Introduction to

QCD on a Lattice

Xiao-Yong Jin

2012/3/23

Path Integral

 Field Theory Lattice QCDTemperature \& Density

QCD

§ QUANTUM: Basically a quantum field theory.
§ CHROMO: Fancy name for COLOR. A property similar to ELECTRO.
§ DYNAMICS: How the fields interacting with each other. Quarks interact with each other by exchanging gluons.
§ QUARK: like electron.
§ GLUON: like photon.

Wave-Darticle Duality

Young's double-slit experiment.

Wave-Darticle Duality

Thomas Young's sketch of two-slit diffraction of waves, 1803.

Double Slits

$$
\begin{aligned}
A(a \rightarrow d)= & A(a \rightarrow b \rightarrow d) \\
& +A(a \rightarrow c \rightarrow d) \\
= & A(a \rightarrow b) A(b \rightarrow d) \\
& +A(a \rightarrow c) A(c \rightarrow d)
\end{aligned}
$$

Double Slits

$$
\begin{aligned}
A(a \rightarrow d)= & A(a \rightarrow b \rightarrow d) \\
& +A(a \rightarrow c \rightarrow d)
\end{aligned}
$$

Recursion! $\quad=A(a \rightarrow b) A(b \rightarrow d)$

$$
+A(a \rightarrow c) A(c \rightarrow d)
$$

Infinite Slits

No Slits

§ Dath from point a to d is fixed from time T_{a} to T_{d}.
§ Think of a and d are two points on a space-time lattice.

Quantum Field Theory

§ Instead of one point moving through space-time, the field lives at all the space-time points.
§ Instead of summing over all the space-time paths, the field is integrated over all the possible values at all the space-time points.

$$
\prod_{x, t} \int d \phi_{x, t} e^{-S(\phi)} \equiv \int D \phi e^{-S(\phi)}
$$

Quantum Chromodynamics

$$
\begin{aligned}
2 & =\prod_{x, \mu} \int d U_{x, \mu} d \bar{\Psi}_{x} d \Psi_{x} e^{-S(U)-\bar{\psi} M(U) \psi} & \int d \psi & =0 \\
& \equiv \int D U e^{-S(U)} \operatorname{det}[M(U)] & \int e^{\bar{\Psi} M \psi} d \bar{\psi} d \psi & =1
\end{aligned}
$$

$\S \Psi$ describes the quark field, and lives on every point of the space-time lattice.
$\S 3 \times 3$ complex matrices, U, live on every link on the space-time lattice from x to $x+\mu$.
§ $M(U)$ is a $H U G E$ matrix of $L \times L$, where $L=12 \times$ Volume.

What do we want?

$$
\langle 0\rangle=\frac{\int D U O\left(U, M^{-1}\right) e^{-S(U)} \operatorname{det}[M(U)]}{2}
$$

§ O, usually called observable (or operator), is what we ultimately want to calculate.
§ It is a multidimensional integral with a dimension of the lattice volume.
§ Use Markov chain Monte Carlo.

Markov Chain Monte Carlo

$\langle 0\rangle=\frac{\int D U O\left(U, M^{-1}\right) e^{-S(U)} \operatorname{det}[M(U)]}{2}$

Generate U:

$$
\operatorname{Prob}[U] \propto \operatorname{det}[M] e^{-S}
$$

with N numbers of U :

$$
\langle O\rangle \simeq \frac{1}{N} \sum_{k=1}^{N} O\left(U^{(k)}\right)
$$

Finite Temperature \& Density

§ All above is actually zero temperature and zero density - the VACUUM.
§ Vacuum is NOT nothing!
§ Finite temperature \& density is more!
§ FINITE: neither zero, nor high.
§ Temperature is around 100 MeV , which is $1 \mathrm{O}^{12} \mathrm{C}$.
§ There is phase transition when temperature and density is increased.

Finite Temperature

\S On the lattice, space-time is periodic (for gauge U).
§ Our functional integral becomes a trace.
\S Temperature, T, is simply the inverse imaginary time, $1 / \tau$.
\S Finite τ gives finite T; large ζ, low T.

$$
\begin{aligned}
\langle 0\rangle & =\frac{\operatorname{Tr}\left(O e^{-H \tau}\right)}{\operatorname{Tr} e^{-H \tau}} \\
& =\frac{\operatorname{Tr}\left(O e^{-H / T}\right)}{\operatorname{Tr} e^{-H / T}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Finite Density } \\
& \langle 0\rangle=\frac{\operatorname{Tr}\left(O^{-(H-\mu B) / T}\right)}{\operatorname{Tr} e^{-(H-\mu B) / T}}
\end{aligned}
$$

$\oint \mu$ is the chemical potential.
§ B is the number that represents the density.
§ Unfortunately, our determinant is complex on the lattice.

$$
\operatorname{Prob}[U] \propto \operatorname{det}[M] e^{-s}, \quad \operatorname{det}[M] \ngtr 0
$$

Sign Problem

THANKS

