計算生命科学の基礎

分子動力学計算によるタンパク質の機能解析

京都大学大学院医学研究科 臨床システム腫瘍学 中津井雅彦

アウトライン

- (古典)分子動力学計算とは
 - (古典)分子動力学計算の概要
 - 運動方程式
 - 数値解法
 - 力場
 - 境界条件
- 統計アンサンブル
 - 運動方程式の一般化
 - NVTアンサンブル(カノニカルアンサンブル)
 - NPTアンサンブル(T-Pアンサンブル)
- 実例
 - タンパク質・リガンド間の結合自由エネルギー予測 (MP-CAFEE法)
- 拡張アンサンブル
 - 必要性
 - マルチカノニカル法
 - レプリカ交換法
 - 実例

<u>分子動力学計算</u>

<u>従来型の結合シミュレーション(Docking)</u>

タンパク質は、動的な系である

 原子を「質量を持つ粒子」とみなし、古典力学の 運動方程式を解くことで位置を求める

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

$$F_i$$
 質点が受けるカ m_i 質点の質量 r_i 質点の位置

a_i 質点*i*の加速度

古典力学に基づいているため、 量子的な効果は計算しない

経験的に決められたポテンシャルの空間微分

粒子を動かすための力は、

加速度・力・質量の時刻に対する微分方程式 初期座標・初期速度・力・質量がわかれば、 任意の時刻の座標を計算できる

ただし、解析的に解けないので、数値的に解く必要がある

"The science of simulating the motions of a system of particles" (Karplus & Petsko)

(古典)分子動力学計算の概要

- 決定論的な手法
 - 将来の時間における系の状態が、現在の状態から予測できる
- 分子動力学計算のサイクル
 - 1. 一定の短い時間刻みの間に、各々の原子にかかる力を定数として予測する
 - 2. 各々の原子の現在の座標および速度と、1. で計算した各々の 粒子へかかる力から、一定の短い時間刻み後の原子の座標およ び速度を計算する

短い時間刻みごとに、原子の座標のスナップショットを得る

トラジェクトリ

(古典)分子動力学計算の流れ

(古典)分子動力学計算に必要な情報

- 原子の三次元座標
 - X線結晶解析, NMR等
 - 無料の公的データベース
 - PDB

- 原子の電荷情報 (原子にかかる力を計算する際に使用)
 - タンパク質(アミノ酸や主要な金属原子等)
 - それ以外の化合物
 - 量子計算により求める

タンパク質の立体構造を取得する

X線決勝解析、NMR等の手法によって原子レベルの分解能で解析された タンパク質・核酸・糖などの生体高分子の立体構造 PDBj, RCSB PDB, EBI PDBe

タンパク質の立体構造を取得する PDBフォーマット

1			C:¥	Users¥	Mas	ahiko¥D	ownload	s¥1AKI.po	ib - 秀	丸			×
ファイル(E) 編	<u>≢(E)</u> 表	示(⊻)	検索(5	 ウィン! 	゚ウ(W) マクロ(<u>M</u>) その他(C)				349:	81
	1 7		*	tt (Q	1 90	08	0					
»	1 <u> 10</u>	1 H L		<u></u>	130		1 40 1 L L	11 000	4.00	<u></u>		8	~
347 ATUM		IN CA	LIS	A 1		35.365	22.342	-11.980	1.00	22.28	N	*	~
340 ATUM	2	CA C	LIO	A 1		04 741	21.073	-10.044	1.00	21.12		4	
250 ATOM	0		LIO	A 1		04.741 22 076	20.204	-10.044	1.00	10.00		*	
251 ATOM	4	CB.	LIS	A 1		38.343	20.010	-10.001	1.00	20.72	C C		
352 ATOM	č A		I VS	A 1		30.072	20 248	-9 565	1 00	18 17	Č		
353 ATOM	° 7	cn	I YS	0 1		38 688	20.240	-8 775	1 00	20.32	c		
354 ATOM	8	CE	LYS	Δ 1		39 057	19 508	-7 837	1 00	24 76	č	1990 1990	
355 ATOM	ğ	NZ	LYS	A 1		40.423	19.771	-7.299	1.00	28.27	Ň	-	
356 ATOM	10	N	VAL	A 2		34.739	18.961	-11.042	1.00	19.96	N	J.	_
357 ATOM	11	CA	VAL	A 2		33.903	17.998	-10.333	1.00	18.10	Ĉ	4	
358 ATOM	12	С	VAL	A 2		34.800	17.312	-9.294	1.00	19.39	C	\downarrow	
359 ATOM	13	0	VAL	A 2		35.759	16.605	-9.665	1.00	22.14	0	\rightarrow	
360 ATOM	14	CB	VAL	A 2		33.140	17.034	-11.232	1.00	16.81	С		
361 ATOM	15	CG1	VAL	A 2		32.251	16.084	-10.434	1.00	21.92	С		
362 ATOM	16	CG2	VAL	A 2		32.294	17.714	-12.290	1.00	19.46	С		
363 ATOM	17	Ν	PHE	А З		34.491	17.546	-8.038	1.00	19.89	N	+	
364 ATOM	18	CA	PHE	А З		35.185	16.903	-6.918	1.00	17.43	С		
365 ATOM	19	С	PHE	A 3		34.742	15.441	-6.771	1.00	15.70	С	\downarrow	
366 ATOM	20	0	PHE	A 3		33.525	15.162	-6.862	1.00	18.52	0		
367 ATOM	21	CB	PHE	A 3		34.967	17.632	-5.594	1.00	17.94	C		
368 ATOM	22	CG	PHE	A 3		35.944	18.737	-5.375	1.00	16.78	C		
369 ATOM	23	CD1	PHE	A 3		35.666	20.050	-5.798	1.00	15.97	Č	+	
370 ATOM	24	CD2	PHE	A 3		37.000	18.557	-4.4/3	1.00	19.95	C		
371 ATOM	25	UE1	PHE	A 3		36.577	21.076	-5.568	1.00	17.32	C	+	
372 ATUM	26	UE2	PHE	A 3		37.869	19.589	-4.15/	1.00	17.65	U	+	
373 ATUM	27	UZ M	PHE	A 3		37.636	20.873	-4.666	1.00	17.91	U N	3 4 62	
275 ATUM	28	N	GLI	A 4		33.724 25.260	14.039	-6.331	1.00	10.79	N	+	
276 ATOM	29	CA C		н 4 Л 1		30.300	10.280	-0.070	1.00	10.34		- 5 4 52 - 5.105	
077 ATOM	30		aLT	A 4		05 000	13.420	4.410	1.00	10.00	U O	*	Υ.
秀	下)	欠	単	分	tį	⊐t°-	貼 外	7* 77h	行	日本語(Shift-JIS)	挿	入モード	1

Lysozyme (1AKI.pdb)

原子ごとに、**三次元座標**が記述されている

X, Y, Z座標 (Å単位)

原子を配置する

球境界条件 周期境界条件 真空 Q đ 基本セル イメージセル

球境界条件では、球境界付近での水の挙動が不自然になることがある

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

数値積分には、初期座標・初期速度の両方が必要

初期速度の与え方

- 初期速度を与えずにMDを行う
- ボルツマン分布に従うように初期速度を発生させる

$$f(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right)$$
$$f_1(v_x) = \left(\frac{m}{2\pi kT}\right)^{\frac{1}{2}} \exp\left(-\frac{mv_x^2}{2kT}\right) \quad (正規分布)$$

(古典)分子動力学計算の流れ

ニュートンの法則

- 第一法則 (慣性の法則)
 - 外力を受けない質点は、等速直線運動を行う
 - (数学的には、第二法則に含まれる)

• 第二法則 (運動方程式)

- 質量mの質点の座標rは、質点に働く力Fを用いて、以下のよう に表すことができる

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

F_i 質点が受ける力 m_i 質点の質量

- *a*_i 質点*i*の加速度
- 第三法則(作用反作用の法則)

$$F_{ij} = -F_{ji}$$

その他の重要な法則

- 力の重ね合わせの原理
 - – 質点に複数の力F^a, F^b, F^c, …が働くときに、質点はその和Fが 働いた場合と同様にふるまう

 $F = F^a + F^b + F^c + \cdots$

以上の基本原理を使って、質量を持つ粒子を 動かしていく

"The science of simulating the motions of a system of particles" (Karplus & Petsko)

運動方程式の数値解法

- 運動方程式は解析的に解けないため、数値積分を行う。
- 数値積分により、次のステップの位置を計算する

 $\mathbf{r}_i(t_0) \rightarrow \mathbf{r}_i(t_0 + \Delta t) \rightarrow \mathbf{r}_i(t_0 + 2\Delta t) \rightarrow \cdots \mathbf{r}_i(t_0 + n\Delta t).$

F = m
$$\ddot{r}(t)$$
 = ma
 $r(t + \Delta t) = r(t) + \Delta t v(t) + \frac{\Delta t^2}{2!}\ddot{r}(t) + O(\Delta t^3)$
 $r(t + \Delta t) = r(t) + \Delta t v(t) + \frac{\Delta t^2}{2!}\frac{F(t)}{m} + O(\Delta t^3)$
 $v(t + \Delta t) = v(t) + \Delta t \ddot{v}(t) + O(\Delta t^2)$
 $v(t + \Delta t) = v(t) + \Delta t \frac{F(t)}{m} + O(\Delta t^2)$

• 初期座標・初期速度があれば、数値的に解ける

$$\mathbf{r}(t + \Delta t) = \mathbf{2r}(t) - \mathbf{r}(t - \Delta t) + \frac{\Delta t^2 \mathbf{F}(t)}{\mathbf{m}} + O(\Delta t^4)$$

運動方程式の数値解放 (蛙飛び法)

(古典)分子動力学計算の流れ

各々の原子にかかる「力」を計算する

タンパク質に働く力

- 静電相互作用
- ファンデルワールス相互作用
- 水素結合

 ・ 疎水性相互作用
 (水の存在が重要)

ポテンシャルエネルギー

経験的な「力場」関数により、原子の座標を元に計算する ポテンシャルエネルギーを微分することで、原子に働く力が得られる

$$F_{i} = -\operatorname{grad}_{i} E_{i}$$

grad_i = $\boldsymbol{e}_{x} \frac{\partial}{\partial x_{i}} + \boldsymbol{e}_{y} \frac{\partial}{\partial y_{i}} + \boldsymbol{e}_{z} \frac{\partial}{\partial z_{i}}$

Molecular Mechanics Method (MM法)

分子構造に関する経験的な概念を数学的に記述

Molecular dynamics simulations and drug discovery, Jacob D Durrant and J Andrew McCammon, BMC Biology 2011, 9:71

原子の位置によって、エネルギーが決まる

共有結合に関するポテンシャル

 $K_r(r-r_{eq})^2$

結合長 (bond length)

r

共有結合に関するポテンシャル

$$E_{\text{torsion}} = \frac{1}{2} V_{\phi} [1 + \cos(n\phi - \gamma)]$$
$$E_{\text{improper torsion}} = \frac{1}{2} V_{\varphi} [1 + \cos(n\phi - \gamma)]$$

非結合項のエネルギー (クーロンカ)

 $E_{\text{electrostatic}} = \frac{q_i q_j}{4\pi \varepsilon r_{ii}}$

q_i:原子iの電荷 q_j:原子jの電荷

符号が異なる場合: 斥力 符号が等しい場合: 引力 力の大きさは、距離に反比例する

計算系全体の静電エネルギーは、系を構成するすべての原子ペアに対する 静電エネルギーの和で表される

 $E_{\text{electrostatic}} = \sum_{i < i} \frac{q_i q_j}{4\pi \varepsilon r_{ij}}$

非結合項のエネルギー(ファンデルワールスカ)

計算系全体のファンデルワールス・エネルギーは、系を構成する すべての原子ペアに対するファンデルワールス・エネルギーの和で表される

$$E_{\text{van der Waals}} = \sum_{i < j} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} \right)$$

粗視化モデルと全原子モデル

- 粗視化モデル(ユナイテッド原子モデル)
 - 複数の原子を一つの粒子として扱う
 - 重元素と、それに結合する水素原子など
 - CHARMm19, GROMOS96等

- 全原子モデル
 - 水素原子も含め、全ての原子を別個の粒子として扱う
 - OPLS, Amber, CHARMm22, CHARMm27等

分子力場の種類

- OPLS
 - 結合と結合角のパラメータはAmber ff94と同じ
 - 二面角・非結合のパラメータを独自に決定
- Amber
 - ff94, ff96, ff99, ff03, ff99SB, ff99SB-ILDN等
 - ff94, ff99: ヘリックス構造を取りやすい
 - ff96 シート構造を取りやすい
- CHARMm
 - CHARMm19: 粗視化原子モデル, タンパク質
 - CHARMm22: 全原子モデル, タンパク質&水
 - CHARMm27: 全原子モデル, DNA, RNA, 脂質

Amber分子力場の比較

実質的な自由度が二面角 φ, ϕ のみの最小単位であるアラニンジペプチドや、 グリシンジペプチドを用いて φ, ϕ のパラメータを決定する

ff94	グリシンジペプチドにて主鎖二面角φ,φの値を推定後、 アラニンジペプチドにて二面角φ',φ'の値を推定
ff96	φ,φ(φ = φ)の値を、アラニンテトラペプチドの伸張・ ヘリックス状態のエネルギー差を再現するように調整
ff99	アラニンジペプチドの高精度量子計算により $arphi, \phi$ の値を推定
ff99SB	グリシンジペプチドにてφ,φを推定後、 アラニンジペプチドによりφ',φ'の値を推定
ff03	溶媒中での環境を直接QMで計算し、電荷と二面角を求める
ff99SB-ILDN	ff99SBで φ',ϕ' が再現できないイソロイシン、ロイシン、
	アスパラギン酸、アスパラギンを用いて、 φ', ϕ' を最適化

Fig. 3. Free energy ϕ/ψ maps for Gly₃ (top row) and Ala₃ (bottom row) from 80-ns simulations with explicit TIP3P water. The energies are color coded from 0 up to 5 kcal/mol. PDB survey data is represented by a simple Ramachandran plot. Individual force fields are designated as: ff99SB (this work), ff03,²⁴ ff94,⁵ ff99,¹¹ and ff94gs.¹³

0.0

Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)

-60

-180

-180 -120 -60

PDB

00

60 120 180

分子力場の比較

Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements, Kyle A. Beauchamp, Yu-Shan Lin, Rhiju Das, and Vijay S. Pande, Jornal of Chemical Theory and Computation, 8. 1409-1414, 2012

水分子の力場

	点数	結合長(Å)	結合角(∠HOH°)	qH	qО	qM	qL
SPC	᠈ᇰᆍᆍᆕᆈ	1	109.47	0.41	-0.82		
TIP3P	3点モナル	•		0.417	-0.834		
TIP4P	4点モデル	0.9572	104.52	0.52	0	-1.04	
TIP5P	5点モデル	,		0.241	0		-0.241

水分子の力場

Table 2. Computed properties for liquid water at 25°C and 1 atm

Model	ρ , g/cm ³	$\Delta H_{ m vap}$, kcal/mol	C _p , cal/mol∙deg	10 ⁶ κ, atm ⁻¹	$10^5 \alpha$, deg ⁻¹	ε	10 ⁵ D, cm ² /s
SPC	0.985	10.74	20	60 ± 4	106 ± 8	60 ± 10	3.9
TIP3P	1.002	10.41	20	64 ± 5	92 ± 8	88 ± 6	5.1
TIP4P	1.001	10.65	20	60 ± 5	44 ± 8	60 ± 10	3.3
TIP5P	0.999	10.46	29	41 ± 2	63 ± 6	82 ± 2	2.6
Exptl.	0.997	10.51	18.0	45.8	25.7	78.3	2.30

See refs. 70–72. Values are \pm SD. Exptl., experimental.

Jorgensen, W. L. et al.: Proc. Natl. Acad. Sci. USA, 102, 6665 (2005)

遠距離相互作用の計算: 境界条件

球境界条件では、球境界付近での水の挙動が不自然になる

クーロン相互作用・ファンデルワールス相互後作用の計算量 $\propto N^2$ 結合に関する計算量 $\propto N$

カットオフ法:もっとも単純な近似法

クーロンカは、 r_{ij}^{-1} 、ファンデルワールスカは r_{ij}^{-6} に比例して減衰する

クーロン力は減衰が遅いため、 長距離相互作用を考慮する必要がある

ベルレの帳簿法(距離によるカットオフ)

- 1. 相互作用を計算しようとしている分子からの距離が $r_c + \Delta r$ よりも 短い距離にある全ての分子をリストアップ
- 2. 一定のステップ数が経過するまでは、1. でリストアップした分子 のみをエネルギー計算の対象とする

クーロン相互作用・ファンデルワールス相互後作用の計算量 ∝ N²

カットオフ法: もっとも単純な近似法

クーロンカは、 r_{ij}^{-1} 、ファンデルワールスカは r_{ij}^{-6} に比例して減衰する

クーロン力は減衰が遅いため、 長距離相互作用を考慮する必要がある

系に周期性があることを利用して、エネルギーや力をフーリエ級数展開する 無限遠からの影響を考慮する 周期的境界条件下での静電相互作用 $E_{\text{electrostatic}}(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N) = \frac{1}{2} \sum_{i=1}^{r} \sum_{i=1}^{r} \sum_{i=1}^{r} \frac{q_i q_j}{4\pi\varepsilon[\boldsymbol{r}_i - \boldsymbol{r}_i + n]}$ 収束が遅い Ewald法では、上記の式を以下のように表す $E_{\text{electrostatic}}(\mathbf{r}_N) = E_{\text{real}} + E_{\text{wave}} + E_{\text{self}}$ $E_{\text{real}} = \frac{1}{2} \sum_{n} \sum_{i} \sum_{j} \frac{q_i q_j \operatorname{erfc}(\alpha | \boldsymbol{r}_i - \boldsymbol{r}_j + n |)}{4\pi \varepsilon | \boldsymbol{r}_i - \boldsymbol{r}_j + n |} \quad (補助関数により)収束が速い$ $erfc(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-t^2) dt$

 $E_{\text{wave}} = \frac{2\pi}{V} \sum_{m \neq 0} \frac{\exp\left(-\frac{|\boldsymbol{m}|^2}{4\alpha^2}\right)}{|\boldsymbol{m}|^2} \sum_{i} \sum_{j} \frac{q_i q_j}{4\pi\varepsilon} \cos[\boldsymbol{m} \cdot (\boldsymbol{r}_i - \boldsymbol{r}_j)] \quad \text{収束が速い}$

$$E_{\text{self}} = \sum_{i} \frac{q_i^2}{4\pi\varepsilon} \frac{\alpha}{\sqrt{\pi}} \qquad \text{zgs}$$

Ewald法やParticle Mesh Ewald法(PME法)は、系の電荷の和が0であることが前提系の電荷が0でない場合は、電荷を中和する(0にする)必要がある

イオンを発生させる

- 電荷を中和させるだけのイオン(Na+, Cl-など)を、溶媒に加える (溶媒分子を置き換える)
- 溶質の全原子に電荷を分散させる
- アミノ酸の電荷状態を調節する

分子動力学シミュレーションの実際の流れ

- 1. 構造情報の取得(PDB等)
- 2. 構造情報の確認、欠失領域の補完

電荷、水素原子

3. シミュレーションボックスの定義

境界条件の設定(カットオフ距離を考慮)

- 4. 水分子の追加
- 5. 電荷の中和

イオンの追加等

- 6. エネルギー最小化 (最急勾配法等)
- 7. 系の平衡化(NVT -> NPT)
- 8. プロダクトラン

実際の分子動力学計算

9. トラジェクトリの解析

運動方程式の一般化

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

ラグランジアンL
ポテンシャル
$$L = K - U$$

運動エネルギー

ラグランジュの運動方程式 ____

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$

一般化座標

$$\boldsymbol{q} = (q_1, q_2, \dots, q_n)$$

$$H(\boldsymbol{q},\boldsymbol{p}) = \boldsymbol{p}\dot{\boldsymbol{q}} - L(\boldsymbol{q},\dot{\boldsymbol{q}})$$

ハミルトニアンの正準方程式

$$\dot{q} = rac{\partial H}{\partial p}, \dot{p} = -rac{\partial H}{\partial q}$$

全エネルギーの保存

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \sum_{i=1}^{n} \left\{ \frac{\partial H}{\partial q_i} \frac{\mathrm{d}q_i}{\mathrm{d}t} - \frac{\partial H}{\partial p_i} \frac{\mathrm{d}p_i}{\mathrm{d}t} \right\} = \sum_{i=1}^{n} \left\{ \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} \right\} = 0$$

全エネルギーの時間変化が0なので、エネルギー保存則が成立する

代表的なアンサンブル

アンサンブル

個々の座標や運動量は異なるが、熱力学的には同じ状態にある座標・運動量の集団 分子動力学計算では、運動方程式を解いて得られるタンパク質構造の スナップショットの集合(トラジェクトリ)

ミクロカノニカルアンサンブル (NEVアンサンブル)
 粒子数(N), エネルギー(E), 体積(V)一定

通常の分子動力学計算はNEVアンサンブル ニュートンの運動方程式, ハミルトニアンの正準方程式は エネルギー保存則が成り立つため

- カノニカルアンサンブル (NVTアンサンブル)

 本子数(N), 体積(V), 温度(T)一定
- T-Pアンサンブル (NPTアンサンブル)
 - 粒子数(N), 圧力(P), 温度(T)一定

カノニカルアンサンブル

運動エネルギーと温度の間の関係

$$\sum_{i=1}^{N} \frac{m_i}{2} \, \boldsymbol{v}_i^2 = \frac{3}{2} (N-1) k_B T$$

速度スケーリング法

温度を制御するためには、速度を制御すればいい

$$\boldsymbol{v}_i = s \boldsymbol{v}'_i$$

$$s = \left\{ \frac{(3N-1)k_B T_0}{\sum_i m_i \boldsymbol{v}_i^2} \right\}$$

「タンパク質計算科学基礎と創薬への応用」,神谷成敏,肥後順一,福西快文,中村春木,共立出版,2009

温度・圧力一定のMD (NPTアンサンブル)

「コンピュータ・シミュレーションの基礎」(第2版), 岡崎進, 吉井範行, 化学同人 2011

温度を制御する方法

「コンピュータ・シミュレーションの基礎」(第2版), 岡崎進, 吉井範行, 化学同人 2011

仮想系のハミルトニアンH'

$$H' = \sum_{(i)} \frac{{p'_i}^2}{2m_i V^{\frac{2}{3}} s^2} + U\left(V^{\frac{1}{3}} \boldsymbol{q}^N\right) + \frac{P_s^2}{2Q} + 3NK_B T_0 \ln s + P_{V^2} + P_0 V$$

現実系の運動方程式

$$\ddot{\boldsymbol{q}}_{i} = -\frac{1}{m_{i}V^{\frac{2}{3}}}\frac{\partial U}{\partial \boldsymbol{q}_{i}} - \left(\frac{2\dot{V}}{3V} + \frac{\dot{s}}{s}\right)\dot{\boldsymbol{q}}_{i} \qquad \qquad \ddot{s} = \frac{2s}{Q}\frac{3Nk_{B}}{2}\left(T - T_{O}\right) + \frac{\dot{s}}{s}$$
$$\ddot{V} = \frac{s^{2}}{W}\left(P - P_{O}\right) + \frac{\dot{s}}{s}V$$

 V, pv, s, p_s に関する項を消去 : ミクロカノニカルアンサンブル (NEV) V, pvに関する項を消去 : カノニカルアンサンブル (NVT)

「タンパク質計算科学 基礎と創薬への応用」,神谷成敏,肥後順一,福西快文,中村春木,共立出版,2009

バイオグリッドHPCIプロジェクト「新薬開発を加速する「京」インシリコ創薬基盤の構築」 KBDD (K supercomputer-based drug discovery project by Biogrid pharma consortium)

MP-CAFEE法*による、 タンパク質-リガンド間結合自由エネルギーの計算

^{*}H. Fujitani, et. al., "Massively parallel computation of absolute binding free energy with well-equilibrated states", Physical Review E, 79, 021914, (2009)

分子動力学シミュレーションの課題(1) シミュレーション時間

How Does a Drug Molecule Find Its Target Binding Site?

Yibing Shan,[†] Eric T. Kim,[†] Michael P. Eastwood,[†] Ron O. Dror,[†] Markus A. Seeliger,[§] and David E. Shaw^{*,†,‡}

⁺D. E. Shaw Research, New York, New York 10036, United States

[†]Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, United States [§]Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States

Src kinase(チロシンキナーゼ)と dasatinibの結合

京:88000ノードを使用して、1mMのタンパク質溶液1mLの挙動を1秒間シミュレートしようとすると、、、 ⇒ 1s / (10ns/day) × 10¹⁷個/10⁵個 = 10²⁰年かかる!! 理化学研究所 計算科学研究機構 荒木氏のスライドより

準安定構造からの長時間MDで最安定構造にたどり着けるか?

長時間MDによる化合物結合ポーズの追跡 (CDK2_CS18)

結晶構造 (equil_2)

docking rank10 (equil_3)

結合ポーズは1µs後も同じにならない

⇒正しい結合ポーズ(最安定構造)を予測するには温度レプリカ等の拡張サンプリングが必要 理化学研究所 計算科学研究機構 荒木氏のスライドより

通常のMDシミュレーションでは、タンパク質の構造がエネルギー極小の領域に トラップされることがある

カノニカルアンサンブルでのエネルギー分布

拡張サンプリング

マルチカノニカル法

一様分布になるように、人工的なエネルギー分布Pmu(E)を定義

 $P_{mu}(E) = n(E)W_{mu}(E) = 定数$ $W_{mu}(E) = n(E)^{-1}$ n(E): 状態密度系の状態密度に反比例するように、 マルチカノニカル重み因子 $W_{mu}(E)$ を定義

任意の温度 T_0 におけるマルチカノニカルポテンシャルエネルギー $E_{mu}(E;T_0) = k_B T_0 \ln n(E) = T_0 S(E)$

※事前に、短いMDでマルチカノニカル重み因子W_{mu}(E)を決定しておく必要がある 「生体系のコンピュータ・シミュレーション」,岡崎進,岡本祐幸[編],化学同人,2002

レプリカ交換法

1. 互いに相互作用しない系のコピー(レプリカ)を複数用意する

- 各レプリカで、異なる温度において独立にカノニカルシミュレーションを実行する
- 3. 温度値が隣接した二つのレプリカを、詳細つり合いの条件に基づ いて交換する

$$\Delta = (\beta_m - \beta_n) \{ E(q^{[j]}) - E(q^{[i]}) \}$$

遷移確率 $w(X \to X') = \begin{cases} 1 & \Delta \le 0\\ \exp(-\Delta) & \Delta > 0 \end{cases}$

4. 2.3.を繰り返す。

事前に重み因子を決定する必要がない。 独立したMDシミュレーションを複数実行するため、並列コンピュータに適する。 「生体系のコンピュータ・シミュレーション」,岡崎進,岡本祐幸[編],化学同人,2002

Biophysical Journal Volume 99 September 2010 1637-1644

Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations

Takao Yoda,^{†‡*} Yuji Sugita,^{‡§} and Yuko Okamoto[¶]

[†]Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, Japan; [‡]CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; [§]RIKEN Advanced Science Institute, Wako, Saitama, Japan; and [¶]Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan

- KBDDプロジェクト
 - CSAR CHK1_89 re-docking #1からの、X線結晶構造の探索

Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations

Takao Yoda,^{†‡*} Yuji Sugita,^{‡§} and Yuko Okamoto[¶]

[†]Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, Japan; [‡]CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; [§]RIKEN Advanced Science Institute, Wako, Saitama, Japan; and [¶]Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan

オレンジ: MUCAREMで得られた最小RMSDSの構造 緑&青 :X線構造

Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations

Takao Yoda, 14* Yuji Sugita, \$ and Yuko Okamoto

[†]Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, Japan; [‡]CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; [§]RIKEN Advanced Science Institute, Wako, Saitama, Japan; and [¶]Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan

謝辞

KBDDコンソーシアムメンバー

NPO法人 バイオグリッドセンター

奥野恭史 教授, 荒木望嗣 様 (理化学研究所計算科学研究機構), J. B. Brown 先生 (京都大学医学研究科), 白石慧 様, 佐藤美和 様 (三井情報(株)), 広川貴次 研究チーム長 ((独)産業技術総合研究所),

金井千里 主任研究員((株)京都コンステラテクノロジーズ)

製薬企業 (23社):

アステラス製薬(株)、アスビオファーマ(株)、エーザイ(株)、小野薬品工業(株)、 科研製薬(株)、(株)カネカ、キッセイ薬品工業(株)、杏林製薬(株)、協和発酵キリン(株)、参天製薬(株)、

塩野義製薬(株)、千寿製薬(株)、大正製薬(株)、大日本住友製薬(株)、田辺三菱製薬(株)、

帝人ファーマ(株)、東レ(株)、日産化学工業(株)、日本新薬(株)、日本たばこ産業(株)、マルホ(株)、

MeijiSeikaファルマ(株)、持田製薬(株)

IT企業 (2社):

(株)京都コンステラ・テクノロジーズ,三井情報(株)

(独) 産業技術総合研究所

理研·計算科学研究機構

高度情報科学技術研究機構

http://sciencechannel.jst.go.jp/M120001/detail/M120001027.html

JST サイエンスチャンネルにて放送中

NHK Eテレ サイエンスZERO No. 519

これが世界一のシミュレーション! 「スーパーコンピュータ 京」

スーパーコンピュータ 京」 (2015年10月4日放送)

- 「タンパク質計算科学 基礎と創薬への応用」,神谷成敏・肥後順一・福西快文・中村春木,共 立出版, 2009
- 「コンピュータ・シミュレーションの基礎[第2版]」, 岡崎進・吉井範行, 化学同人, 2011
- 「生体系のコンピュータ・シミュレーション」, 岡崎進・岡本祐幸 編, 化学同人, 2002
- Improved side-chain torsion potentials for the Amber ff99SB protein force field, Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L Klepeis, Ron O Dror, and David E Shaw, Proteins, 78(8), 1950-1958, 2010
- 「生体分子の分子動力学シミュレーション(1) 方法」, 古明地勇人, 上林正巳, 長嶋雲兵, J.
 Chem. Software, Vol. 6, No. 1, pp. 1-36, 2000
- Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements, Kyle A. Beauchamp, Yu-Shan Lin, Rhiju Das, and Vijay S. Pande, Jornal of Chemical Theory and Computation, 8. 1409-1414, 2012
- Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)