SC13 Short lecture @ AICS November 2013

Name	Dr. Shixun Zhang
	(AICS Computational Materials Science Research Team)
Title of your	Parallelization of Kernel Polynomial Method for Magnetic Skyrmion
Presentation	Simulations
Abstract	Kernel Polynomial Method (KPM) is an effective numerical method for
	evaluating eigenvalues of a huge Hamiltonian matrix with time complexity of
	O(N). Applying Chebyshev polynomials and appropriate kernel functions to
	KPM, one-particle as well as two-particle dynamical correlation functions are
	effectively estimated with controllable accuracy. The massive parallelism on
	supercomputers for accelerating the KPM algorithm is highly desirable for
	treating much larger systems. In our recent study KPM is used to simulate
	magnetic Skyrmion, a particle-like spiral spin texture, by solving the
	semi-classical double exchange model through exploiting the massive
	parallelism on supercomputer K.