SC13 Short lecture @ AICS

November 2013

Name	Dr. Truong Vinh Truong Duy
	(Japan Advanced Institute of Science and Technology, Field 2)
Title of your	Massive Parallelization of a Linear Scaling DFT Code OpenMX
Presentation	
Abstract	OpenMX is an open-source first-principles calculation code based on density
	functional theory for explaining and predicting materials' properties. In this
	work, we massively parallelize OpenMX by developing a domain
	decomposition method for atoms and grids. In the atom decomposition, we
	develop a modified recursive bisection method based on the moment of
	inertia tensor for reordering the atoms from 3D to 1D along a principal axis so
	that the atoms that are close in real space are also close on the axis to
	ensure data locality. The atoms are then divided into sub-domains depending
	on their projections onto the principal axis in a balanced way among the
	processes. In the grid decomposition, we define four data structures to make
	data locality consistent with that of the clustered atoms, and propose a 2D
	decomposition method for solving the Poisson equation using 3D FFT with
	communication volume minimized. Benchmark results show that the parallel
	efficiency at 131,072 cores is 67.7% compared to the baseline of 16,384
	cores with 131,072 atoms of the diamond structure on the K computer.