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Robust Systems

Thomas Geijtenbeek, Michiel van de Panne, A. Frank van der Stappen,
“Flexible Muscle-Based Locomotion for Bipedal Creatures”

Roughly speaking – when you push it, it springs back



  

Robust Theories

What is “pushing” a theory?

Make some error

Do you still get the same kind of result?

( What does 'the same' mean? )



  

The Unreasonable Effectiveness 
of ...

● Unreasonable Effectiveness of Mathematics 
(Wigner)

● Unreasonable Effectiveness of Science (Robert 
Haussman)

● Unreasonable Effectiveness of Deep Learning 
(Yann LeCun)

● The Unreasonable Effectiveness of Recurrent 
Neural Networks (Andrej Karpathy)

...



  

Example: 
Predatory-prey population dynamics

...

Lotka-Volterra Model



  

Example:
Crowd Models



  

Ability to Generalize

● Simple models which seem to be able generalize 
across details of the component 'objects'

● Influence of details summarized in a few parameters

● Only works when you have large numbers of the 
components – the individuals are still different

Only the collective behavior is robust.



  

Infinity is Easier than 3

Famous problem in 
classical mechanics: predict 
the motion of N bodies
– 1-body: Trivial (just sits there)

– 2-body: Undergrad 
homework problem (periodic 
elliptical orbits)

– 3-body: Major problem in 
physics over the last 350 
years. No general algebraic 
solution is possible.

???



  

Infinity is Easier than 3

How about the infinite-body 
problem?

Statistical mechanics: 
predict ~ 1023 bodies

(but not the details of 
microscopic motion)

The emergent properties 
are simpler than the 
component properties!



  

Emergence as independence

Emergence: at some scale, the 'appropriate' 
degrees of freedom change

Molecules → Theory of Fluids is hard

Fluid-level description → Theory of Fluids is 
(relatively) easier

→ Independence from microscopic detail



  

Coarse Graining

Idea: Look at something on 
multiple scales, look for the 
dynamics which are natural to 
that scale

Invented by Leo Kadanoff (block 
spins) for magnets in 1966, 
extended by Kenneth Wilson, 
then spread to particle 
physics, ... 



  

Coarse Graining

Start with a fine-grained 
model that can predict the 
fine-grained future state.

Then, derive an exact 
predictive model entirely in 
terms of the coarse-grained 
scale (hard!)

Present Future

Fine-grained 
Model

Coarse 
Graining

Coarse-grained 
Model

Coarse 
Graining

Ensure both results are the same!



  

Applications: Detecting scale 
transitions

Instead of deriving exact 
coarse-grained theory, use 
general purpose machine 
learning framework to build 
a predictor.

Error is a function of scale 
– detect natural scale 
separations.

Present Future

Fine-grained 
Model

Coarse 
Graining

Coarse 
Graining

Neural  
Network

Measure error



  

Toy example

● Simulations with two very different types of 
particles

Hard Spheres Lennard-Jones
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Applications: Detecting scale 
transitions

32 x 32 image 
at time T

Convolution Convolution Convolution

32 x 32 predicted image 
at time T+S

...

(Schematic – actual architecture has more layers, noise layers to prevent overfitting, etc)

Time offset S is chosen such that an object with constant velocity 
moves a fixed number of pixels at each scale



  

Applications: Detecting scale 
transitions

Prediction Error on Lennard-Jones video

Peak corresponds to roughly 1 particle per pixel



  

Applications: Detecting scale 
transitions

Prediction Error on Zebrafish brain (with Dror, Ray)
Data from Ahrens, M.; Orger, M.; Robson, D; Li, J. M.; Keller, P.;  “Whole-brain functional 
imaging at cellular resolution using light-sheet microscopy”, Nature Methods 10 (2013)



  

Applications: Detecting scale 
transitions

Prediction Error on Zebrafish brain (with Dror, Ray)
Data from Ahrens, M.; Orger, M.; Robson, D; Li, J. M.; Keller, P.;  “Whole-brain functional 
imaging at cellular resolution using light-sheet microscopy”, Nature Methods 10 (2013)

1x 3x 8x 10x 20x
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Coarse Graining

Observation from physics: 
when you do the exact 
coarse-graining, it often has 
the same mathematical form 
as the fine-grained theory.

But with different 
parameter values

Present Future

Fine-grained 
Model

Coarse 
Graining

Coarse-grained 
Model

Coarse 
Graining

Ensure both results are the same!



  

Effective Theories

Both models equally correct at explaining the 
coarse-grained behavior.

The coarse-grained model is an 'effective theory' 
for the system, above a certain scale

In general, families of equivalent theories for the 
same system, associated by changes in scale.



  

“Theory Space”

Parameter 1

P
ar

am
et

er
 2



  

“Theory Space”

Parameter 1

P
ar

am
et

er
 2

Model 1

Model 2



  

Emergence of Sharp Distinctions

● Multiple attractors: depending where you start, 
some distinct set of outcomes.
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Breakdown of Sharp Distinctions

● In complex cases (biology, 
neurology), not 
necessarily at an 
asymptotic limit.

– Different cases further 
along than others

● Even if we see something 
that seems sharp, there 
may be blurry examples

Finding blurry cases doesn't rule out an 
asymptotic distinction
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Breakdown of Sharp Distinctions

Super-critical phenomena
● A distinction may only be locally sharp.

– Usually corresponds to a critical point – super-critical

Critical Point



  

Scaling

The dependence of each 
parameter on scale usually 
has an asymptotic scaling 
form: 

The way that it changes 
remains constant at large 
scales.
– At constant density, things 

that measure mass scale 
like the cube of the length, 
etc.

Length Length/2

Area Area/4

Volume Volume/8



  

Example: Allometric Scaling

Muscle strength ~ cross-sectional area

Body weight ~ volume

Beyond a certain size, animals would not be able 
to lift their own body weight.



  

Example: Allometric Scaling

Many such inter-related scaling laws in biology

West, G; “Allometric scaling of metabolic rate from molecules 
and mitochondria to cells and mammals” PNAS 99 (2002)

Geoffrey West:

Scaling of pressure in 
branching veins → 
heart rate, metabolic 
constraints, etc.

Approach is now 
being used for cities



  

Example: Scaling in Machine 
Learning

Machine learning has a diverse set of 
algorithms – why?

Andreas Mueller, “Peekabo: Andy's Computer Vision and Machine Learning Blog”
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Example: Scaling in Machine 
Learning

● Different algorithms scale differently
– Amount of data ('big data' revolution)

– Dimensionality of data (high dimension → linear, 
low dimension → non-linear)

– Computational time

– Computational memory

– ...

In different regions of the problem-space, 
different methods are (asymptotically) best



  

Example: Scaling in Machine 
Learning

● Big pushes for modern neural network 
approach: understand the performance scaling

● Find and change unfavorable scalings
● As a result, discovered new methodologies

– Slow convergence of convolutional networks → 
RBMs, Glorot Initialization

– 'Vanishing gradient' problem in recurrent neural 
networks → LSTM units

– Momentum methods, etc



  

How Scaling Leads to Simplicity

At the start, I promised to talk about why simple 
models work at all

Decompose theory into distinct effects that can 
influence an outcome. Each effect can scale 
differently.

At large scales, differences between 
importance become magnified.



  

How Scaling Leads to Simplicity

Increase in scale
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How Scaling Leads to Simplicity

So at large enough scales, only a few things 
still matter.

Can think of 'errors' in a theory as terms relative 
to reality. Each error is associated with a 
parameter. If zero, the theory is correct.

Only errors which scale as quickly as the 
dominant effects remain relevant at large scale



  

Applications: 
Deep Learning

● Connection between multi-layer neural networks 
and 'Renormalization Group' (Pankaj Mehta, 
David J. Schwab, 2014)

● Multi-layered networks learn to implement 
coarse-graining, preserve only scale-crossing 
features

● Even if there are many important effects in the 
data, only a few will be dominant at each scale



  

What about Life?

Does this work for life in general? Allometric 
scaling seems to suggest it might. However...

We are large compared to our DNA, but our 
DNA still has a dominant effect at our scale

(Kunihiko Kaneko: idea of 'Minority Control')

Viruses, other small things can still kill us



  

What about Life?

These scale-crossing objects 
seem to be relatively sparse

Perhaps this is functional:

Provides access to small 
scales without being 
dominated by them



  

Conclusions

● Large systems tend to become simpler with 
scale due to divergence of the relative 
importance of their component processes

● Because of this, many microscopic theories are 
equivalently good for describing the same 
emergent phenomenon – the phenomenon 
itself is robust to details.

● Some systems appear to build in exceptions
– What does this do, and why does it happen?
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