Introduction to the neuronal basis of consciousness

2015 Aug 3 AProf Nao Tsuchiya Monash University, Australia

Aims

- To give a background of consciousness research (Dehaene 2011, Boly 2013, Tononi 2015)
- To provide food for thoughts towards final projects
 - No-report paradigms
 - Empirical testing of IIT

Topics

- I. neurons and their connectivity
- 2. a brief remark on the history of consciousness science
- 3. levels of consciousness
- 4. contents of consciousness = qualia and the Hard problem break
- 5. no-report paradigms
- 6. integrated information theory

I. Neurons

Cell body Axon Dendrites

Synapses

Excitatory vs Inhibitory

Spikes

1. <u>Video 2: 3D visualization of the YFP-expressing neuronal circuit elements from pial surface to the thalamus in the intact Thy-1:eYFP mouse brain (16 weeks old) shown in Fig. 2. (11,386 KB, Download)</u>

Fly-through animation of the 3D volume data (2,037 Å~ 1,694 Å~ 3,405 µm; step-size=1.976 µm) illustrates visualization of all layers of cortex, the hippocampus, and the thalamus without degradation of resolution at depth. 1p excitation (514nm) and a 10Å~ objective (NA 0.3, WD 3.6 mm) were used.

Important numbers

- In total 10[^] neurons.
- One neuron receives inputs from ~10^ other neurons
- Most connections are with neighboring neurons. A minor proportion of axons go outside of the local region
- % of synapses is excitatory (Binzegger et al 2009 Neural Networks)
- Cerebellum times more neurons than in cerebral cortex (Herculano-Houzel et al 2012 PNAS)

Important numbers

- In total 10¹ neurons.
- One neuron receives inputs from ~10^3 other neurons
- Most connections are with neighboring neurons. A minor proportion of axons go outside of the local region
- 80% of synapses is excitatory (Binzegger et al 2009 Neural Networks)
- Cerebellum 4 times more neurons than in cerebral cortex (Herculano-Houzel et al 2012 PNAS)

Methods

2. A brief history of the consciousness research

Phenomenology Gestalt psychology

~1920

~1900

~1960

Cognitive revolution

~1990

Consciousness research

Neural correlates of consciousness

• A selected list of the breakthroughs in the last 25 years of consciousness research (Boly et al 2013)

- Understanding of the neural mechanisms that regulates levels of consciousness
- Limits and scopes of non-conscious processing; its neuronal correlates; and its behavioral consequences
- Relationship between consciousness per se and cognitive processes that supports it

In what sense do we use the word "consciousness" and "awareness"?

Commonsense definitions of "consciousness"

- Level of consciousness (as opposed to coma, anesthesia, dreamless sleep)
- Contents of consciousness (e.g., redness of red, pain, thoughts)
- (Self consciousness)

Contrastive approach

- Compare the neural activity that accompanies "conscious" and "unconscious" X
 - X can be states, perception, motor planning, intention, emotion,

3. level of consciousness

Level and Content of consciousness vs behavioral signs of consciousness

Vigilance (awake behavior, eyes open)

Boly et al 2013 Frontiers in Consciousness Research

During loss of consciousness, brain can be very active!

Nir & Tononi 2010 TICS

Reduced metabolism during loss of consciousness

Slow-wave sleep

Vegetative state

Breakdown of global connectivity as a key for loss of consciousness

Massimini et al 2005 Science

Breakdown of global connectivity as a key for loss of consciousness

Casali et al 2013 Science Trans Medicine

4. contents of consciousness = qualia and the Hard problem

Hard Problem of consciousness

The problem of consciousness: Is it really Hard? Integrated information theory of consciousness (Tononi 2004 BMC)

What do I mean by a quale of a yellow dot?

Motion-induced blindness (Bonneh, Cooperman, Sagi 2001 Nature)

Broad- vs. Narrow- sense qualia

Broad sense: These two experiences are different qualia.

Narrow sense: The redness of the disks refers to the same quale.

Kanai & Tsuchiya 2012 Current Biology
The powerful NCC paradigm

- Keep sensory stimuli constant; use perceptual thresholds or ambiguous stimuli
- Manipulate or obtain variable reports
- Find the neural activity that correlates with consciousness
 - Contingent on reports!

Trying to find the NCC with binocular rivalry

Blake & Logothetis 02 Nat Rev Neuro

Logothetis 98 Phil Trans

Dehaene 2006 TICS

- But, does it explain conscious experience? (qualia in a broad sense)
- Are we studying contents of consciousness per se? Or are we confounding NCC with attention, working memory, and report/access?

Change Blindness

Rensink et al 1997 Psych Sci, Simons & Rensink 2005 TICS Change blindness makes us realize how little we can be aware of our surroundings.

Like a lamp in a refrigerator?

Are these illusions really useful in capturing the essential features of conscious experience?

Was there any difference between the two?

What do we see at periphery?

Which one contains an animal?

What do we see at periphery?

Which one contains an animal?

What do we see at periphery?

Which one contains an animal?

Conscious

Recent debates

- Do we perceive more than we can report? (e.g., broadsense qualia, texture, animal outside of attention)
- Is there conscious perception without top-down attentional amplification?
- Is report always necessary and critical to study consciousness? (e.g., change detection, frontal-parietal amplification)
- Is introspection/metacognition critical for experience?
 Is consciousness only experienced by humans?

Why does it matter?

- Behaviorist **vs** Phenomenologist
- 3rd person **vs** 1st person
- Artificial Intelligence **vs** Artificial Consciousness
- Extrinsic Information **vs** Intrinsic Information
- Report paradigm **vs** No-report paradigm
 - To be continued

• BREAK!

5. No-report paradigm

Which of 1-4 best describes your opinion about the usages of "reports" in consciousness research?

To understand the neural basis of **conscious experience**:

1) behavioral **reports** from subjects are really **essential** and always **necessary**.

2) **reports** are not always necessary, and they may be **harmful**.

3) not interested in conscious experience.

4) other

Conscious

Aru et al 2011

Aru et al 2011

- What are the processes that
 - preceding conscious experience?
 - following conscious experience?

Detected sound

Non-detected sound

NCC-pr? What about NCC-co?

Functions of conscious phenomenology?

- Flexible access and selective use of incoming information retained for a long period in working memory, for a better and longer term planning?
 - implying attention, working memory and access/report as critical functions of consciousness?

Dehaene, Kerszberg & Changeux 1998

Baars 1989

Relationship between top-down attention and consciousness?

- Attention without consciousness?
- Consciousness without attention?
- Dissociable/opposing behavioral/neural effects of attention and consciousness?

Motion-induced blindness (Bonneh, Cooperman, Sagi 2001 Nature)

Opposing effects of C and A on afterimages Attentional effects on invisible targets

Unconscious working memory

Soto & Silvanto 2014 TICS

Unconscious working memory

Performance and BOLD on 1-rating unaware trials

Unconscious addition, subtraction, reading ... Soto & Silvanto 2014 TICS

Functions of conscious phenomenology?

- Can biology understand something that (may) have no (apparent) direct functions?
- Attention? (Lamme 2006, Koch & Tsuchiya 2007)
- Working memory? (Soto & Silvanto 2014)
- Detection of abnormality? (Mudrik 2011 Psych Sci)
- Access/Report?
 - Accessible and reportable contents of consciousness seem very useful...
What about report/ access?

Consciousness research

~1990

Neural correlates of consciousness

Frontal and parietal activity/integrity is critical for consciousness Rees, Kreiman, Koch 2002 Nat Rev Neuro Zaretskaya & Narinyan 2014 Frontiers

Bor & Seth 2012 Frontiers

"Consciousness cannot be separated from functions" Cohen & Dennett 2011 TICS

Frontal & parietal involvement in visual perception (?)

Known properties of binocular rivalry

- Cannot be stopped by attention, training, efforts, etc
 - > highly automatic and vivid
 - > require no report
- Under optimal conditions, eye movements highly correlates with the contents of consciousness

Eye movements can be used to infer the contents of rivalry

Frassle et al 2014 J Neurosci

Frassle et al 2014 J Neurosci

-slow phase

-- baseline

button press

16

No-report diminishes the involvement of frontal areas!

Frassle et al 2014 J Neurosci

What aspects of binocular rivalry do the frontal activity reflect?

Knapen 2011 J Nsci

Genuine rivalry > Instantaneous (poor) replay

Knapen 2011 J Nsci

Genuine rivalry > Instantaneous (poor) replay

Genuine rivalry > Duration-matched (good) replay

Knapen 2011 J Nsci

If reports are not required, or if difficulty in reports are equated, activity in frontal areas becomes similar during binocular rivalry and replay.

Microscopic effects of report-related confound

A

Generalized Flash Suppression Task

A

Generalized Flash Suppression Task

Experimental Conditions

R

Time since Surround Onset (ms)

Under the report-based condition, alpha/beta range in LFPs (Pulvinar, V4, V2, V1) & spikes (in Pulvinar & V4) were identified as "the NCC"

Under the report-based condition, alpha/beta range in LFPs (pulvinar, V4, V2, V1) & spikes (in pulvinar & V4) were identified as "the NCC"

Under the no-report condition, only spikes (in pulvinar & V4) were identified as "the NCC"

Report-based

No-report

Underestimation of NCC

Overestimation of NCC

Prerequisites & consequences of NCC (Aru 2012)

Tsuchiya, Wilke, Frassle, Lamme (under review)

Report-based

Underestimation of NCC

Overestimation of NCC

Prerequisites & consequences of NCC (Aru 2012)

Inclusion of nonconscious processing

Tsuchiya, Wilke, Frassle, Lamme (under review)

Report- or attentiondependent experience

No-report

Report-based

Underestimation of NCC

???

Report-dependent experience (?)

No-report

Overestimation of NCC

Prerequisites & consequences of NCC (Aru 2012)

Inclusion of nonconscious processing

Tsuchiya, Wilke, Frassle, Lamme (under review)

Can report accurately reflect what we consciously see?

- Can you remember 8 objects in details?
- After a fixation, an array of 8 objects appear.
- Then, another array appears.
- Can you detect a **change** or **no change**?

Sligte et al 2010 Frontiers

Ready?

Was there a change in the cued location? Yes or No!

What was the item before the change happened?

1 2 3 4

We feel like we saw an array of items vividly.

At the same time, we can't remember and report what we saw.

-> Is it possible that we actually do NOT experience it consciously until proper attention and exceptions is allocated to an item so that it enters into working memory?

Was there a change in the cued location? Yes or No!

What was the item before the change happened?

1 2 3 4

- When we try to remember and report, only 1 item can be reported and its change detected. This leads to "impoverished" view of consciousness and "illusory" view of rich phenomenology.
- Partial report paradigm allows us to estimate more directly the capacity of initial phenomenology
- Failure of reports reflects visual interference (e.g., superposition of stimuli) that can be protected only with attention and working memory.

Conclusions

- No-report paradigms reveal over- and underestimation of the neural correlates of consciousness
- This situation is largely due to a behavioristic thinking about conscious phenomenology from the functional perspective
- Need a revision of the way to attack the problem of neural basis of conscious phenomenology

- Starting from phenomenology, and search for the physical substrate that supports the central properties of phenomenology
- Combine no-report and report-based paradigms!
- With complete no-report paradigms, we can study ...
 - Why do we lose consciousness under anesthesia and dreamless sleep? (are we really?) What aspects of neural activity are lost under loss of consciousness?
 - Why is our auditory qualia different from visual qualia? What neural substrate supports the difference? What are the critical phenomenological difference between the modalities?

6. integrated information theory

Integrated information theory of consciousness

- Starts from phenomenology, identifies five essential properties of conscious experience (1. existence, 2. composition, 3. information, 4. integration, 5. exclusion)
- Tries to translate the axioms into how these axioms can be supported by the physical mechanisms

Tononi 2004, 2008, Oizumi et al 2014 PLoS Comp Bio

Integrated information theory

- I : information
- O : integration
- (phi) : integrated information

Guilio Tononi

Integrated information theory

- I : information
- O : integration
- (phi) : integrated information

Guilio Tononi

Two kinds of information Intrinsic vs Extrinsic

Tononi 2010 Acta Ital

Photodiode thought experiment

Single photodiode

l bit

Conscious

Brain

10^11 neurons - 10^11 bits

Information

Photodiode thought experiment

Unconscious (?)

Digital camera

Conscious

Brain

Integrated information

(Balduzzi and Tononi, 2008)

IIT explains...

 why a thalamo-cortical system generates consciousness while cerebellum, retina (afferent), and motor systems (efferent) do not

IIT explains...

 why two consciousness emerge when a brain is split into two.

IIT predicts ...

 waking brains would maximally integrate information (indirectly supported by TMS-EEG experiments)

Massimini et al 2005 Science

Casali et al 2013 Science Trans Medicine

Advantages of conscious system with phi>0?

IIT predicts ...

- that overall amount of integrated information (phi) corresponds to levels of consciousness
 - Oizumi et al ASSC 2011 under review
 Cohen et al ASSC 2013, in preparation
- that that a collection of phi's computed from local neuronal populations maps onto contents of consciousness (phenomenology)
- >>> Compute phi to directly test these predictions!

Conclusion

- New measure for integrated information based on mismatched decoder
- Integrated information computed from ECoG data filtered around 8-24 Hz show decrease at the onset of anesthesia and increase at the recovery

What kind of physical mechanisms can support conscious phenomenology?

consciousness is intrinsic

Leopold & Logothetis 1999 TICS

Nir & Tononi 2010 TICS

consciousness is informative

consciousness is integrated and composed of various aspects

Essential properties of conscious phenomenology

- Intrinsic

- -usion of neural mechanisms what kind of neural mechanisms what kind of these properties? can support these properties

Conscious experience : Hierarchical structure?

Note: each level is not reducible to lower levels!

Previous related approaches in neuroscience

- "Extrinsic information" approach in neuroscience
 - I(X;S) = H(S) H(S|X)

S

Previous related approaches in neuroscience

• But, concsiousness is "intrinsic"!

Previous related approaches in neuroscience

- Composition and integration
 - Distributed representation. Bounded percept and unified experience
 - Synchrony, coherence, oscillation, etc

Integrated information theory

- Intrinsic information:
- Integration:
- Composition:
- Exclusion

Infer the **previous** state from the knowledge of the **present** state.

$$I(X^{t-\tau}; X^t) = H(X^{t-\tau}) - H(X^{t-\tau} | X^t)$$

mutual entropy conditional information

(Balduzzi and Tononi, 2008)

What is *intrinsic* integrated information?

Infer the **previous** state from the knowledge of the **present** state.

$$I(X^{t-\tau}; X^t) = H(X^{t-\tau}) - H(X^{t-\tau}|X^t)$$

How much information would be lost when we infer the previous state based only on the knowledge of the parts.

$$\phi = I(X^{t-\tau}; X^t) - \sum_i I(M_i^{t-\tau}; M_i^t)$$

Balduzzi & Tononi 2008, Barrett & Seth 2011, Oizumi et al 2015 Arxiv

H (possible states)

I (constrained states)

Phi (how an integrated system constrain its states)
- Hypothesis:
 - Structure of integrated information should reflect phenomenology rather than physical input to the system.

- Can structure of integrated information discriminates different percepts given the same stimulus?
 - Use visual illusions (e.g., backward masking & continuous flash suppression)

Conscious experience : Hierarchical structure?

Note: each level is not reducible to lower levels

Conclusions

- Information structure computed from the ECoG electrodes in the FFA areas naturally categorizes conscious phenomenology of faces in masked and unmasked conditions
- Information structure based on phi* (based on either partitions or magnitudes) outperforms those based on I or H (matched in dimensionality).

Speculations

- Structure of integrated information =~ qualia?
- Can be compared between sensory modalities
 - Across individuals
 - Across species
- Why does vision feel different from audition?
- What is it like to be a bat?
- Dissolution of the Hard Problem?