Big data processing on the K computer

This research is conducted by collaboration between the Data Acquisition team of RIKEN Spring-8

Center and the System Software Research team of RIKEN AICS. The goal of this project is to

establish the path to discover the 3D structure of a molecule from a number of XFEL (X-ray Free

Electron Laser) snapshots. The K computer is used to analyze the huge data transmitted from

RIKEN Harima where SACLA XFEL facility is located.

RIKEN AICS ANNUAL REPORT FY2014

19

In FY2012-2013, we developed parallel software running on the K computer to analyze images

obtained by a light source, SACLA. The developed software consists of two components as shown

in Figure 14. The first component is to select the representative images by a classic clustering

computation. Thus, all images must be compared with all others. The second component is to

classify the rest of images into the representative images. In this stage, we need to calculate for all

possible combinations of representative images and rest of images.

Figure 14 Block diagram of the procedure running on the K computer

In order to realize effective parallelization, the developed software keeps load balance between

processes and reduces file input time by minimizing total size of the input from storage. Figure 15

shows the workflow for classification of images. The software reads the image file only once and

read images are passed to neighbors in background at every calculation step. The orange squares in

Figure 15 are images which are read from storage, and the greens are transferred from the neighbor

process. The calculation is finished at Np step, where Np is number of processes.

 &'����� � �������	 � �������
 ��������� �

� � 	 �
 � � �
 � � � � � � � � � �� � �� ��	 ��
 ��� ��
 � �� ��� ��� ��� �	� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

�������	 � �������
 ��������� ��������� �

� � 	 �
 � � �
 � � � � � � � � � �� � �� ��	 ��
 ��� ��
 � �� ��� ��� ��� �	� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

Initial State Step 1

Part I: Research Division

20

Figure 15 Calculation workflow for classification of images

In FY2014, based on the developed software, we designed a new framework, named pCarp, that

describes any possible combination of two records in a dataset processed by all participating

processes. This parallel processing is used not only our target application, but also used to analyze

gene sequencing data, images obtained by electron microscopes, and so on. The framework users do

not need to write any parallel program, but write just sequential program. All parallelizing tasks are

performed by pCarp.

Figure 16 Decoupling Architecture of pCarp

Figure 17 Code skeletons of the input and output processes

Figure 16 shows the decoupled architecture of the image analyzing software for XFEL using pCarp.

Each MPI process (pCarp process) creates two sub-processes by using the POSIX popen I/O

�������� � �������	 � �������
 ��������� �

� � 	 �
 � � �
 � � � � � � � � � �� � �� ��	 ��
 ��� ��
 � �� ��� ��� ��� �	� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

� �
�� �
��� �

�� �
� �
�� �

� �
�� �
��� �

� �� �
���� �
�� �

�������� � �������	 � �������
 ��������� �

� � 	 �
 � � �
 � � � � � � � � � �� � �� ��	 ��
 ��� ��
 � �� ��� ��� ��� �	� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

� �
�� �
��� �

�� �
� �
�� �

� �� �
���� �
�� �

� �
�� �
��� �

� �
�� �
��� �

�� �
� �
�� �

� �
�� �
��� �

� �� �
���� �
�� �

� �
�� �
��� �

�� �
� �
�� �

� �
�� �
��� �

� �� �
���� �
�� �

Step 2 Last Step (Step Np, Np is # of procs)

RIKEN AICS ANNUAL REPORT FY2014

21

function, one to read a file and the other to process two data records and output its result to a file.

Figure 17 shows the code skeletons of the input and output processes in Figure 16, the function

having bold face names are the function provided by the pCarp framework. The input sub-process

reads a file and passes read records to the parent pCarp process. In the pCarp process, records are

preserved in memory and sent to its neighbor process as shown in Figure 15. The output sub-process

reads two records from parent pCarp process and then computes those records. Finally its result is

output. This procedure is repeated until the all data of the desired all-to-all computation is done. In

those input and output programs, there is no need of calling the complex MPI functions at all.

In the evaluation of current prototype of pCarp, the execution time is much larger than the original

program depending on the data size. The most of the additional time of pCarp comes from the pipe

transmission. Improving this data transmission performance is our future work.

3.5. File Composition Library

We have been developing a user-level file I/O library, called file composition library, to reduce the

heavy load on both the metadata and object storage servers of a parallel file system. The file

composition library is assumed to use the SPMD (Single Program Multiple Data) execution model.

In other words, it is assumed that all processes access each own file and issue the same I/O

operations. The heavy load in the metadata is caused by issuing file open/create/close operations by

a large number of processes. The file composition library gathers all files created by a job and make

them a single file so that the metadata accesses are reduced. To mitigate the heavy load in the object

storage, the file composition library limits the number of processes accessing a parallel file server

simultaneously. In FY 2014, based on the experiences of developing the file composition library, a

new file I/O library, called ftar (Fragmented tar), was designed. Unlike the file composition library,

ftar uses the tar format. An ftar file keeps the tar format, but each file may be stored in fragments.

Figure 18 shows an example of ftar file in which two files, f1 and f2, are stored in fragments.

Figure 18 An Example of Ftar format

4. Schedule and Future Plan

� Communication Library

Cached-Multi-W implementation on MPI_Neighbor_alltoallw primitive will be enhanced and

Part I: Research Division

22

evaluated. This approach will also be applied to MPICH one-sided implementation using

MPI_Put and MPI_Win_fence primitives.

� New Process / Thread Model

Integratation the proposed task model with the McKernel which is under development by AICS

System Software Development team is planned. Also, we are doing a collaborative research

with ANL on the User-level process which was developed in last FY2013 to enhance the

performance of irregular applications.

� Fault Resilience

Based on the investigation in FY2014, we will start developing a framework to allow user

applications to be fault-resilient easily.

� File I/O

pCarp will be enhanced and distributed as open source. As mentioned in section 3.4. , the most

of overhead of pCarp comes from data transmission using pipe. In order to reduce this overhead,

we will try to implement pCarp with shared memory.

The scalable MPI-IO will be adapted to the FEFS file system used in the K computer. Although

the scalable MPI-IO implementation manages data exchanges in the two-phase I/O optimization

using MPI_Isend and MPI_Irecv among MPI processes, we will try to apply MPI_Alltoallv for

data exchanges as an alternative implementation for further performance improvement. I/O

throttling scheme will be also examined in the collective data exchanges.

Ftar will be developed and distributed as open source.

5. Publication, Presentation and Deliverables

(1) Journal Papers

1. �� ��, � �	,
� �
������������������ �!�"

MPI#�$%&'()*
+,-./0123, +,-./0, volume 56, 2015.

(2) Conference Papers

1. Yuichi Tsujita, Atsushi Hori, Yutaka Ishikawa: “Locality-Aware Process Mapping for High

Performance Collective MPI-IO on FEFS with Tofu Interconnect,” In Proceedings of the

21th European MPI User’s Group Meeting, Workshop on Challenges in Data-Centric

Computing, ACM, 2014.

2. Yuichi Tsujita, Atsushi Hori, Yutaka Ishikawa: "Affinity-Aware Optimization of

Multithreaded Two-Phase I/O for High Throughput Collective I/O," In Proceedings of

International Conference on High Performance Computing & Simulation, HPCS 2014,

IEEE, 2014.

3. Yuichi Tsujita, Kazumi Yoshinaga, Atsushi Hori, Mikiko Sato, Mitaro Namiki, Yutaka

RIKEN AICS ANNUAL REPORT FY2014

23

Ishikawa: "Multithreaded Two-Phase I/O: Improving Collective MPI-IO Performance on a

Lustre File System," 22nd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, PDP 2014, 2014.

4. Yuichi Tsujita, Kazumi Yoshinaga, Atsushi Hori, Mikiko Sato, Mitaro Namiki, Yutaka

Ishikawa: "Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O with

Processor Affinity Management," PPAM 2013 Revised Selected Papers, Lecture Notes in

Computer Science, Vol. 8384, Springer, pp. 714-723, 2014.

5. Balazs Gerofi, Akio Shimada, Atsushi Hori, Takagi Masamichi, Yutaka Ishikawa: "CMCP:

A Novel Page Replacement Policy for System Level Hierarchical Memory Management on

Many-cores," In Proceedings of the 23rd International Symposium on High-performance

Parallel and Distributed Computing, ACM, 2014.

6. Mikiko Sato, Go Fukazawa, Akio Shimada, Atsushi Hori, Yutaka Ishikawa, Mitaro Namiki,

“Design of Multiple PVAS on InfiniBand Cluster System Consisting of Many-core and

Multi-core,” In Proceedings of the 21st European MPI Users' Group Meeting, ACM, 2014.

7. Atsushi Hori, Kazumi Yoshinaga, Atsushi Tokuhisa, Yasumasa Joti, Kensuke Okada,

Takashi Sugimoto, Mitsuhiro Yamaga, Takaki Hatsui, Makina Yabashi, Yuji Sugita,

Yutaka Ishikawa, Nobuhiro Go, “Decoupling Architecture for All-to-all Computation,” In

Proceedings of the 21st European MPI Users' Group Meeting, ACM, 2014.

8. 4567, ��	,
��, 8Tofu�9:�MPI-3.0;<=>&'()*?@A, +

,-./0, BCDEFGD 7(5), 2014.

9. HI JK, LM N&, 45 67, � �	,
� �, HPC O:LPQ&'ERS

ET(UV?@A
+,-./0, 2014-HPC-145, No. 15, 2014.

10. �� ��, � �	,
� �, ������������MPI#�$%&'(LW

XY, +,-./0, 2014-OS-130, No. 18, 2014.

11. Z[\],^H_`,��	,
��,a�b�c��d(efgW)h�O:"ij

#�$kl���&'WX(@A, +,-./0, 2014-HPC-144, No.16, 2014.

12. Z[\],^H_`,4567,��	,
��, ij#�$mnop���efgW)

h�O:"&'WX(@A?qr, +,-./0, 2014-HPC-145, No.6, 2014.

13. Z[\],^H_`,��	,
��,st#�$umn�"fgv()7wxop(

qr?@A, +,-./0, 2014-HPC-147, No.21, 2014.

14. 4567, ��	,
��, 8 Tofu �9:�;<=>&'(y&'z!Y, +,-

./0, 2015-HPC-148(35), 2015.

15. {�| }\
�| �	,|
�| �
FEFS �9:��~ER�GD-.u���"

=>� MPI-IO()*
+,-./0
2014-HPC-145
No. 35, 2014.

16. {�| }\
�| �	

�| �,| =>� MPI-IO(L�Y�O:" I/OT�a�

~�7��(z!Y
+,-./0,2014-HPC-146
No. 17, 2014.

Part I: Research Division

24

17. User-level Process towards Exascale Systems (Akio Shimada, Atsushi Hori, Yutaka

Ishikawa, Pavan Balaji), In +,-./0��,�. V�����������0,

�, \��>p�+,-./0, volume 2014, 2014.

18. ������E���9:���S�(WX������ (� �	, ^H _`,

�M]��,
� �), +,-./0��,�. HPC ��0,�, \��>p�+

,-./0, volume 2014, 2014.

(3) Invited Talks

(4) Posters and presentations

1. Akio Shimada, Atsushi Hori, Yutaka Ishikawa, “Eliminating Costs for Crossing Process

Boundary from MPI Intra-node Communication,” In Proceedings of the 21st European MPI

Users' Group Meeting, ACM, 2014.

(5) Patents and Deliverables

Open Source Software Packages (http://www.sys.aics.riken.jp/releasedsoftware/index.html)

1. PRDMA (for the K computer)

2. GDB for McKernel

3. PVAS, M-PVAS and Agent (for the x86 and Xeon Phi CPUs)

4. sCarp and pCarp (for the K computer, FX10s and Linux clusters)

RIKEN AICS ANNUAL REPORT FY2014

	aics_annualreport_fy2014 9
	aics_annualreport_fy2014 10
	aics_annualreport_fy2014 11
	aics_annualreport_fy2014 12
	aics_annualreport_fy2014 13
	aics_annualreport_fy2014 14
	aics_annualreport_fy2014 15
	aics_annualreport_fy2014 16
	aics_annualreport_fy2014 17
	aics_annualreport_fy2014 18
	aics_annualreport_fy2014 19
	aics_annualreport_fy2014 20
	aics_annualreport_fy2014 21
	aics_annualreport_fy2014 22
	aics_annualreport_fy2014 23
	aics_annualreport_fy2014 24
	aics_annualreport_fy2014 25

