線形代数演算ライブラリ BLAS と LAPACK の 基礎と実践 **1**

中田真秀

理化学研究所,情報基盤センター

2017/05/25 CMSI 教育計算科学技術特論 A

BLAS LAPACK 入門 (I) 講義内容

- 線形代数の歴史と重要性
- コンピュータでの数値計算と、線形代数演算
- BLAS, LAPACK の紹介。
- BLAS を使ってみる:行列-行列積
- LAPACK を使ってみる:対称行列の対角化
- まとめと次回予告

- 人類は、線形代数を有志以来やってきた。エジプトが最古 (パピルス)、中国もガウスの消去法は 1000 年以上前に知っていた (九章算術; 紀元前1世紀から紀元後2世紀ころ)。
- あらゆる分野に線形代数がでてくる:物理、化学、工学、生物学、経済、経営...
- コンピュータが生まれ、線形代数演算をコンピュータ上で高速に、大量にやらせることが重要になった。
- 主にスピードおよび規模を追求してきた。これがコンピュータの歴史。

3/56

- 人類は、線形代数を有志以来やってきた。エジプトが最古 (パピルス)、中国もガウスの消去法は 1000 年以上前に知っていた (九章算術; 紀元前1世紀から紀元後2世紀ころ)。
- あらゆる分野に線形代数がでてくる:物理、化学、工学、生物学、経済、経営...
- コンピュータが生まれ、線形代数演算をコンピュータ上で高速に、大量にやらせることが重要になった。
- 主にスピードおよび規模を追求してきた。これがコンピュータの歴史。

- 人類は、線形代数を有志以来やってきた。エジプトが最古 (パピルス)、中国もガウスの消去法は 1000 年以上前に知っ ていた (九章算術; 紀元前1世紀から紀元後2世紀ころ)。
- あらゆる分野に線形代数がでてくる:物理、化学、工学、生物学、経済、経営...
- コンピュータが生まれ、線形代数演算をコンピュータ上で高速に、大量にやらせることが重要になった。
- 主にスピードおよび規模を追求してきた。これがコンピュータの歴史。

- 人類は、線形代数を有志以来やってきた。エジプトが最古 (パピルス)、中国もガウスの消去法は 1000 年以上前に知っていた (九章算術; 紀元前1世紀から紀元後2世紀ころ)。
- あらゆる分野に線形代数がでてくる:物理、化学、工学、生物学、経済、経営...
- コンピュータが生まれ、線形代数演算をコンピュータ上で高速に、大量にやらせることが重要になった。
- 主にスピードおよび規模を追求してきた。これがコンピュータの歴史。

- 人類は、線形代数を有志以来やってきた。エジプトが最古 (パピルス)、中国もガウスの消去法は 1000 年以上前に知っていた (九章算術; 紀元前1世紀から紀元後2世紀ころ)。
- あらゆる分野に線形代数がでてくる:物理、化学、工学、生物学、経済、経営...
- コンピュータが生まれ、線形代数演算をコンピュータ上で高速に、大量にやらせることが重要になった。
- 主にスピードおよび規模を追求してきた。これがコンピュータの歴史。

ちゃんと「線形代数」勉強「しておけば」よかった

後悔の念を twitter 拾ってみた。線形代数、今からでも遅くないのでわからない人は頑張って勉強しましょう!

● 機械学習、ディープラーニングでは convolution(畳み込み) を行うが、これは行列-行列積となっている。

$$C = AB$$

Google のサーチエンジン、Page Rank は、ウェブページ同士の相関を 「行列の固有値や特異値でランク付け」する。

$$Ax = \lambda x, M = U\Sigma V^*$$

● 3D ゲームでは、自分の視点が変わる、物が動くなど、移動回転拡大縮小すると、大量の線形代数演算が同時に行われる。

$O^{\dagger}AO$

$$U^{\dagger}HU = diag(\lambda_1, \lambda_2, \cdots)$$

● 機械学習、ディープラーニングでは convolution(畳み込み) を行うが、これは行列-行列積となっている。

$$C = AB$$

● Google のサーチエンジン、Page Rank は、ウェブページ同士の相関を 「行列の固有値や特異値でランク付け」する。

$$Ax = \lambda x, M = U\Sigma V^*$$

3D ゲームでは、自分の視点が変わる、物が動くなど、移動回転拡大縮小すると、大量の線形代数演算が同時に行われる。

$O^{\dagger}AO$

$$U^{\dagger}HU = diag(\lambda_1, \lambda_2, \cdots)$$

● 機械学習、ディープラーニングでは convolution(畳み込み) を行うが、これは行列-行列積となっている。

$$C = AB$$

Google のサーチエンジン、Page Rank は、ウェブページ同士の相関を 「行列の固有値や特異値でランク付け」する。

$$Ax = \lambda x, M = U\Sigma V^*$$

• 3D ゲームでは、自分の視点が変わる、物が動くなど、移動回転拡大縮小すると、大量の線形代数演算が同時に行われる。

$O^{\dagger}AO$

$$U^{\dagger}HU = diag(\lambda_1, \lambda_2, \cdots)$$

● 機械学習、ディープラーニングでは convolution(畳み込み) を行うが、これは行列-行列積となっている。

$$C = AB$$

Google のサーチエンジン、Page Rank は、ウェブページ同士の相関を 「行列の固有値や特異値でランク付け」する。

$$Ax = \lambda x, M = U\Sigma V^*$$

● 3D ゲームでは、自分の視点が変わる、物が動くなど、移動回転拡大縮小すると、大量の線形代数演算が同時に行われる。

$O^{\dagger}AO$

$$U^{\dagger}HU = diag(\lambda_1, \lambda_2, \cdots)$$

● 機械学習、ディープラーニングでは convolution(畳み込み) を行うが、これは行列-行列積となっている。

$$C = AB$$

Google のサーチエンジン、Page Rank は、ウェブページ同士の相関を 「行列の固有値や特異値でランク付け」する。

$$Ax = \lambda x, M = U\Sigma V^*$$

• 3D ゲームでは、自分の視点が変わる、物が動くなど、移動回転拡大縮小すると、大量の線形代数演算が同時に行われる。

$O^{\dagger}AO$

$$U^{\dagger}HU = diag(\lambda_1, \lambda_2, \cdots)$$

The Rhind Papyrus (the Ahmes Papyrus; BC 1650頃)



九章算術(中国、紀元前1世紀から紀元後2世紀ころ)、方程から

三国魏の時代に劉徽によって整理と注釈が加えられた。人類史上初めての連立 一次方程式を Gauss の消去法で解いたと思われる。

> 日置 上禾福乘中行而以直除 中 斗於右方中左禾 上 決都之皆實課 禾 禾 之術左如令程 三 又也右物每也 秉四斗 秉九 秉二 一乗中 未二 四 四 分斗之 分斗之 斗之 右晓且列物各 禾 也特有行再有

九章算術(中国、紀元前1世紀から紀元後2世紀ころ)、方程から

- 今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?
- 答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一 秉,二斗、四分斗之三。
- 方程術日,置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、 左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以 中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實 即下禾之實。求中禾,以法乘中行下實,而除下禾之實。餘如中禾秉數而一, 即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。餘如上禾秉 數而一,即上禾之實。實皆如法,各得一斗。

九章算術 (紀元前1世紀から紀元後2世紀ころ)、方程、中田+Google trans. 訳

- 問:3束の上質のキビ、2束の中質のキビ、1束の低質のキビが39個のバケツに入っている。2束の上質のキビ、3束の中質のキビ、1束の低質のキビが34個のバケツに入っている。1束の上質のキビ、2束の中質のキビ、3束の低質のキビが26個のバケツに入っている。上質、中質、低質のキビー束はそれぞれバケツいくつになるか。
- 答: 上質 9¼, 中質 4¼, 低質 2¾
- 上質のキビ3束、中質のキビ3束、低質のキビ1束を39バケツを右行に置く。中行、左行も右のように並べる。右の上質を中行にかけ、右行で引く。また左行にもかけて右行から引く。次に、中行の中質のキビの余りを左行にかけて、中行で引く。左の低質に余りがあるのでそして、割れば求まる(実を法で割る)。以下略

現代風に...

九章算術 (紀元前1世紀から紀元後2世紀ころ)、方程、中田+Google trans. 訳

● 問:

$$\begin{cases} 3x + 2y + z = 39 \cdots (£) \\ 2x + 3y + z = 34 \cdots (‡) \\ x + 2y + 3z = 26 \cdots (£) \end{cases}$$

(右) はそのまま、(中) は (中) を 3 倍したものから (右) を 2 倍したものを引く、(左) を 3 倍して (左) から (右) を引く。

$$3(2x + 3y + z = 34)$$
 $3(x + 2y + 3z = 39)$ $2(3x + 2y + z = 39)$ $3x + 2y + z = 39$ $4y + 8z = 39 \cdot \cdot \cdot (左)$

● それから、(左) を 5 倍する。

$$\begin{cases} 3x + 2y + z = 39 \cdots (右) \\ 5y + z = 24 \cdots (中) \\ 20y + 40z = 195 \cdots (左) \end{cases}$$

● (左)-(中)x4 をする

$$36z = 99$$

後は略

近現代の線形代数

- 1693 年ライプニッツ、1750 年頃クラメール、1888 年ペアノ
- 1900 年有限のベクトル空間の定義
- 大雑把に:無限次元の線形代数=ヒルベルト空間 (=量子力学)
- 1950 年代~コンピュータ上での線形代数の発達 (LU 分解、固有値分解など)

ENIAC で計算を行なっている写真

ENIAC(エニアック、Electronic Numerical Integrator and Computer、1946年) は、アメリカで開発された黎明期の電子計算機(コンピュータ)10桁の数値同士の乗算は14サイクル(2800マイクロ秒)かかり、毎秒357回ということになる (Wikipedia より)。



コンピュータでの実数演算と線形代数演算について

コンピュータは有限の整数しか扱えない。2 進数で 32 桁、64 桁などのビット列を実数とみなすのが普通である (浮動小数点数)。

浮動小数点数は、符号、仮数部 (fraction)、指数部 (exponent)、a_n は 0 or 1 から成る。

$$\pm \left\{ 1 + \sum_{n=1}^{k} a_n \overbrace{\left(\frac{1}{2}\right)^n}^n \times \overbrace{2^m}^{exponent} \right\}$$

2 進数を 10 進数で表してみる例。4 ビット 2 進数"1.011" を 10 進数になおしてみる。

$$1.011_{(2)} = 1 + 0 \times 0.5 + 1 \times 0.25 + 1 \times 0.125 = 1.375_{(10)}$$

● 浮動小数点数を 10 進数で表してみる例。4 ビット 2 進数"-1.101 × 2⁵ " を 10 進数 になおしてみる。

$$-1.101 \times 2^5 = -(1 + 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125) \times 32 = 52$$

コンピュータは有限の整数しか扱えない。2 進数で 32 桁、64 桁などのビット列を実数とみなすのが普通である (浮動小数点数)。

● 浮動小数点数は、符号、仮数部 (fraction)、指数部 (exponent)、*a_n* は 0 or 1 から成る。

$$\pm \left\{ 1 + \sum_{n=1}^{k} a_n \overbrace{\left(\frac{1}{2}\right)^n}^{fraction} \times \underbrace{2^m}^{exponent} \right\}$$

2 進数を 10 進数で表してみる例。4 ビット 2 進数"1.011" を 10 進数になおしてみる。

$$1.011_{(2)} = 1 + 0 \times 0.5 + 1 \times 0.25 + 1 \times 0.125 = 1.375_{(10)}$$

● 浮動小数点数を 10 進数で表してみる例。4 ビット 2 進数"-1.101 × 25 " を 10 進数 になおしてみる。

$$-1.101 \times 2^5 = -(1 + 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125) \times 32 = 52$$

コンピュータは有限の整数しか扱えない。2 進数で32 桁、64 桁などのビット列を実数とみなすのが普通である(浮動小数点数)。

浮動小数点数は、符号、仮数部 (fraction)、指数部 (exponent)、a_n は 0 or 1 から成る。

$$\pm \left\{ 1 + \sum_{n=1}^{k} a_n \overbrace{\left(\frac{1}{2}\right)^n}^{fraction} \times \underbrace{2^m}^{exponent} \right\}$$

2 進数を 10 進数で表してみる例。4 ビット 2 進数"1.011" を 10 進数になおしてみる。

$$1.011_{(2)} = 1 + 0 \times 0.5 + 1 \times 0.25 + 1 \times 0.125 = 1.375_{(10)}$$

● 浮動小数点数を 10 進数で表してみる例。4 ビット 2 進数"-1.101 × 25 " を 10 進数 になおしてみる。

$$-1.101 \times 2^5 = -(1 + 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125) \times 32 = 52$$

コンピュータは有限の整数しか扱えない。2 進数で32 桁、64 桁などのビット列を実数とみなすのが普通である(浮動小数点数)。

浮動小数点数は、符号、仮数部 (fraction)、指数部 (exponent)、a_n は 0 or 1 から成る。

$$\pm \left\{ 1 + \sum_{n=1}^{k} a_n \overbrace{\left(\frac{1}{2}\right)^n}^{fraction} \times \underbrace{2^m}^{exponent} \right\}$$

● 2 進数を 10 進数で表してみる例。4 ビット 2 進数"1.011" を 10 進数になおして みる。

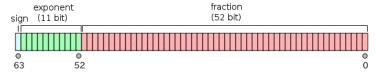
$$1.011_{(2)} = 1 + 0 \times 0.5 + 1 \times 0.25 + 1 \times 0.125 = 1.375_{(10)}$$

● 浮動小数点数を 10 進数で表してみる例。4 ビット 2 進数"-1.101 × 2⁵ "を 10 進数 になおしてみる。

$$-1.101 \times 2^5 = -(1 + 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125) \times 32 = 52$$

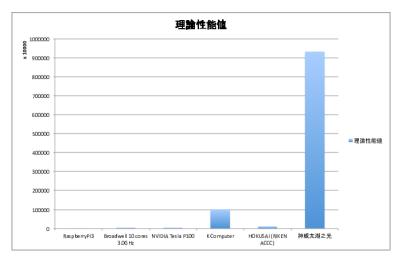
コンピュータでの数の取扱い:倍精度

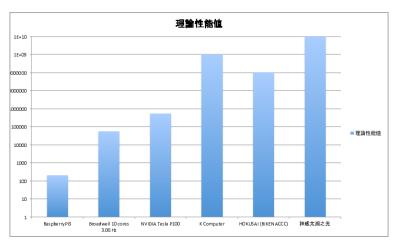
- "754-2008 IEEE Standard for Floating-Point Arithmetic"
- binary64 (倍精度) フォーマットは 10 進 16 桁の有効桁がある



- ほとんどののコンピュータがこれを使っている。
- 1 秒間に 1 回浮動小数点数が計算できること=Floating point operation per second
- \bullet G = 10⁹, T = 10¹², P = 10¹⁵
- 速さ:Core i7 (Broadwell, 10 cores, 3.5GHz): ~560GFLOPS; NVIDIA TESLA P100 ~5.3TFLOPS, 京コンピュータ ~ 10PFLOPS), HOKUSAI (1PFlops), 神威太湖之光 (93.01PFlops)

倍精度の計算スピードの比較





精度が有限であることに特に注意!

● 例えば "倍精度" は 10 進 16 桁の精度をもつので、以下が成り立ってしまう

● 結合法則は必ずしも成り立たない。

$$a + (b+c) \neq (a+b) + c$$

精度が有限であることに特に注意!

● 例えば "倍精度" は 10 進 16 桁の精度をもつので、以下が成り立ってしまう

● 結合法則は必ずしも成り立たない。

$$a + (b+c) \neq (a+b) + c$$

精度が有限であることに特に注意!

● 例えば "倍精度" は 10 進 16 桁の精度をもつので、以下が成り立ってしまう

● 結合法則は必ずしも成り立たない。

$$a + (b+c) \neq (a+b) + c$$

- a を変えた場合、float ((18+a) a) はどんな値を取りうるか。
- (a) 18 のみ。
- (b) 0 を取る場合がある
- (c) それ以外

- a を変えた場合、float ((18+a) a) はどんな値を取りうるか。
- (a) 18 のみ。
- (b) 0 を取る場合がある
- (c) それ以外

- a を変えた場合、float ((18+a) a) はどんな値を取りうるか。
- (a) 18 のみ。
- (b) 0 を取る場合がある
- (c) それ以外

- a を変えた場合、float ((18+a) a) はどんな値を取りうるか。
- (a) 18 のみ。
- (b) 0 を取る場合がある
- (c) それ以外

コンピュータでの実数演算の注意点

答えは (c) でした。

```
$ cat test.c
#include <math.h>
#include <stdio.h>
int main()
{
    double a = 18.0;
    double b = pow(2,57);
    printf("%lf\n", (a+b) - b);
}
$ gcc test.c; ./a.out
32.000000
```

線形代数演算でもこんなことが起こる (明星大山中先生より教えていただいた)。

コンピュータでの線形代数

線形代数の教科書に載っているやり方をそのままコンピュータに載せると...

- 線形連立一次方程式をガウスの消去法でそのまま解く。
- 行列-行列の積を求める。→ コンピュータの構造をある程度理解しないと、 そのままでは大変遅い。
- クラメールの公式で線形連立一次方程式を解く。
- 行列式を求める。→ 誤差が大きくなる。行列式は通常直接求めない。
- 結果がおかしい: 収束しない, 0 で割った...
 - → バグを突き止めるのは難しい時がある

線形代数の教科書に載っているやり方をそのままコンピュータに載せると...

- 線形連立一次方程式をガウスの消去法でそのまま解く。
- 行列-行列の積を求める。→ コンピュータの構造をある程度理解しないと、 そのままでは大変遅い。
- クラメールの公式で線形連立一次方程式を解く。
- 行列式を求める。→ 誤差が大きくなる。行列式は通常直接求めない。
- 結果がおかしい: 収束しない, 0 で割った...
 - → バグを突き止めるのは難しい時がある

線形代数の教科書に載っているやり方をそのままコンピュータに載せると...

- 線形連立一次方程式をガウスの消去法でそのまま解く。
- 行列-行列の積を求める。→ コンピュータの構造をある程度理解しないと、 そのままでは大変遅い。
- クラメールの公式で線形連立一次方程式を解く。
- 行列式を求める。→ 誤差が大きくなる。行列式は通常直接求めない。
- 結果がおかしい: 収束しない, 0 で割った...
 - → バグを突き止めるのは難しい時がある

線形代数の教科書に載っているやり方をそのままコンピュータに載せると...

- 線形連立一次方程式をガウスの消去法でそのまま解く。
- 行列-行列の積を求める。→ コンピュータの構造をある程度理解しないと、 そのままでは大変遅い。
- クラメールの公式で線形連立一次方程式を解く。
- 行列式を求める。→ 誤差が大きくなる。行列式は通常直接求めない。
- 結果がおかしい: 収束しない, 0 で割った...
 - ハンで大き圧のののは無しい時かのの

線形代数の教科書に載っているやり方をそのままコンピュータに載せると...

- 線形連立一次方程式をガウスの消去法でそのまま解く。
- 行列-行列の積を求める。→ コンピュータの構造をある程度理解しないと、 そのままでは大変遅い。
- クラメールの公式で線形連立一次方程式を解く。
- 行列式を求める。→ 誤差が大きくなる。行列式は通常直接求めない。
- 結果がおかしい: 収束しない, 0 で割った...
 - → バグを突き止めるのは難しい時がある

線形代数の教科書に載っているやり方をそのままコンピュータに載せると...

- 線形連立一次方程式をガウスの消去法でそのまま解く。
- 行列-行列の積を求める。→ コンピュータの構造をある程度理解しないと、 そのままでは大変遅い。
- クラメールの公式で線形連立一次方程式を解く。
- 行列式を求める。→ 誤差が大きくなる。行列式は通常直接求めない。
- 結果がおかしい: 収束しない, 0 で割った...
 - → バグを突き止めるのは難しい時がある

● そんなこと言っても自分はそこまで詳しくないし、便利なプログラムはすでに無いの?

あります。BLAS, LAPACK をつかいましょう

● コンピュータの仕組みをにあったやり方とはどうするのか?

来週やります

● そんなこと言っても自分はそこまで詳しくないし、便利なプログラムはすでに無いの?

あります。BLAS, LAPACK をつかいましょう

● コンピュータの仕組みをにあったやり方とはどうするのか?

来週やります

● そんなこと言っても自分はそこまで詳しくないし、便利なプログラムはすでに無いの?

あります。BLAS, LAPACK をつかいましょう

● コンピュータの仕組みをにあったやり方とはどうするのか?

来週やります

● そんなこと言っても自分はそこまで詳しくないし、便利なプログラムはすでに無いの?

あります。BLAS, LAPACK をつかいましょう

● コンピュータの仕組みをにあったやり方とはどうするのか?

来週やります

● そんなこと言っても自分はそこまで詳しくないし、便利なプログラムはすでに無いの?

あります。BLAS, LAPACK をつかいましょう

● コンピュータの仕組みをにあったやり方とはどうするのか?

条週やります

● そんなこと言っても自分はそこまで詳しくないし、便利なプログラムはすでに無いの?

あります。BLAS, LAPACK をつかいましょう

● コンピュータの仕組みをにあったやり方とはどうするのか?

(来週やります)

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- コンピュータで線形代数演算するなら BLAS+LAPACK を使いましょう。
- 品質、信頼性がとても高いです。
- 無料で入手出来ます。
- 高速版 (機種、OS による) がある場合もあります。
- 密行列のみ (疎行列は他のライブラリを利用する)。
- !コンピュータでの行列線形代数演算の基礎中の基礎!

- BLAS は Basic Linear Algebra Subprograms の略
- 基礎的な線形代数の「サブ」プログラム
 - ベクトル-ベクトルの内積
 - 行列-ベクトル積
 - 行列-行列積
- FORTRAN77 でさまざまなルーチンの仕様を提供している。
- 参照実装の形で提供されている (Reference BLAS)
 - BLAS のルーチンを「ブロック」にしてより高度なことを する。
 - この実装を「お手本」とする
 - とても美しいコード!
 - 高速版もある。

http://www.netlib.org/blas

- BLAS は Basic Linear Algebra Subprograms の略
- 基礎的な線形代数の「サブ」プログラム
 - ベクトル-ベクトルの内積
 - 行列-ベクトル積
 - 行列-行列積
- FORTRAN77 でさまざまなルーチンの仕様を提供している。
- 参照実装の形で提供されている (Reference BLAS)
 - BLAS のルーチンを「ブロック」にしてより高度なことを する。
 - この実装を「お手本」とする
 - とても美しいコード!
 - 高速版もある。

nttp://www.netlib.org/blas

- BLAS は Basic Linear Algebra Subprograms の略
- 基礎的な線形代数の「サブ」プログラム
 - ベクトル-ベクトルの内積
 - 行列-ベクトル積
 - 行列-行列積
- FORTRAN77 でさまざまなルーチンの仕様を提供している。
- 参照実装の形で提供されている (Reference BLAS)
 - BLAS のルーチンを「ブロック」にしてより高度なことを する。
 - この実装を「お手本」とする
 - とても美しいコード!
 - 高速版もある。

nttp://www.netlib.org/blas

- BLAS は Basic Linear Algebra Subprograms の略
- 基礎的な線形代数の「サブ」プログラム
 - ベクトル-ベクトルの内積
 - 行列-ベクトル積
 - 行列-行列積
- FORTRAN77 でさまざまなルーチンの仕様を提供している。
- 参照実装の形で提供されている (Reference BLAS)
 - BLAS のルーチンを「ブロック」にしてより高度なことを する。
 - この実装を「お手本」とする
 - とても美しいコード!
 - 高速版もある。

nttp://www.netlib.org/blas

- BLAS は Basic Linear Algebra Subprograms の略
- 基礎的な線形代数の「サブ」プログラム
 - ベクトル-ベクトルの内積
 - 行列-ベクトル積
 - 行列-行列積
- FORTRAN77 でさまざまなルーチンの仕様を提供している。
- 参照実装の形で提供されている (Reference BLAS)
 - BLAS のルーチンを「ブロック」にしてより高度なことを する。
 - この実装を「お手本」とする
 - とても美しいコード!
 - 高速版もある。

http://www.netlib.org/blas

Level 1 BLAS

BLAS には Level 1, 2, 3 と三種類のものがある。 Level 1:ベクトル-ベクトル演算 (+そのほか) のルーチン群

● ベクトルの加算 (DAXPY),

$$y \leftarrow \alpha x + y, \tag{1}$$

● 内積計算 (DDOT)

$$dot \leftarrow \mathbf{x}^T \mathbf{y},\tag{2}$$

など 15 種類あり, さらに単精度, 倍精度, 複素単精度, 複素数倍精度についての 4 通りの組み合わせがある.

Level 2 BLAS

BLAS には Level 1, 2, 3 と三種類のものがある。 Level 2:行列-ベクトル演算ルーチン群

● 行列-ベクトル積 (DGEMV)

$$\mathbf{y} \leftarrow \alpha A \mathbf{x} + \beta \mathbf{y},\tag{3}$$

● 上三角行列の連立一次方程式を解く (DTRSV)

$$x \leftarrow A^{-1}b, \tag{4}$$

など 25 種類あり, 同じように 4 通りの組み合わせがある。

Level 3 BLAS

BLAS には Level 1, 2, 3 と三種類のものがある。Level 3 BLAS は行列-行列演算のルーチン群であり

● 行列-行列積 (DGEMM),

$$C \leftarrow \alpha AB + \beta C \tag{5}$$

● 行列-行列積 DSYRK,

$$C \leftarrow \alpha A A^T + \beta C \tag{6}$$

● 上三角行列の連立一次方程式を解く DTRSM

$$B \leftarrow \alpha A^{-1}B \tag{7}$$

など9種類ある。

BLASの命名規則とルーチン

型:単精度、倍精度、単精度複素数、倍精度複素数で接頭辞 "s", "d", "c", "z" がつく。

LEVEL1 BLAS							
zrotg	zdcal	drotg	drot	drotm	zdrot	zswap	
dswap	zdscal	dscal	zcopy	dcopy	zaxpy	daxpy	
ddot	zdotc	zdotu	dznrm2	dnrm2	dasum	izasum	
idamax	dzabs1						

LEVEL2 BLAS							
zgemv	dgemv	zgbmv	dgbmv	zhemv	zhbmv	zhpmv	dsymv
dsbmv	ztrmv	zgemv	dgemv	zgbmv	dgemv	zhemv	zhbmv
zhpmv	dsymv	dsbmv	dspmv	ztrmv	dtrmv	ztbmv	ztpmv
dtpmv	ztrsv	dtrsv	ztbsv	dtbsv	ztpsv	dger	zgeru
zgerc	zher	zhpr	zher2	zhpr2	dsyr	dspr	dsyr2
dspr2		•		•	•	•	

	LEVEL3 BLAS							
	zherk	dsyrk	zsyrk	zhemm	dsymm	zsymm	dgemm	zgemm
RIKEI		dtrsm	ztrsm	dtrmm	ztrmm	zher2k	dsyr2k	zsyr2k
							-	

LAPACKとは?

LAPACK(Linear Algebra PACKage) もその名の通り, 線形代数パッケージである.

- BLAS をビルディングブロックとして使いつつ、より高度な問題である連立一次方程式、最小二乗法、固有値問題、特異値問題を解くことができる.
- 下請けルーチン群も提供する: 行列の分解 (LU 分解, コレスキー分解, QR 分解, 特異値分解, Schur 分解, 一般化 Schur 分解), さらには条件数の推定ルーチン, 逆行列計算など。
- 品質保証も非常に精密かつ系統的で、信頼がおける。
- パソコンからスーパーコンピュータまで様々な CPU、OS 上で動く。
- Fortran 90 で書かれ、3.7.0 は 1600 以上のルーチンからなっている。
- web サイトはなんと 1 億 4400 万ヒットである! (2017/5/22 現在; 年 1000 万ヒットくらい?)
- github で開発が続いている (https://github.com/Reference-LAPACK)

http://www.netlib.org/lapack

BLAS, LAPACK を利用したソフトウェア

著名な計算プログラムパッケージは大抵 BLAS, LAPACK を利用している.

- 物理、化学では Gaussian, Gamess, ADF, VASP
- 線形計画問題の CPLEX, NUOPT, GLPK など..
- 高級言語からも利用可能 Ruby, Python, Perl, Java, C, Mathematica, Maple, Matlab, R, octave, SciLab

Top 500

Top 500:世界で一番高速なコンピューターを決める Top 500 では, LINPACK のパフォーマンスを測定してランキングが定まる. ここで一番重要なのは, DGEMMと呼ばれる行列-行列積のパフォーマンスで, このチューンナップが重要である。政治的にも重要。

http://www.top500.org/

BLAS, LAPACK の現状:高速な BLAS, LAPACK について

Reference BLAS はある意味仕様書そのままなので、非常に低速である。メモリの階層構造などは非常に意識して書かれているが、CPU に最適化は、各々がやる、というスタンスである。

- OpenBLAS: Zhang Xianyi 氏が GotoBLAS2 の開発を引き継いだ。開発は アクティブで SandyBridge 以降のプロセッサにも対応している。また、 ARM 各種、AMD、Power, ICT Loongson-3A, 3B にも対応。
- Intel MKL: Intel が開発している加速された BLAS および LAPACK。2012 年から後藤氏が Intel に移籍してチューニングしているので Intel 系では最速と思われる。後藤氏は OpenBLAS の前身の GotoBLAS2 の作者。
- ATLAS:R. Clint Whaley 氏による, オートチューニング機構で高速化した BLAS。それまでの 2001 年より多くのコンピュータの BLAS 環境を劇的 に改善した, パイオニア的存在。ハンドチューニングした BLAS よりは数 %から数 10%低速程度
- GPU 向け BLAS, LAPACK: GPU は CPU に比べ電力 1W あたりの演算量が数倍~10 倍程度高速かつ安価なので, 近年大変良く使われるようになった. MAGMA プロジェクトは CUDA, Xeon Phi OpenCL など GPU やアクセラレータ向け BLAS, LAPACK を開発している。NVIDIA の cuBLAS よりも高速。

BLAS, LAPACK を使う上での注意点:環境依存が激しい

- CPU の種類、OS のバージョン、どの言語から使うかなどによって大きく やり方がかわる。
 - どのように BLAS をコールするか? C? FORTRAN? Python? Ruby?
 - 32bit OS か 64bit OS か?
- GPU などを使うとなると、さらに複雑になる。
- 実行環境を整えるのは、Linux が一番楽、MacOSX が次、Windows が一番難しい。
- 今回は Ubuntu 16.04 x86 を使った。

BLAS、LAPACK を使ってみる

Ubuntu 16.04 デスクトップ版で実際に BLAS, LAPACK を実際に使ってみる。 C++から

- 行列-行列積
- 対称行列の対角化

を行う。

BLAS、LAPACK のインストール

Ubuntu 16.04 で次のようにすると、BLAS、LAPACK の開発環境が整う。

```
$ sudo apt-get install gfortran g++ libblas-dev liblapack-dev
パッケージリストを読み込んでいます... 完了
依存関係ツリーを作成しています
状態情報を読み取っています... 完了
```

成功したら二回目の実行で

. . .

```
$ sudo apt-get install gfortran g++ libblas-dev liblapack-dev
```

g++ はすでに最新バージョンです。 gfortran はすでに最新バージョンです。

libblas-dev はすでに最新バージョンです。

liblapack-dev はすでに最新バージョンです。

アップグレード: 0 個、新規インストール: 0 個、削除: 0 個、保留: 172 個。

行列-行列の積

行列-行列積 DGEMM を使ってみよう. ここでは、

$$A = \begin{pmatrix} 1 & 8 & 3 \\ 2 & 10 & 8 \\ 9 & -5 & -1 \end{pmatrix} B = \begin{pmatrix} 9 & 8 & 3 \\ 3 & 11 & 2.3 \\ -8 & 6 & 1 \end{pmatrix} C = \begin{pmatrix} 3 & 3 & 1.2 \\ 8 & 4 & 8 \\ 6 & 1 & -2 \end{pmatrix}$$

$$C \leftarrow \alpha AB + \beta C$$

を計算するプログラムを書いてみる.

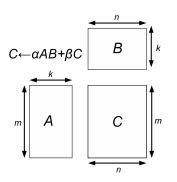
答えは

$$\begin{pmatrix} 21 & 336 & 70.8 \\ -64 & 514 & 95 \\ 210 & 31 & 47.5 \end{pmatrix}$$

である。

行列-行列の積:DGEMM の詳細

今回は CBLAS から、BLAS を呼んでみる。
void F77_dgemm(const char *transa, const char *transb,
int m, int n, int k, const double * alpha, const double *A,
int lda, const double * B, int ldb, const double *beta,
double *C, int ldc);



- "transa", "transb", "transc" で 行列を転置するか否かを指定。
- A, B, C は行列への Row major の配列、またはポインタ
- M, N, K は行列の次元。左図 参照
- alpha, beta は行列積に対する 掛けるスカラー

行列-行列の積のリスト|

```
#include <stdio.h>
                                                  int main()
extern "C" {
#define ADD
#include <cblas f77.h>
//Matlab/Octave format
void printmat(int N, int M, double *A, int LDA) {
  double mtmp;
  printf("[ ");
  for (int i = 0; i < N; i++) {
    printf("[ ");
    for (int j = 0; j < M; j++) {
      mtmp = A[i + j * LDA];
      printf("%5.2e", mtmp);
      if (j < M - 1) printf(", ");
    } if (i < N - 1) printf("]; ");</pre>
    else printf("| ");
  } printf("]");
```

```
int main()
int n = 3; double alpha, beta;
double *A = new double[n*n];
double *B = new double[n*n];
double *C = new double[n*n];

A[0+0*n]=1; A[0+1*n]= 8; A[0+2*n]= 3;
A[1+0*n]=2; A[1+1*n]=10; A[1+2*n]= 8;
A[2+0*n]=9; A[2+1*n]=-5; A[2+2*n]=-1;

B[0+0*n]= 9; B[0+1*n]= 8; B[0+2*n]=3;
B[1+0*n]= 3; B[1+1*n]=11; B[1+2*n]=2.3;
B[2+0*n]=-8; B[2+1*n]= 6; B[2+2*n]=1;

C[0+0*n]=3; C[0+1*n]=3; C[0+2*n]=1.2;
C[1+0*n]=8; C[1+1*n]=4; C[1+2*n]=8;
C[2+0*n]=6; C[2+1*n]=1; C[2+2*n]=-2;
```


行列-行列の積のリストII

行列-行列の積のコンパイルと実行

先ほどのリストを"dgemm_demo.cpp" などと保存する。

```
$ g++ dgemm_demo.cpp -o dgemm_demo -lblas -lapack
```

でコンパイルができる. 何もメッセージが出ないなら, コンパイルは成功である。 実行は以下のようになっていればよい。 Octave や Matlab にこの結果をそのま まコピー&ペースとすれば答えをチェックできるようにしてある。

```
$ ./dgemm_demo
# dgemm demo...
A =[[ 1.00e+00, 8.00e+00, 3.00e+00]; [ 2.00e+00, 1.00e+01, 8.00e+00];
       [ 9.00e+00, -5.00e+00, -1.00e+00] ]
B =[[ 9.00e+00, 8.00e+00, 3.00e+00]; [ 3.00e+00, 1.10e+01, 2.30e+00];
       [ -8.00e+00, 6.00e+00, 1.00e+00] ]
C =[ [ 3.00e+00, 3.00e+00, 1.20e+00] ]
alpha = 3.000e+00, 1.00e+00, -2.00e+00] ]
alpha = 3.000e+00
beta = -2.000e+00
ans=[ [ 2.10e+01, 3.36e+02, 7.08e+01]; [ -6.40e+01, 5.14e+02, 9.50e+01];
       [ 2.10e+02, 3.10e+01, 4.75e+01] ]
#check by Matlab/Octave by:
alpha * A * B + beta * C
```


行列-行列の積 DGEMM を詳しく

行列積

$$C \leftarrow \alpha AB + \beta C$$

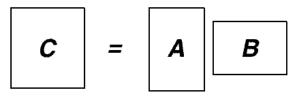
をするだけで、なぜ

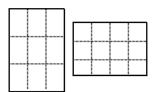
void F77_dgemm(const char *transa, const char *transb,
int m, int n, int k, const double * alpha, const double *A,
int lda, const double * B, int ldb, const double *beta,
double *C, int ldc);

こんなに複雑なんだろうか?

- ② Ida, Idb, Idc とは?
- ③ α, β は普通の行列積の時には 1, 0 だが、演算は無駄にならないのか?

行列の積は各ブロック (=区分行列) にわけて、ブロックをあたかも行列の成分のようにしても計算できる。





区分行列の積 編集

ふたつの区分行列

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1q} \\ A_{21} & A_{22} & \cdots & A_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & \cdots & A_{pq} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ B_{21} & B_{22} & \cdots & B_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ B_{q1} & B_{q2} & \cdots & B_{qr} \end{pmatrix}$$

の区分けがそれぞれ $(l_1,\cdots,l_{\hat{p}},m_1,\cdots,m_q)$ 型、 $(m_1,\cdots,m_{\hat{q}},n_1,\cdots,n_l)$ 型であるとき、その積 AB の $(l_1,\cdots,l_{\hat{p}},n_1,\cdots,n_l)$ 型の区分 け

$$AB = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1r} \\ C_{21} & C_{22} & \cdots & C_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ C_{p1} & C_{p2} & \cdots & C_{pr} \end{pmatrix}$$

の各ブロックは

る。

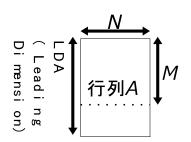
$$C_{ij} = \sum_{i=1}^{q} A_{ik} B_{kj}$$

で与えられる。すなわち、区分行列の積は(適切に区分けされていれば)各ブロックをあたかも行列の成分のように見なして計算でき

行列を区分行列 (やブロック) とみなして計算する必要が出てくる。そのために, "leading dimension" が設定されている。LDA, LDB などの引数はこの意味である。従って、A(i,j) には、A の leading dimension を使って

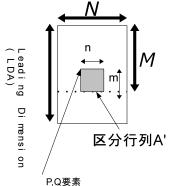
$$A(i + j * lda)$$

とアクセスしなければならない。 下図で $M \times N$ の行列 A は $LDA \times N$ の行列の部分行列となっている。



行列 A の区分行列 A' にアクセスするにはどうしたらよいか? A' は (p,q) 要素、サイズは n,m だが、アクセスするには "leading dimension" が必要。

行列Aとその区分行列A'



LAPACK 実習:行列の固有ベクトル、固有値を求め

る:DSYEV

3×3の実対称行列

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix}$$

の固有ベクトル、固有値を求めよう。これらは三つあり、

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i \ (i = 1, 2, 3)$$

という関係式が成り立つ。固有値 $\lambda_1, \lambda_2, \lambda_3$ は、

-0.40973, 1.57715, 10.83258

で、 固有ベクトル v_1 , v_2 , v_3 は、

$$_{1} = (-0.914357, 0.216411, 0.342225)$$

$$v_2 = (0.040122, -0.792606, 0.608413)$$

$$v_3 = (0.402916, 0.570037, 0.716042)$$

行列の固有ベクトル、固有値を求める DSYEV 詳細

今回は Fortran を直接よんでみる dsyev_f77(const char *jobz, const char *uplo, int *n, double *A, int *lda, double *w, double *work, int *lwork, int *info);

- jobz:固有値、固有ベクトルが必要か、固有値だけでよいか指定。
- uplo:行列の上三角、下三角を使うか。
- A, Ida:行列 A とその leading dimension
- w:固有値を返す配列 (昇順)
- work, lwork:ワーク領域への配列またはポインタ、とそのサイズ
- info: =0 正常終了。<0: INFO=-i では i 番目の引数が不適当。>0: INFO=i 収束せず。

行列の対角化のリスト

```
//setting A matrix
#include <iostream>
                                                   A[0+0*n]=1; A[0+1*n]=2; A[0+2*n]=3;
#include <stdio.h>
                                                   A[1+0*n]=2; A[1+1*n]=5; A[1+2*n]=4;
extern "C" int dsvev (const char *jobz.
                                                   A[2+0*n]=3:A[2+1*n]=4:A[2+2*n]=6:
const char *uplo.
int *n, double *a, int *lda, double *w, double
                                                   printf("A ="); printmat(n, n, A, n);
*work, int *lwork, int *info);
                                                   printf("\n");
//Matlab/Octave format
                                                   lwork = -1:
void printmat(int N, int M, double *A, int LDA) { double *work = new double[1];
                                                   dsyev ("V", "U", &n, A, &n, w, work,
  double mtmp;
  printf("[ ");
                                                         &lwork, &info);
  for (int i = 0; i < N; i++) {
                                                   lwork = (int) work[0];
    printf("[ ");
                                                   delete[]work;
    for (int j = 0; j < M; j++) {
                                                   work = new double[std::max((int) 1, lwork)];
      mtmp = A[i + j * LDA];
                                                 //get Eigenvalue
      printf("%5.2e", mtmp);
                                                   dsyev ("V", "U", &n, A, &n, w, work,
      if (j < M - 1) printf(", ");
                                                         &lwork, &info);
    } if (i < N - 1) printf("]; ");</pre>
                                                 //print out some results.
    else printf("] ");
                                                   printf("#eigenvalues \n"); printf("w =");
  } printf("]");
                                                   printmat(n, 1, w, 1); printf("\n");
                                                   printf("#eigenvecs \n"); printf("U =");
                                                   printmat(n, n, A, n); printf("\n");
int main()
                                                   printf("#Check Matlab/Octave by:\n");
 int n = 3:
                                                   printf("eig(A)\n");
 int lwork, info:
                                                   printf("U'*A*U\n");
  double *A = new double[n*n];
                                                   delete[]work;
  double *w = new double[n];
                                                   delete[]w:
                                                   delete[]A:
```

4 D > 4 P > 4 P > 4 P >

SIKEN

対称行列の対角化のコンパイルと実行

先ほどのリストを"eigenvalue_demo.cpp" などと保存する。次に

でコンパイルができる。何もメッセージが出ないなら、コンパイルは成功である。実行は以下のようになっていればよい。同様に Octave や Matlab にこの結果をそのままコピー&ペースとすれば答えをチェックできるようにしてある。

BLAS, LAPACK を使う上での注意点:Column major or Row major

行列は2次元だが、コンピュータのメモリは1次元的である。次のような行列を

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

考えるとき、どのようにメモリに格納するかの違いが column major, row major である. アドレスの小さい順から

のように格納されるのが column major である。

$$A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$$

BLAS, LAPACK を使う上での注意点:Column major or Row major

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
1, 2, 3, 4, 5, 6

のように格納されるのが row major である。C, C++では普通 row major である。

$$A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$$

BLAS, LAPACKを使う上での注意点:配列は0か1どちらから始まるか?

FORTRAN では配列は 1 からスタートするが, C, C++では, 0 からスタートする. 例えば

- ループの書き方が一般的には1からNまで(FORTRAN)か,0からn未満か(C,C++).
- ベクトルの x_i 要素へのアクセスは FORTRAN では X(I) だが, C では x[i-1] となる.
- 行列の $A_{i,j}$ 要素へのアクセスは FORTRAN では A(I,J) だが, C では column major として A[i-1+(j-1)*lda] とする。

などである。

まとめと次回予告

まとめ

- 線形代数の重要性、歴史についてのべた。
- 線形代数演算にはライブラリを用いたほうが良いことを説明した。
- BLAS, LAPACK について簡単な説明をした。
- BLAS, LAPACK について簡単な使い方を示した。C から呼び出す際の注意点も説明した。

次回予告

- コンピュータの簡単なしくみ。
- なぜそのコードは高速/低速に動くのか。
- BLAS, LAPACK を高速につかうにはどうしたらよいか。

参考図書

- BLAS, LAPACK チュートリアル パート 1 (基礎編) BLAS, LAPACK チュートリアル パート 2 (GPU 編)
 http://nakatamaho.riken.jp/blas_lapack_tutorial_part1.pdf
 http://nakatamaho.riken.jp/blas_lapack_tutorial_part2.pdf
- LAPACK/BLAS 入門 幸谷智紀 (https://www.morikita.co.jp/books/book/2226)
- Matrix Computations Gene H. Golub and Charles F. Van Loan (http://web.mit.edu/ehliu/Public/sclark/Golub%20G.H.,%20Van%20Loan%20C.F.-%20Matrix%20Computations.pdf)
- Accuracy and Stablity of Numerical Algorithms, Nicholas J. Higham

