
ĤÀ Ģ¦�
doya@oist.jp 

ŏŠŉ£ĆĚk£Ôk£�Û¢ÃëcPKM 

µÆm�¤Áö�³ÙJkM2 
¤Ávâö�.ªĞ II 

2016.2.3 
 

mÄí¤ąGmÄí¤Á.y�.
þö� 



nl.Q2^�
 

þö�G�ġ�ÿ 
�

q�.o2M.boh]2H«Ě 
 

µ�¾�o2M.oC2o;kA 
 

MRIo2M-36ĐÅGbohÎĊ 
 

�þ�Ú.mÄíF_di2Fek 



þGo®­º�
§}�Ú)­º9��#6%2- 
þ."�1-G4876Â�/I�� 

þ.3�Iw�I­º.��ä��6 
.C�4$7-�MI�t/I�� 

 

z�ý.o®­º�òÑ¢.­ð9\jAf`� 

�l.o®­º�XPAo2M�4.È¤�ÿ 

 

w­º9à�°2%©½�o;2\f2VkA 
.3�Iþ9í"%�ÿ.�1�¹¬ð!7%��



�ġ�ÿG/�
³ù�R�ÿ 
 }p�L�H {(x1,y1), (x2,y2),…} 

� �º`Lg�y = f(x) + ε 4Ď² 
 ŔÒ,L�H�x +~�&p��y 4ÄŪ 

³ùI"�ÿ 
 L�H { x1, x2, x3,…} 

� çĂ`Lg�P(x) 4Ď² 
 L�H,ő�+�3Ďě4Ļ��

���ÿ 
 öś-r¤-½ƇL�H {(x1,y1,r1), (x2,y2,r2),…} 

� ½Ƈ4¨k�!3r¤Ş y = f(x) 4Ď² 

x

t

M = 3

0 1

−1

0

1

1 2 3 4 5 6
40

60

80

100



視床�

黒質�

下オリーブ核�

大脳皮質�

大脳�
基底核�

小脳�

目標出力�

誤差信号�
+�

-�

出力�入力�

小脳：教師あり学習：内部モデル�

報酬信号�

出力�入力�

大脳基底核：強化学習：報酬予測�

大脳皮質：教師なし学習：状態表現�

出力�入力�

�ÿ:hagf`-36�ºs��
��Doya, 1999) �



���ÿ 
 ģė 
 ½Ƈ�º: s,a → r 
 ćĊƛę: s,a → s' 

 :�C9jM 
 r¤Ş: s → a 

 �ň
ƒī½Ƈ4¨k�  
 ÕĮ�º: V(s(t)) = E[ r(t) + γr(t+1) + γ2r(t+2) +…] 

0≤γ≤1: ½Ƈ,í·Ă 
 £ŜµŚ: δ(t) = r(t) + γV(s(t+1)) – V(s(t)) ... TDŸħ 
 ½ƇÄŪV(s),ŸħµŚ�r¤Ş�P(a|s) ,¯�µŚ 

環境 

報酬 r 

行動 a 

状態 s 

エージェント 



Ê�´�.�ÿ �  Morimoto & Doya, 2000) 

 ½Ƈ
Ę,{� 
 Ƃ (Ĉ,½Ƈ)
ÿŗ�



mþªĄê 
 T�=jGjĤ(RjJjMjĤ*)(Ù¤+�� 

 

 

 

 

 

 

 ",¶č�,¦ß-�� 

線条体
淡蒼球
黒質
視床



�������

�������

������	�

�� r


���
��

���� V

�� r


���
��

���� V

�� r


���
��

���� V

T2W_kĀģ/ Ġ¥ąėã9�8# 
δ(t) = r(t) + γV(s(t+1)) – V(s(t)) �

(Schultz et al. 1997) 
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(Ito & Doya, 2015) 
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from 260 neurons in DLS, 178 neurons in DMS, and 179 neurons
in VS from seven rats (Fig. 3A) (see Materials and Methods).
Among these, 190, 105, and 119 neurons from DLS, DMS, and
VS, respectively, were classified as PANs (putative medial spiny
projection neurons) based on statistics of interspike intervals
(Schmitzer-Torbert and Redish, 2004) and waveforms (see Ma-
terials and Methods). Only data from these PANs were used for
the following analyses.

Intervals of time between task events (the commencement of
center hole poking, the onset of cue tone, the offset of cue tone,

the termination of center hole poking, the start of L/R hole pok-
ing, and the end of L/R hole poking) varied across trials (Fig. 3B).
To develop an overall neuronal activity profile despite this timing
variability, we created event-aligned spike histograms (EASHs)
(Fig. 3C). An EASH is derived by linearly scaling time intervals
between task events in each trial to the average interval across all
trials (see Materials and Methods). The peak at the start of L/R
poking is clearer in the EASH than in the PETH aligned by the
timing of center hole entry (Fig. 3B,C). We defined the intervals
between task events as trial Phases 1 through 7 (Fig. 3C). DLS,

Figure 3. Representative activity patterns of phasic active neurons in the striatum. A, Tracks of accepted electrode bundles for all rats are indicated by rectangles. Neurons recorded from blue,
green, or red rectangles were classified as DLS, DMS, and VS neurons, respectively. Each diagram represents a coronal section referenced to the bregma (Paxinos and Watson, 1998). B, A raster
showing spikes of a DLS neuron and corresponding events in free-choice and forced-choice trials, which are aligned with the entry time into the center hole. Bottom, PETH with 10 ms bins for this
neuron. C, A corrected raster plot and an event-aligned spike histogram (EASH) with 10 ms bins, derived by linearly scaling time intervals between task events in each trial to the average intervals
across all trials. Numbers of spikes between events are preserved. D–I, EASHs for representative neurons from DLS (D, E), DMS (F, G), and VS (H, I). Top, Four different blue and red lines indicate the
EASHs from four different pairs of selected actions and reward outcomes. Bottom, Purple and orange lines indicate EASHs for fixed-choice blocks and free-choice blocks, respectively. Black lines
indicate averages of EASHs for all trials. All EASHs (10 ms bins) are smoothed by Gaussian kernel with 30 ms SD. D, Same neuron shown in B and C.

Ito and Doya • Striatal Representation in Action Selection J. Neurosci., February 25, 2015 • 35(8):3499 –3514 • 3505
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 posterior parietal cortex (PPC) 

 posterior medial area (PM) 

Akihiro Funamizu, Bernd Kuhn, Kenji Doya 

Investigation of action-dependent state prediction in 
the mouse parietal cortex with two-photon microscopy 

OIST Graduate University 

Investigate the neural correlates of model-based decision 
making in posterior parietal cortex (PPC) in mouse 

Two-photon microscopy: 

- Calcium imaging was conducted with a 
behaving mouse during the task 

- Adeno-associated virus (AAV) delivering the 
gene of GCamp6f was injected into PPC 

Objective 

Virtual sound navigation task: 
- Mouse estimates the distance between him 
and a sound source based on an internal model 
of locomotion 

- Mouse was head restrained under the two-photon microscope 

Speaker 

Spout 

- Locomotion of mouse was captured by an USB mouse 

Two-photon microscopy 
- Sampling rate:  
   30.9 Hz 
- 400 x 400 Pm  
   field of view 
- 512 x 512 pixels 

AAV injection: 
1.5 – 2.5 mm 
posterior,  
1.4 mm right of 
bregma 

Virtual sound navigation task 

Sound: Harmonic sound  
(2,4,8,16,32 kHz, 100 dB SPL from 25 cm, 
every 80 ms) 
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Conclusions 

Virtual Real 

- The virtual position of mouse was updated 
by the mouse’s own locomotion 

- When a mouse passed a sound source and licked a spout, he got a reward 

- In a virtual sound navigation task, mice increased the lickings even when the sound was omitted, suggesting 
that they updated the prediction of sound source position without auditory inputs 

The cortico-cortical circuit from V2 to parietal cortex not only reduces the 
overall uncertainty of state prediction, but also improves the action-dependent  
model-based prediction 

- The sound-generating speakers and sound 
intensity depended on the virtual position of 
mouse 
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Licking behavior 
- The licking increased even 
when the sound was omitted 
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the time from trial start and 
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- Locomotion speed was 
encoded in the parietal cortex 

Regression + Anova 
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- Parietal neurons tended to increase the 
activities in the intermittent conditions, 
while V2 neurons had the opposite tendency - Neurons in the parietal and secondary visual (V2) cortices mainly represented the time from trial start 

and the distance to sound source 
- For encoding the sound-source distance, neurons in the parietal cortex tended to increase the activities during the 
intermittent conditions. Also, they represented the locomotion speed which was important for the action-dependent 
state prediction 
- Bayesian decoding showed that, from V2 to parietal cortex, (i) the prediction accuracy in the intermittent1 
condition improved and (ii) the prediction uncertainty significantly reduced 

Distance decoding:  
Bayesian method 
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significantly worse prediction of sound-source 
distance in the intermittent1 and 2 conditions 
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- Even at the no-sound periods in the intermittent 
conditions, the neurons successfully decoded the 
distance to sound source 

- The prediction in intermittent1 condition 
improved in the parietal cortex 

: No-sounded distance in intermittent2 

MAP: Parietal vs. V2 

Uncertainty: Parietal vs. V2 

p-value: ANOVA 

- The prediction accuracy was improved in 
the parietal cortex compared to V2 

The standard deviations in decoding were compared 
between the parietal and V2 cortices  (*: p < 0.01) 

- x was discretized for every 4.19 cm  

- Training data: Continuous condition 

- n was normalized and discretized 
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Investigation of action-dependent state prediction in 
the mouse parietal cortex with two-photon microscopy 

OIST Graduate University 

Investigate the neural correlates of model-based decision 
making in posterior parietal cortex (PPC) in mouse 

Two-photon microscopy: 

- Calcium imaging was conducted with a 
behaving mouse during the task 

- Adeno-associated virus (AAV) delivering the 
gene of GCamp6f was injected into PPC 

Objective 

Virtual sound navigation task: 
- Mouse estimates the distance between him 
and a sound source based on an internal model 
of locomotion 

- Mouse was head restrained under the two-photon microscope 

Speaker 

Spout 

- Locomotion of mouse was captured by an USB mouse 

Two-photon microscopy 
- Sampling rate:  
   30.9 Hz 
- 400 x 400 Pm  
   field of view 
- 512 x 512 pixels 

AAV injection: 
1.5 – 2.5 mm 
posterior,  
1.4 mm right of 
bregma 

Virtual sound navigation task 
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Conclusions 

Virtual Real 

- The virtual position of mouse was updated 
by the mouse’s own locomotion 

- When a mouse passed a sound source and licked a spout, he got a reward 

- In a virtual sound navigation task, mice increased the lickings even when the sound was omitted, suggesting 
that they updated the prediction of sound source position without auditory inputs 

The cortico-cortical circuit from V2 to parietal cortex not only reduces the 
overall uncertainty of state prediction, but also improves the action-dependent  
model-based prediction 

- The sound-generating speakers and sound 
intensity depended on the virtual position of 
mouse 

Reward: Two drops of water  
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- Neural 
activities of 
parietal and 
V2 cortices in 
layer 2, 3 and 
5 were 
recorded  

Licking behavior 
- The licking increased even 
when the sound was omitted 
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- y(t):  Calcium fluorescence at frame (t) 
- b:      Regression coefficient 
- P, V: Free parameters 
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Significant variables were 
detected with BIC  
(two-sided t-test, p < 0.01) 
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- Neurons mainly encoded 
the time from trial start and 
the distance to sound source 
- Locomotion speed was 
encoded in the parietal cortex 

Regression + Anova 
Neurons encoding the distance or time to sound source were extracted 
(Example: Parietal cortex, layer2) 
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- Parietal neurons tended to increase the 
activities in the intermittent conditions, 
while V2 neurons had the opposite tendency - Neurons in the parietal and secondary visual (V2) cortices mainly represented the time from trial start 

and the distance to sound source 
- For encoding the sound-source distance, neurons in the parietal cortex tended to increase the activities during the 
intermittent conditions. Also, they represented the locomotion speed which was important for the action-dependent 
state prediction 
- Bayesian decoding showed that, from V2 to parietal cortex, (i) the prediction accuracy in the intermittent1 
condition improved and (ii) the prediction uncertainty significantly reduced 
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- At the zero to sound source, V2 cortex had the 
significantly worse prediction of sound-source 
distance in the intermittent1 and 2 conditions 

MAP: Task conditions 
p-value: ANOVA 
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- Even at the no-sound periods in the intermittent 
conditions, the neurons successfully decoded the 
distance to sound source 

- The prediction in intermittent1 condition 
improved in the parietal cortex 

: No-sounded distance in intermittent2 

MAP: Parietal vs. V2 

Uncertainty: Parietal vs. V2 

p-value: ANOVA 

- The prediction accuracy was improved in 
the parietal cortex compared to V2 

The standard deviations in decoding were compared 
between the parietal and V2 cortices  (*: p < 0.01) 

- x was discretized for every 4.19 cm  

- Training data: Continuous condition 

- n was normalized and discretized 
to 3 bins: [-inf, -1.96, 1.96, inf] 
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- The neurons mainly encoded the start of trial and 
reward presentation 
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Supplemental figure10 

Hypothetical cortical algorithm of model-based state prediction 
with Bayesian inference 
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Hypothetical cortical algorithm of model-based state prediction 
with Bayesian inference 
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Computational ideas pervade many areas of science and
have an integrative explanatory role in neuroscience and
cognitive science. However, computational depictions of
cognitive function have had surprisingly little impact on
the way we assess mental illness because diseases of the
mind have not been systematically conceptualized in
computational terms. Here, we outline goals and na-
scent efforts in the new field of computational psychia-
try, which seeks to characterize mental dysfunction in
terms of aberrant computations over multiple scales. We
highlight early efforts in this area that employ reinforce-
ment learning and game theoretic frameworks to eluci-
date decision-making in health and disease. Looking
forwards, we emphasize a need for theory development
and large-scale computational phenotyping in human
subjects.

The explanatory gap
The idea of biological psychiatry seems simple and com-
pelling: the brain is the organ that generates, sustains and
supports mental function, and modern psychiatry seeks
the biological basis of mental illnesses. This approach has
been a primary driver behind the development of genera-
tions of anti-psychotic, anti-depressant, and anti-anxiety
drugs that enjoy widespread clinical use. Despite this
progress, biological psychiatry and neuroscience face an
enormous explanatory gap. This gap represents a lack of
appropriate intermediate levels of description that bind
ideas articulated at the molecular level to those expressed
at the level of descriptive clinical entities, such as schizo-
phrenia, depression and anxiety. In general, we lack a
sufficient understanding of human cognition (and cognitive
phenotypes) to provide a bridge between themolecular and
the phenomenological. This is reflected in questions and
concerns regarding the classification of psychiatric dis-
eases themselves, notably, each time the Diagnostic and
StatisticalManual ofMental Disorders (DSM) of the Amer-
ican Psychiatric Association is revised [1].

While multiple causes are likely to account for the
current state of affairs, one contributor to this gap is the
(almost) unreasonable effectiveness of psychotropic medi-
cation. These medications are of great benefit to a substan-
tial number of patients; however, our understanding of
why they work on mental function remains rudimentary.
For example, receptors are understood as molecular motifs
(encoded by genes) that shuttle information from one
cellular site to another. Receptor ligands, whose blockade

or activation relieves psychiatric symptoms, furnished a
kind of conceptual leap that seemed to obviate the need to
account for the numerous layers of representation inter-
vening between receptor function and behavioral change.
This, in turn, spawned explanations of mental phenomena
in simplistic terms that invoked a direct mapping from
receptor activation to complex changes in mental status.
We are all participants in this state of affairs, since symp-
tom relief in severe mental disease is sufficient from a
clinical perspective, irrespective of whether there are mod-
els that connect underlying biological phenomena to the
damaged mental function. A medication that relieves or
removes symptoms in a large population of subjects is

Review

Glossary

Cognitive phenotype: a phenotype is a measureable trait of an organism.
Although easy to state in this manner, the idea of a phenotype can become
subtle and contentious. Phenotypes include different morphology, biochemical
cascades, neural connection patterns, behavioral patterns and so on.
Phenotypic variation is a term used to refer to those variations in some trait
on which natural selection could act. A cognitive phenotype is a pattern of
cognitive functioning in some domain that could be used to classify styles of
cognition. By analogy, variations in cognitive phenotypes would be subject to
natural selection.
Computational phenotyping: a computational phenotype is a measurable
behavioral or neural type defined in terms of some computational model. By
analogy with other phenotypes, a computational phenotype should show
variation across individuals and natural selection could act on this variation.
Large-scale computational phenotyping in humans has not been carried out;
therefore, the ultimate utility of this idea has not been rigorously tested.
Game theory: the study of mathematical models of interactions between
rational agents.
Instrumental controller: instrumental conditioning is the process by which
reward and punishment are used in a contingent fashion to increase or
decrease the likelihood that some behavior will occur again in the future. An
instrumental controller is one whose control over behavior can be conditioned
in exactly the same fashion. It is an operational term used in the reinforcement
learning approach to motivated behavior to refer to any controller whose
influence over behavior shows the dependence on rewards and punishments
typical of instrumental conditioning.
Neuromodulatory systems: systems of neurons that project to broad regions
of target neural tissue to modulate subsequent neural responses in those
regions. Neuromodulatory systems typically have cell bodies situated in the
brainstem and basal forebrain and deliver neurotransmitters, such as
serotonin, dopamine, acetylcholine and norepinephrine, to target regions.
They are called modulatory because their impact is typically much longer-
lasting than fast synaptic effects mediated by glutamate and they are much
more widely distributed.
Pavlovian controller: an operational name for a behavioral controller that is
Pavlovian in the normal psychological use of this term – that is, the controller
mediates involuntary responses to situations or stimuli. Pavlovian control can
be demonstrated behaviorally and modern work is focused on identifying the
neural substrates that contribute to this function.
Serotonin: a neuromodulator common to many neurons in the raphe nuclei.
Serotonin has a presumed role in clinical depression because of the efficacy of
medications that selectively block its reuptake into neurons after its release
from synaptic terminals (so-called SSRI’s – selective serotonin reuptake
inhibitors).
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unquestionably of great utility, even if the explanation for
why it works is lacking. However, significant gaps in the
effectiveness of medications for different mental illness
mean we should look to advances in modern neuroscience
and cognitive science to deliver more.

We believe that advances in human neuroscience can
bridge parts of the explanatory gap. One area where there
has been substantial progress is in the field of decision-
making. Aberrant decision-making is central to the major-
ity of psychiatric conditions and this provides a unique
opportunity for progress. It is the computational revolution
in cognitive neuroscience that underpins this opportunity
and argues strongly for the application of computational
approaches to psychiatry. This is the basis of computation-
al psychiatry [2–4] (Figure 1). In this article, we consider
this emerging field and outline central challenges for the
immediate future.

Contrasting mathematical and computational modeling
Mathematical modeling
To define computational modeling, we must first distin-
guish it from its close cousin, mathematical or biophysical
modeling. Mathematical modeling provides a quantitative
expression for natural phenomena. Thismay involve build-
ing multi-level (unifying) reductive accounts of natural
phenomena. The reductions involve explanatory models
at one level of description that are based on models at finer
levels, and are ubiquitous in everything from treatments of
action potentials [5] (see also [6] for a broader view) to the
dynamical activity of populations of recurrently connected
neurons [7]. Biophysical realism, however, is a harsh
taskmaster, particularly in the face of incomplete or sparse
data. For example, in humans, there seems to be little

point in building a biophysically detailed model of the
dendrite of single neurons if one can onlymeasure synaptic
responses averaged over millions of neurons and billions of
synapses using functional magnetic resonance imaging
(fMRI) or electroencephalography (EEG).

Biophysical modeling is important for elucidating key
relationships in a hugely complex system [8] and thus
predicting the possible effects of therapeutic interventions
(see [9] for an example using dynamic causal modeling).
For example, it is well known that critical mechanisms
within neuromodulatory systems, such as dopamine, sero-
tonin, norepinephrine and acetylcholine, are subject to
intricate patterns of feedback and interactive control, with
autoreceptors regulating the activity of the very neurons
that release neuromodulators. Moreover, this feedback
often includes the effects of one neuromodulator (e.g.,
serotonin) on the release and impact of others (e.g., dopa-
mine) [10]. These neuromodulators are implicated in many
psychiatric and neurological conditions. The fact that they
play key roles in somany critical functions may explain the
fact, if not the nature, of this exquisite regulation. It is the
complexity of these interactions that invites biophysical
modeling and simulation, for instance, to predict the effect
of medication with known effects on receptors or uptake
mechanisms. Moreover, the capacity to perform fast bio-
physical simulations is essential for evidence-based model
comparison using empirical data [11] and the exploration
of emergent behaviors (e.g., [12]). Simulation has become
vital to vast areas of science and it will be central in
computational psychiatry. Mathematical predictions
based on real neural and biophysical data are important;
however, they are not equivalent to a computational ac-
count of mental or neural function.
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Figure 1. Components of Computational Psychiatry.
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FIGURES

Figure 5. Comparison of Classification Performance: Application of di↵erent algorithms to (a)
semantic verbal fluency, (b) phonological verbal fluency and (c) the combination of the two data.
Relative performance of gLASSO or sgLASSO and SVM depended on the dataset, while sLASSO and
Random Forest were in general significantly outperformed by other algorithms. Classification
performance was significantly di↵erent between all algorithms and significantly higher for each
algorithm with the combined dataset (p < 0.001, u-test).

FIGURES

Figure 8. Discriminative brain areas. Areas higher activated in control subjects than in depressed
subjects are color coded in blue; areas higher activated in depressed subjects than in control subjects
red. For each brain area, the average values over all positive and negative weights are given (normalized
by the highest average positive and negative value over all brain areas, resp.). The numbers indicate the
number of positive or negative weighted voxels in each brain area. Numbers in brackets indicate the
percentage of the respective brain area covered by these voxels. For gLASSO, the sum of negatively and
positively weighted voxels cover 100% of the concerned brain area.
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皮質

視床

大脳皮質モデル
（Potjans and Diesmann, 2013）

4層(2/3, 4, 5, 6)
~50万神経細胞、~50億シナプス

視床モデル
（Vijayan and Kopell, 2012）

HT: high-threshold burst cell： 30
TC: thalamocortical cell： 70

RE: thalamic reticular cell： 30
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２．革新脳の達成目標

A. 霊長類の脳構造・機能マップの作成

マクロスコピック

メゾスコピック

ミクロスコピック

標準化された
脳テンプレートを
統一して使用し、
異なる階層の
データを統合

①霊長類脳における神経結合の構造マップの作成

行動解析や
病態モデルにおいて
重要な回路に特化
してシナプスレベルの
網羅的解析を実施
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脳機能画像データ

細胞活動の網羅的記録
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行動課題の選択と

課題関連
神経回路の抽出

行動解析において
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して細胞レベルの
活動を解析
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①高解像度・広領域・深部観察・高時間分解能を達成する
神経回路構造・機能解析技術の開発

○可視化プローブの開発
○組織操作技術（透明化等）の開発
○広範囲観察のための顕微鏡技術の開発
○超高密度電極アレイの開発
○ヒト脳イメージングのための新規MRI技術の開発

２．革新脳の達成目標

Ｂ．神経回路マップ作成のための革新的技術開発
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