生きた心臓を京に再現 UT-Heart

http://www.sml.k.u-tokyo.ac.jp/

本研究は、日本学術振興会の最先端研究開発支援プログラムにより、助成を受けたものである

20世紀における心臓(循環器)シミュレーション-

Guyton Ann Rev Physiol 1972

疾病の原因・治療の対象はミクロ

小川編 内科学書 中山書店より改変 3

原因遺伝子が分かったら

- 症状のメカニズムを解明 → 効果的な診断・治療
- 例: ADA (Adenosine deaminase)欠損

生体の中で分子の動きを見る

1. 見えないものを見る 原子の動き、ブラックホールの中......

2. 不可能な実験を行う 巨大建造物、気候変動......

限りなく本物に近い臓器モデルをコンピュータ内に作る

in silico 心臓の作り方

CT images

3D reconstruction

有限要素法

slow motion 14

-1 ō

テーラーメード心**臓**シミュレータ 健常例

応用分野

In silico 診断&治療によるテーラーメード医療 例:外科手術

3. 創薬

例:薬剤の副作用(催不整脈性)評価

世界の動向

no

no

no

全心臓モデル

(心室のみ)

マルチスケール no

Bi-domain+torso no

血流

冠動脈

USA Johns Hopkins Univ. UCSD

UT-Heartは世界をリード

euHeart:

- 1.-要素(細胞)=数十~百の細胞の集合
- 2. 多数の機能分子(チャンネルetc)の平均的な挙動
- 3. 細胞内の微細構造は再現されていない

ところが

分子、細胞内微細構造の変化と疾患 との関連が次々に明らかにされている

Dalakas et al. New Engl J Med 2000

各細胞を精密にモデル化すると

Target: 肥大型心筋症

原因不明の心肥大

al 606 Me

Arg 249 Gln

80(歳)

Watkins H et al. New Engl J Med 1992

40

Arg 453 Cv:

Arg 403 GIn

60

Copyright © 2005 by Elsevier Inc.

Braunwald's Heart Disease 7th ed. Elsevier Saunders

遺伝子の連鎖解析がミオシンの変異を病因と同定

その後他のサルコメアタンパクの異常も報告されている。

Katz AM Physiology of the Heart

A.D.A.M Interactive physiology

メカニズム解明への実験的アプローチ(ミオシンの例)

病気の原因ミオシンはモータータンパク(分子機械) しかし その本体は

熱揺らぎの中で確率的に進行する生化学反応
隣の分子と協調的に動く
→ ミオシンのモデル化に重要

京を活用したマルチスケール解析手法

京の中に再現された心臓

UT-heart

Arm stretch Distribution

One of 2K Sarcomere Samples

In silico transgenic 肥大型心筋症ヒトモデルの作成

肥大型心筋症の病態の再現

1. 弛緩 (relaxation)のスピードの低下

肥大化による機能代償

細胞集合体形状のリモデリング

京はベンチとベッドサイドを結び研究を加速する

さらなるスケールの拡張へ

崔小可 高橋彰仁 鷲岡近 岡 波 浩 志 久田 俊明*

医学部附属病院 循環器内科

山下尋史 保田壮一郎 假谷太郎 今井靖 永井良三**

(株)富士通九州システムズ・

松永浩之

* 研究代表者 ** 自治医科大学