神戸大学計算科学教育センター 計算生命科学の基礎 II 2016.2.3

大規模計測と大規模計算の時代の 脳科学

銅谷 賢治 doya@oist.jp 沖縄科学技術大学院大学、神経計算ユニット

本日のテーマ

脳科学と機械学習

行動のデータのモデルベース解析

神経活動データのデコーディング

MRIデータによる診断とモデル構築

全脳回路の大規模シミュレーション

脳と人工知能

電子回路で知能を実現するために 脳のしくみにとらわれる必要はない。

脳のような高度な知能の実現例がある のだからそれに学ばない手はない。

前世紀の人工知能:専門家の知識をプログラム化 今日の人工知能:ビッグデータからの統計学習

高性能を追い求めた結果、ディープラーニング のような脳を模した学習の強みが再認識された。

■目標:累積報酬を最大化

- 価値関数: V(s(t)) = E[r(t) + γr(t+1) + γ²r(t+2) +...]
 0≤γ≤1: 報酬の割引率
- ■学習信号: δ(t) = r(t) + γV(s(t+1)) V(s(t)) … TD誤差 ● 報酬予測V(s)の誤差信号/行動則 P(a|s) の強化信号

(Morimoto & Doya, 2000)

報酬:頭の高さ 罰(負の報酬):転倒

大脳基底核

■パーキンソン病, ハンチントン病など, 運動に関連

■その正常時の機能は??

ドーパミン細胞は報酬予測誤差を表わす δ(t) = r(t) + γV(s(t+1)) - V(s(t))

大脳基底核の強化学習モデル (Doya 2007)

線条体の神経活動記録

okinawa institute of science and technology graduate university

皮質-線条体回路の階層構造

■背外側線条体 (DLS) - 運動野

● 具体的な運動制御

■背内側線条体 (DMS) - 前頭前野

- 左右の選択時に活動
- タスクレベルの行動価値

■腹側線条体 (VS) - 情動系

● 試行前後の状態価値

● やる価値があるか?

脳内シミュレーション

「意識」の脳機構:面白いけど定義と検証が困難 脳内シミュレーション: 環境の状態遷移モデル P(s'|s,a) を使った予測 ■過去の状態と行動から、現在の状態を推定 ◎ 多義感覚識別、場所細胞、... ■現在の状態から、想定した行動の結果を予測 ● モデルベース意思決定、行動計画、 ■想定したの状態から、行動の結果や原因を予測 ◎ 思考、推論、言語、科学、...

okinawa institute of science and technology graduate university

モデルフリー/モデルベースの行動選択 ■モデルフリー S \circ a = argmax_a Q(s,a) ■モデルベース • $a = argmax_a [r+V(f(s,a))]$ 順モデル: s'=f(s,a) a_i ■定型的行動 \circ a = g(s) g

行動-状態系列を探索中の脳活動

脳内表象の保持

大脳基底核、状態の評価

脳内シミュレーションの現場を捉える

■状態遷移モデルによる予測: s'=f(s,a) or P(s'|s,a) ■行動計画

● 行動価値の予測による探索

Q(s,a) = ∑_{s'}P(s'|s,a)[R(s,a)+γV(s')] ●いつ、どの行動を仮定したのか?? ■状態推定

o dynamic Bayesian filter

P(s_t) ∝ P(o_t|s_t) ∑_{st-1}P(s_t|s_{t-1},a_{t-1}) P(s_{t-1}) 実際の行動からの予測と、感覚入力による修正

二光子顕微鏡による神経活動記録 ■AAウイルスによるカルシウム感受性蛍光タンパク発現 o posterior parietal cortex (PPC) posterior medial area (PM) Site 3: AP -1.66 mm Site 1 Layer 1 -2.16 mm Layer 2 Site 2 Layer 3 Site 3 Layer 4 -3.56 mm 500 µm Laver 5 100 µm

Overall Activities

Goal-Distance Coding Neurons

ゴール距離のデコーディング

■各ニューロンのゴール距離x での活動f_i

◎ 応答関数 p(f_i|x)

■距離*x*のベイズ推定: p(*x*|*f*₁,...,*f_N*) ∝ Π_ip(*f_i*|*x*)p(*x*)

推定分布のダイナミクス

Special Issue: Cognition in Neuropsychiatric Disorders

Computational psychiatry 計算精神医学

P. Read Montague^{1,2}, Raymond J. Dolan², Karl J. Friston² and Peter Dayan³

機械学習によるうつ病サブタイプの 同定、診断と予測

脳画像データ 構造MRI fMRI (resting, task) 遺伝子・生理データ SNP 血中バイオマーカー 行動・臨床データ 心理・行動データ 診断•病歴 投薬応答性

機械学習アルゴリズム

教師なし学習 クラスター解析 独立成分解析 (ICA)

教師あり学習 サポートベクター マシン (SVM) Logistic 回帰

サブタイプ の診断と 予測

治療応答 性の予測

fMRIデータの機械学習によるうつ病診断 (Shimizu et al., 2015)

Semantic Verbal Fluency課題

筋骨格系-神経系階層統合シミュレーション

■HPCI 予測する生命科学・医療および創薬基盤

- 筋肉モデル(高木周)
- ◎ 筋骨格系ダイナミクス (中村仁彦)
- 大脳皮質-基底核-小脳モデル(銅谷賢治)
- パーキンソン病データ(野村泰伸)

パーキンソン振戦の謎

大脳基底核のベータ波と筋肉の震えの周波数は異なる

大脳基底核のスパイクニューロンモデル

Shouno et al. (2009)

● 直接経路:線条体 - 線条体GPi - 視床

●間接経路:線条体 – 線条体GPe/視床下核STN – GPi 「チャネル」の競合による行動選択

視床-大脳皮質モデル

大脳皮質モデル視床視床(Potjans and Diesmann, 2013)
4層(2/3, 4, 5, 6)
~50万神経細胞、~50億シナプス
視床モデル
(Vijayan and Kopell, 2012)皮質びijayan and Kopell, 2012)う・いういんどん Institute of Science AND TECHNOLOGY GRADUATE UNIVERSITY

統合モデル:健常状態

統合モデル:パーキンソン病

革新脳プロジェクト (2014~2023)

■マーモセットの脳構造・機能マップの構築 ● 理研と 22 のラボ OIST: モデル化技術

TOP

Overview Central Institutes **Clinical Research Group**

Technology Development Group

Brain Mapping by Integrated Neurotechnologies for Disease Studies

> Studying the neural networks controlling higher brain functions in the marmoset, to gain new insights into information processing and diseases of the human brain

Brain-mapping projects using the common marmoset

謝辞

- 🔲 fMRI
 - ◎ 清水優
 - ◎ 徳田智磯
 - 吉本潤一郎
 - ◎ 山脇成人(広島大)
 - 田中沙織(ATR)
 - Nicolas Schweighofer (USC)
 - 川人光男 (ATR)
 - 大脳基底核-視床-大脳皮質モデル
 - ◎ 庄野修(HRI)
 - ◎ 五十嵐潤
 - Jan Moren
 - ◎ 大塚誠
 - ◎ 高木周 (東大)
 - 中村仁彦(東大)
 - 野村泰伸(阪大)

新学術領域研究「予測と意思決定」 脳科学研究戦略推進プログラム HPCI戦略プログラム「予測する生命科学」

- Stefan Elfwing
- 森本淳(ATR)
- 行動価値/線条体
 - 伊藤真
 - ◎ 鮫島和行(玉川大)
 - 木村實 (玉川大)
 - 上田康雅(京都府立医大)
- 🛯 脳内シミュレーション
 - 船水章大
 - Bernd Kuhn
 - ◎ Alan Fermin(玉川大)
 - ◎ 吉田岳彦
- 🛛 セロトニン
 - ◎ 宮崎勝彦
 - 宮崎佳代子
 - 濱田太陽
 - 田中謙二 (慶應大)
 - 山中章宏(名古屋大)