det-QMC 00000000 SSE-QMC

An Introduction to Quantum Monte Carlo for Strongly Correlated Electrons

Y.Otsuka

Computational Materials Science Research Team

AICS Cafe (24/02/2012)

Y. Otsuka (RIKEN/AICS)

QMC for strongly correlated electrons

AICS Cafe 1 / 38

Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	00000000000000	O
Outline			

Background

- target
- model
- methods

Ø determinant QMC (det-QMC)

- formulation
- Example: 2d Hubbard model
- **3** Stochastic Series Expansion (SSE-QMC)
 - formulation
 - Example: 1d extended Hubbard model coupled to lattice

4 Summary

Background ●0000000000		det-QMC 000000000	SSE-QMC 00000000000000	Summary O
		1 · · · ·		

cond	ancad	matter	n	NICICC
COLIU	EIISEU		U	1123163

size (cm)	target	mechanics	category
10-33	the early stages of the Big Bang	rela	cosmology (gr-qc)
10 ⁻¹⁶ 10 ⁻¹³	weak interaction atomic nucleus	quantu	particle physics nuclear physics
10 ⁻⁸	atom	Э	
10 ⁻⁷	molecule	sta	cond-mat
10 ⁻⁴	DNA	atis	
10 ⁰	apple	tica	biophysics
10 ²	human	class	
10 ⁹	earth		actrophysics
10 ¹⁵	solar system	rela	astrophysics
10 ²⁸	universe	ativity	cosmology

det-QMC

SSE-QMC

strongly-correlated electron systems

basic science:

- quantum many-body systems
- coupled degrees of freedom

 charge, spin, orbital, lattice
- variety: phase transitions "More is different."
 P. W. Anderson (1967)

applied physics:

• High-Tc superconductivity

magnetism

- ferroelectricity
- multiferroic
- material design / phase control

challenging

Background
000000000000000000000000000000000000000

det-QMC 000000000 SSE-QMC

High-Tc fever in 1986

Background	det-QMC	SSE-QMC	Summary
○○○○○●○○○○○	ooooooooo	00000000000000	O
electrons in lattice	: band insulator		

n = Ne/N = 2

Insulating state due to periodic potential

Insulating state due to Coulomb interactions

Backgro	ooooo	det-QMC 00000000	SSE-QMC 00000000000000	Summary O
can	onical model:	Hubbard model		
	$\mathcal{H} = \mathcal{H}_{t} + \mathcal{H}_{t}$ $\mathcal{H}_{t} = -t \sum_{\sigma=\uparrow,\downarrow < i,j>} \mathcal{H}_{U} = U \sum_{i} n_{i\uparrow} n_{i\downarrow}$	$\begin{array}{l} \mathcal{L}_{\mathbf{U}} \\ \begin{pmatrix} c_{i\sigma}^{\dagger}c_{j\sigma} + c_{j\sigma}^{\dagger}c_{i\sigma} \end{pmatrix} \\ \sim \text{ kinetic energy} \\ \stackrel{(\downarrow)}{\sim} \\ \sim \text{ Coulomb repulsion} \end{array}$		
	• "quantum" $\mathcal{H}_{\mathrm{t}}\mathcal{H}_{\mathrm{U}}$ • "many-body" $n_{i\uparrow}n_{i\downarrow}$	$ eq \mathcal{H}_{\mathrm{U}}\mathcal{H}_{\mathrm{t}} eq n_{i\uparrow}\langle n_{i\downarrow} angle$	parameters: U/t, n, T/	t

numerical	methods for strongly	correlated electrons	
0000000000000	00000000	000000000000000	
Background	det-QMC	SSE-QMC	Summary

- Exact Diagonalization (ED)
 - + "exact"
 - only for small cluster (N \sim 40)
- Density Matrix Renormalization Group (DMRG)
 - + large system ($N \sim 1000$)
 - only for 1D
- Quantum Monte Carlo (QMC)
 - + large system (N \sim 1000)
 - + d > 1
 - negative sign problem

 $\mathsf{QMC} = \mathsf{quantum-classical\ mapping} + \mathsf{importance\ sampling}$

classical:
$$\langle A \rangle = \frac{1}{Z} \sum_{n} A_{n} e^{-\beta E_{n}}$$

quantum: $\langle A \rangle = \frac{1}{Z} \sum_{\alpha} \langle \alpha | \hat{A} e^{-\beta \hat{H}} | \alpha$

- Q: How to integrate out without diagonalization?
- A: map to (d + 1) dim. classical system

"importance sampling"

$$\langle A \rangle = rac{1}{Z} \sum_{\{c\}} A(\{c\}) W(\{c\})$$

 $Z = \sum_{\{c\}} W(\{c\})$

- configuration: $\{c\} \sim 2^N$
- general method for high dimensional integrals

world-line QMC (WL-QMC)

- path-integral w/ checkerboard decomposition
- electrons: only for 1d
- spins: without frustration
- 2 Stochastic Series Expansion (SSE-QMC)
 - based on high-temperature series expansion
 - similar to WL-QMC
- **3** determinant QMC (det-QMC)
 - path-integral w/ Hubbard-Stratonovitch transformation
 - d >1

determinant QMC

- procedure:
 - Suzuki-Trotter decomposion
 - Hubbard-Stratonovich transformation $\rightarrow \{s_{il}\}$: auxiliary field
 - Integrating out fermions
 - MC sampling for $\{s_{il}\}$
- example:
 - some results for 2d Hubbard model

Suzuki-Trotte	or decomposition		
0000000000	00000000		
Background	det-QMC	SSE-QMC	Summary

$$Z = \operatorname{Tr} e^{-\beta \mathcal{H}}$$

= Tr $e^{-L\Delta \tau (\mathcal{H}_t + \mathcal{H}_U)}$
 $\simeq \operatorname{Tr} \prod_{l=1}^{L} e^{-\Delta \tau \mathcal{H}_t} e^{-\Delta \tau \mathcal{H}_U}$
 $(\beta = L\Delta \tau)$

- quantum-to-classical mapping
- *d*-dim. quantum system = (*d* + 1)-dim. classical system

discrete Hub	bard-Stratonovich	transformation	
Background	det-QMC	SSE-QMC	Summary
0000000000	oo●oooooo	00000000000000	O

$$e^{-\Delta \tau U(n_{i\uparrow} - \frac{1}{2})(n_{i\downarrow} - \frac{1}{2})} = \frac{1}{2} e^{-\Delta \tau U/4} \sum_{s_{il} = \pm 1} e^{-\lambda s_{li}(n_{i\uparrow} - n_{i\downarrow})}$$
$$\{s_{li}\}: \text{ auxiliary field}$$
$$\Rightarrow Z = \operatorname{Tr}_{\{s_{li}\}} \operatorname{Tr}_F \prod_{l=1}^{L} D_{\uparrow l} D_{\downarrow l}$$

 $\operatorname{Tr}_{\{s_{ll}\}}$: trace over Ising spins (2^{NL})

 Tr_{F} : trace over <u>free</u> fermions

QMC for strongly correlated electrons

Background	det-QMC	SSE-QMC	Summary
	00000000		
Trace out form	nione		

$$\operatorname{Tr}_{F} \prod_{l=1}^{L} D_{\uparrow l} D_{\downarrow l} = \det \mathcal{O}_{\uparrow} \det \mathcal{O}_{\downarrow}$$
$$\mathcal{O}_{\sigma} = \begin{pmatrix} I & 0 & \cdots & 0 & B_{\sigma 1} \\ -B_{\sigma 2} & I & 0 & \cdots & 0 \\ 0 & -B_{\sigma 3} & I & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & -B_{\sigma L} & I \end{pmatrix}$$
$$B_{\sigma I} = e^{-K} e^{-V_{\sigma I}} \quad : N \times N \text{ matrix}$$

 $det \mathcal{O}_{\sigma} = det M_{\sigma}$ $M_{\sigma} = I + B_{\sigma L} B_{\sigma L-1} \cdots B_{\sigma 1}$ $\Rightarrow Z = \operatorname{Tr}_{\{s_{i_i}\}} det M_{\uparrow} det M_{\downarrow}$

nhysical obser	wahles: Green's fi	unction	
0000000000	00000000	00000000000000	
Background	det-QMC	SSE-QMC	Summarv

$$\begin{array}{lll} \langle \langle c_{i\sigma} c_{j\sigma}^{\dagger} \rangle \rangle & = & \displaystyle \frac{1}{Z} \mathrm{Tr} \left(c_{i\sigma} c_{j\sigma}^{\dagger} e^{-\beta \mathcal{H}} \right) \\ & = & \displaystyle \frac{\mathrm{Tr}_{\{\boldsymbol{s}_{ll}\}} \langle c_{i\sigma} c_{j\sigma}^{\dagger} \rangle \det M_{\uparrow} \det M_{\downarrow}}{\mathrm{Tr}_{\{\boldsymbol{s}_{ll}\}} \det M_{\uparrow} \det M_{\downarrow}} \end{array}$$

$$\langle c_{i\sigma}c_{j\sigma}^{\dagger}
angle = rac{\operatorname{Tr}_{\textit{F}}c_{i\sigma}c_{j\sigma}^{\dagger}\prod_{l=1}^{L}D_{\sigma l}}{\operatorname{Tr}_{\textit{F}}\prod_{l=1}^{L}D_{\sigma l}} = (M_{\sigma}^{-1})_{ij}$$

MC sampling for configuration of Ising spins:

$$\langle\langle c_{i\sigma}c_{j\sigma}^{\dagger}
angle
angle=\lim_{N_{
m MC}
ightarrow\infty}rac{1}{N_{
m MC}}\sum_{
m MC}\langle c_{i\sigma}c_{j\sigma}^{\dagger}
angle$$

with weight $W[\{s_{li}\}] = \det M_{\uparrow} \det M_{\downarrow}$

Background
000000000000

det-QMC 00000●000 SSE-QMC

negative sign problem

- In general,
 W is <u>not</u> positive definite.
- some exceptions:
 - w/ p-h symmetry & bipartite lattice
- exponentially hard (?)
- Murphy's Law (?)

$$= \frac{\sum_{\{s_{li}\}} \langle A \rangle W[\{s_{li}\}]}{\sum_{\{s_{li}\}} W[\{s_{li}\}]}$$

$$= \frac{\sum_{\{s_{li}\}} \langle A \rangle \frac{W[\{s_{li}\}]}{|W[\{s_{li}\}]|} |W[\{s_{li}\}]|}{\sum_{\{s_{li}\}} \frac{W[\{s_{li}\}]}{|W[\{s_{li}\}]|} |W[\{s_{li}\}]|}$$

$$= \frac{\sum_{\{s_{li}\}} \langle A \rangle \langle \operatorname{sgn} W[\{s_{li}\}] \rangle |W[\{s_{li}\}]|}{\sum_{\{s_{li}\}} \langle \operatorname{sgn} W[\{s_{li}\}] \rangle |W[\{s_{li}\}]|}$$

$$= \frac{\langle \langle A \rangle \langle \operatorname{sgn} W[\{s_{li}\}] \rangle \rangle_{MC}}{\langle \langle \operatorname{sgn} W[\{s_{li}\}] \rangle \rangle_{MC}}$$

$$\langle \operatorname{sgn} W[\{s_{li}\}] \rangle = \frac{W[\{s_{li}\}]}{|W[\{s_{li}\}]|}$$

 $\langle \langle A \rangle \rangle$

YO, Y. Morita, Y. Hatsugai, PRB, 1998; J. Phys. Cond. Matt, 2000.

Y. Otsuka (RIKEN/AICS)

QMC for strongly correlated electrons

AICS Cafe 20 / 38

Background 0000000000 det-QMC ○○○○○○●○

Hubbard model with staggered flux

Y. Otsuka (RIKEN/AICS)

QMC for strongly correlated electrons

AICS Cafe 21 / 38

Background 0000000000	det-QMC ○○○○○○○●	SSE-QMC 00000000000000	Summary 0
charge fluctuation	ns in <i>k</i> -space		
	$\kappa(\boldsymbol{k}) = \frac{dn(\boldsymbol{k})}{d\mu}\Big _{\mu=0}$		
U/t=0		U/t=4	

N=16x16, \sim 100 MCS/1hour

 k_x

YO, Y. Morita, Y. Hatsugai, Phys. Rev. B (2002).

 k_x

Ĕ

 $-\pi$

エ

 $-\pi$

հ

π

0.0

π

Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	•0000000000000	O
organization			

Stochastic Series Expansion

- procedure:
 - high-temperature series-expansion
 - truncation at fixed $L \rightarrow \{S_L\}$: operator string
 - graphical representation
 - MC sampling for $\{S_L\}$
- example:
 - 1d extended Hubbard model coupled to lattice

Heisenberg mo	del		
Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	○●○○○○○○○○○○○	O

$$H = J \sum_{\langle i,j \rangle} \left\{ \Delta S_i^z S_j^z + \left(S_i^x S_j^x + S_j^y S_j^y \right) \right\}$$
$$= J \sum_{\langle i,j \rangle} \left\{ \Delta S_i^z S_j^z + \frac{1}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) \right\}$$

 $\mathsf{base:} \ |\alpha\rangle = |\sigma_1 \sigma_2 \sigma_3 \cdots \sigma_N\rangle, \quad \sigma_i = \uparrow, \downarrow$

$S_i^z \uparrow_i\rangle = \uparrow_i\rangle$	$S_i^z \downarrow_i \rangle = \downarrow_i \rangle$
$S^+_i \uparrow_i angle=0$	$S^+_i \downarrow_i angle = \uparrow_i angle$
$S_i^- \uparrow_i angle= \downarrow_i angle$	$S_i^- \downarrow_i angle=0$

Y. Otsuka (RIKEN/AICS)

$$H = -\sum_{a=1}^{2}\sum_{b=1}^{M}H_{a,b}$$

- a: operator type (1=diagonal, 2=off-diagonal)
- b : bond index (b connects i(b) and j(b))

$$\begin{split} H_{1,b} = & C - \Delta S_{i(b)}^z S_{j(b)}^z, \quad C > \Delta/4 : \text{constant} \\ H_{2,b} = & \frac{1}{2} \left(S_{i(b)}^+ S_{j(b)}^- + S_{i(b)}^- S_{j(b)}^+ \right) \end{split}$$

(2): high-temperat	ture series-expansi	ion	
Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	00000000000000	O

$$Z = \operatorname{Tr} \left\{ e^{-\beta H} \right\}$$
$$= \sum_{\alpha} \langle \alpha | e^{-\beta H} | \alpha \rangle$$
$$= \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!} \langle \alpha | H^{n} | \alpha \rangle$$
$$= \sum_{\alpha} \sum_{n=0}^{\infty} \sum_{S_{n}} \frac{\beta^{n}}{n!} \langle \alpha | H_{l_{1}} H_{l_{2}} H_{l_{3}} \cdots H_{l_{n}} | \alpha \rangle$$

$$l_j$$
: (a, b)
 S_n : $[l_1, l_2, \cdots, l_n]$ (operator string)

(3): truncate at	n = L		
Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	00000000000000	O

$$Z \simeq \sum_{\alpha} \sum_{n=0}^{L} \sum_{S_n} \frac{\beta^n}{n!} \langle \alpha | \prod_{l_j} H_{l_j} | \alpha \rangle$$

 $\therefore \langle n \rangle = -\beta \langle H \rangle$ (finite lattice)

00000000000000000000000000000000000000	00000000	55E-QMC 00000€000000000	0
(4) insert unit	operators		

$$Z = \sum_{\alpha} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \langle \alpha | \prod_{l_j=1}^L H_{l_j} | \alpha \rangle$$
$$l_j : \quad 0 \text{ or } (a,b)$$
$$H_0 = l$$

Y. Otsuka (RIKEN/AICS)

Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	000000000000000	O
(5): physical observation	rvable		

$$\begin{aligned} \mathsf{A} \rangle &= \frac{1}{Z} \operatorname{Tr} \left\{ A e^{-\beta H} \right\} \\ &= \frac{1}{Z} \langle \alpha | A e^{-\beta H} | \alpha \rangle \\ &= \frac{1}{Z} \sum_{\alpha} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \langle \alpha | A \prod H_{l_j} | \alpha \rangle \\ &= \frac{1}{Z} \sum_{\alpha} \sum_{S_L} \frac{\langle \alpha | A \prod H_{l_j} | \alpha \rangle}{\langle \alpha | \prod H_{l_j} | \alpha \rangle} \cdot \frac{\beta^n (L-n)!}{L!} \langle \alpha | \prod H_{l_j} | \alpha \rangle \\ &= \frac{\sum_{\alpha} \sum_{S_L} A(\alpha, S_L) W(\alpha, S_L)}{\sum_{\alpha} \sum_{S_L} W(\alpha, S_L)} \end{aligned}$$

importance sampling for configuration $(\alpha, S_L) \Rightarrow MC$

graphical represent	tation for operato	r string	
Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	0000000000000000	O

$$W(\alpha, S_L) = \frac{\beta^n (L-n)!}{L!} \langle \alpha(L) | H_{l_L} | \alpha(L-1) \rangle \cdots \langle \alpha(2) | H_{l_2} | \alpha(1) \rangle \cdot \langle \alpha(1) | H_{l_1} | \alpha(0) \rangle$$

Ex. 4-site case:

N = 4 L = 5 $|\alpha(0)\rangle = |\downarrow\uparrow\uparrow\downarrow\rangle$ $S_{L} = (H_{1,1}, H_{2,3}, H_{0,0}, H_{2,3}, H_{1,1})$

 \Rightarrow operator string: world-line (doubly linked list)

Y. Otsuka (RIKEN/AICS)

similar one-electron band structures but variety of properties \rightarrow interactions are important !

- "soft" \rightarrow electron-lattice coupling, pressure
- low dimensinality \rightarrow quantum/thermal flustuations
- clean & material design \rightarrow "model" material

Molecular conduct	tor: new phase dia	agram	
Background	det-QMC	SSE-QMC	Summar
0000000000	00000000	○○○○○○○○○○○○	O

Y. Otsuka (RIKEN/AICS)

CO v.s. DM

 \rightarrow ferroelectoricity

YO, H.Seo, T. Kato, Y. Motome (JPSJ 2008, Physica B 2008).

Malagular			
0000000000	00000000	00000000000000	
Background	det-QMC	SSE-QMC	Summary

Molecular conductor: comparison with experiments

YO, H.Seo, T. Kato, Y. Motome (JPSJ 2008, Physica B 2008).

Summary			
Background	det-QMC	SSE-QMC	Summary
0000000000	00000000	00000000000000	•

1 determinant QMC

- procedure:
 - Trotter decomposion.
 - Hubbard-Stratonovich transformation \rightarrow { s_{il} }: auxiliary field
 - Integrating out fermions
 - MC sampling for {s_{il}}
- example: 2d Hubbard model
- 2 Stochastic Series Expansion
 - procedure:
 - high-temperature series-expansion
 - truncation at fixed $L \rightarrow \{S_L\}$: operator string
 - graphical representation
 - MC sampling for $\{S_L\}$
 - example: 1d extended Hubbard model coupled to lattice