

「京」の正しい?使い方

国立研究開発法人理化学研究所 計算科学研究機構 運用技術部門 システム運転技術チーム

本日の公演の概要

スーパーコンピュータ「京」ってすごいらしい

どんなところが?

世界一位になったことがあるらしい

へぇ, すごいね. で, うちにあるパソコンと比べるとどうなの?

とにかく大きいらしい………

じゃあ,実際に比較してみましょう

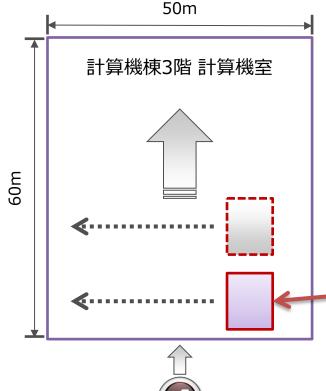
でも, 普通に比較しても面白くないので, ちょっと違う視点から…

取扱説明書に沿って 比較してみましょう

仕様の比較

項目	最近の一般的な デスクトップPC	「京」(2012年完成)
CPU	$2\sim$ 4 cores, $2\sim$ 4GHz / CPU	8 cores, 2GHz / CPU x 82,944
GPU	CPU内蔵,外付	なし
メモリ	4GB \sim 16GB	16GB / node x 82,944
ストレージ	1 \sim 8 TB	ローカルファイルシステム 10PB グローバルファイルシステム 30PB
ネットワーク	\sim 10 GbE	Tofu (5GB/s x 4) / node
電源	\sim 500W	\sim 14,000KW

コンピュータの設置

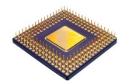

- 丈夫で水平な場所に本体,モニターを設置
- モニター, キーボード, マウス等を接続
- ネットワークケーブルを接続
- 電源コードをコンセントに接続

「京」の搬入・設置

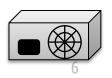
搬入・設置期間: 2010.9 ~ 2011.8



- 計算機室には柱がありません
 - 自由に計算ラックを設置できる
 - 計算ノードを接続するケーブルを短くできる


最初に設置された8ラック (2010年9月30日設置)

主な部品の名称と働き



CPU: Central Processing Unit 中央演算処理装置

プログラムにしたがって,様々な数値計算や 情報処理などを行う電子回路

RAM: Random Access Memory ランダムアクセスメモリ(一次記憶装置)

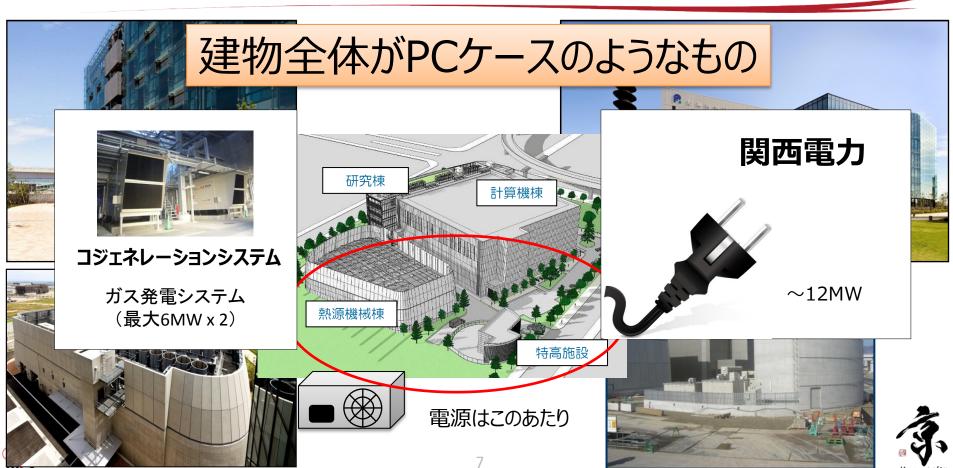
CPUが直接アクセスできる記憶装置 プログラムやデータが格納されている

HDD: Hard Disk Drive ハードディスクドライブ (二次記憶装置)

記憶容量が大きく安価な記憶装置プログラムやデータが格納されている

Network Card ネットワークカード

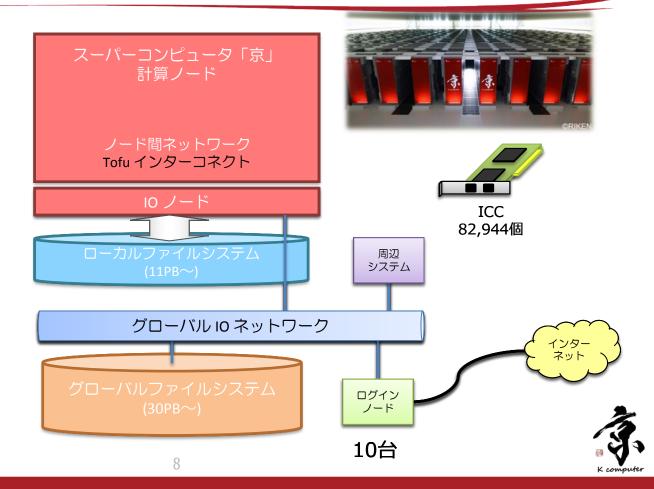
コンピュータ間で通信をおこなうためのハードウェア


Power Supply 電源装置

交流電源を各種直流に変換して, PCの各部に安定的に供給する

主な部品の名称と働き

主な部品の名称と働き



2GB DIMM (DDR3+ECC) 8 x 82,944 = 663,552枚

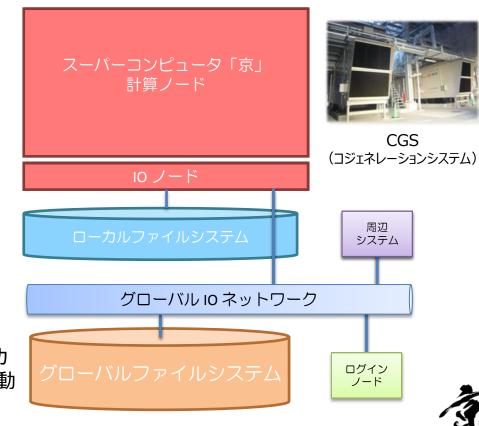
ローカルファイルシステム 300GB x 57,024台 グローバルファイルシステム 2TB x 24,480台

システムの起動

1. 電源を入れる

- 1. BIOS[※]の読み込み
 - ハードウェアとの最も低レベルの入出力を行うためのプログラム
 - マザーボードに記録されていて、HDDからデータを読み出すなどの 最低限の機能がある
- 2. OSのプログラムの読み込み
 - HDDからOSのプログラムを読み込む
- 3. 各種デバイスの初期化
 - PCに接続された各種デバイスを使用できるように初期化
- 4. OSの起動

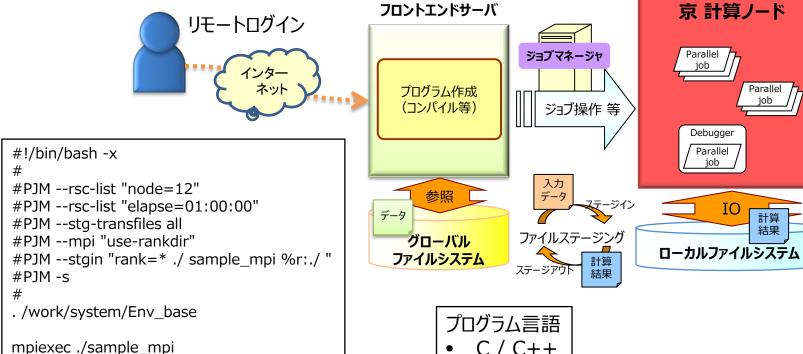
2. OSの起動手順

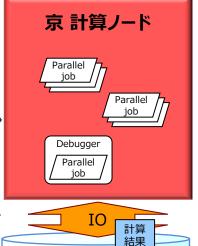

PCの構成にもよるが、大体2・3分でOSが起動

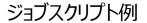
システムの起動

- 1. CGSの起動 … 2 H
 - 関電からの電力だけでは足りないため
- 2. 周辺システムの起動(制御系) … 1 H
 - システム全体を制御する部分を最初に起動
 - ネットワーク機器も
- 3. グローバルファイルシステムの起動 … 2 H
- 4. 周辺システムの起動 … 1 H
 - ログインノード等の周辺システムを起動
- 5. 本体システムの起動 … 10H
 - ローカルファイルシステム,計算ノードの起動
 - 全ての計算ノードを一斉に起動するとブレーカが落ちるため、9グループに分割して順次起動

基本的な使い方


- Windowsやmacの場合
 - ログインしたあと、マウスを使ってアプリケーションを起動
 - アプリケーションは市販やフリーソフト等の既存のもの

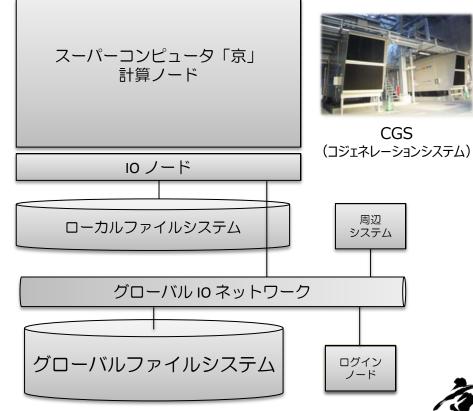

- 「京」の場合
 - フロントエンドサーバにログインしたあと, プログラムを準備し, ジョブスクリプトを作成してバッチジョブとして実行
 - プログラムは基本的には自分で作成
 - 既存の物もあるにはあるが…



京でのジョブ実行

- C / C++
- Fortran

システムの停止


- 1. OSからシャットダウンを指示 または 電源OFF
- 2. OSが終了処理を実施
- 3. システムが停止

システムの停止

- 1. 本体システムの停止 ··· 3H
 - 計算ノード
 - ローカルファイルシステム
- 2. 周辺システムの停止 … 1 H
 - □グインノード
- 3. グローバルファイルシステムの停止 … 1 H
- 4. 周辺システムの停止(制御系) ··· 1 H
 - 制御ノード (PowerON/OFF制御)
 - ネットワーク機器
- 5. CGSの停止 … 1H

おわりに

- 「京」も基本構成は一般的なデスクトップPCと同じ
 - そう, 単に数が多いだけ
- 数が多いだけなのだけれど...
 - これほど規模が違うとその差は歴然
 - 色々なところで時間がかかったり、小規模では問題にならなかったような問題が発生したり...
 - その苦労も段違い
- もちろん性能も段違いなわけで...
 - 今後も「京」の成果にご期待ください

