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Classic Data Assimilation: For NWP we need to
improve observations, analysis scheme and model
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New Data Assimilation: We can also use DA
to improve observations and model
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The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal
E

Combine optimally observations and model forecasts
(mostly done! ©)

 We should also use DA to:
Improve the observations
Improve the model

* |Improve the models by parameter estimation

Example: Estimate the surface carbon fluxes as evolving
parameters.

e Earth system models used by IPCC have many sub-models, but
they don’t include the Human System, which totally dominates
the Earth system.

We should do DA of the two-way coupled Earth System-
Human System, and use DA for parameter tuning




LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at ¢ o &

the central grid red dot Aqd
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LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot

All observations (purple
diamonds) within the local
region are assimilated

The LETKF algorithm can be described in a single slide!



Local Ensemble Transform Kalman Filter (Hunt et al, 2007)

Globally: y ( ) }
Forecast step: X0 =M, X
Analysis step: construct y? — [x | |x < ‘;

—b

=HX), Y, =y - ¥ |1y - ¥ ]

Locally: Choose for each grid point the observations to be used,
and compute the local analysis error covariance and
perturbatlons in ensemble space

P =[(K- DI+Y'RY [ W =[(K - DP]”

Analysis mean in ensemble space: W = PY'R™! (v -Y)
and add tow*“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
X" = X W + x’Gathering the grid point analyses forms the new
gIobaI analyses Note that the the output of the LETKF are
analysis weights W and perturbation analysis matrices of
weights W*. These weights multiply the ensemble forecasts. -



Forecast Sensitivity to Observations (Langland and Baker, 2004)

FSOI in Global NWP

Met Office
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1) Improve the observations: Ensemble Forecast
Sensitivity to Observations and Proactive QC

Kalnay et al. (2012) derived EFSO.

 Ota et al. (2013) tested 24hr GFS forecasts and showed
EFSO could be used to identify bad obs.

* D. Hotta (2014): EFSO can be used after only 6 hours, so
that the bad obs. can be collected and withdrawn, with
useful metadata, so they can be improved. The analysis
is corrected with EFSO.

* We call this Proactive QC, much stronger than QC.
* Hotta also showed EFSO can be used to tune R

* Tse-Chun Chen tested impact of EFSO/PQC over 5 day
forecasts: VERY PROMISING RESULTS




Hotta (2014)
Feb. 18 O6UTC, near the North Pole
(Ota et al. 2013 case). Bad obs: MODIS WINDS

2012020618

FT=06 hr.

Total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr
[60°N,40°E,70°E]

FT=24 hr.
2012020618

Total Obs. Impact by obs. type
Moist Energy norm, EFT=24hr
[60°N,40°E,70°E]
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Can identify the bad observations after only 6 hours!



Improve observations:
Proactive QC: Find and delete the obs that make

the 6hr forecast worse usinﬁ EFSO

Obs Impacts Type=259, EFT=06hr
1 1

Dr. Daisuke Hotta (2014): N — 1
EFSO is able to find whether  Fss, | ODIS Winds |
each observation improves BT <o
(blue) or makes the 6hr Rt - Y . -
forecast worse (red) e 5 T aga ;

Drop,all MOBIS winds  Drop, only-MODIS winds Impact of 6hr PQC on 24hr fest
with negatlve |mp‘t\l

" S e PQC with metadata can be used
s ______mato improve the algorithm!

& It should accelerate optimal
assimilation of new instruments!




Three Data Denial Experiment Methods

1. Hotta (from Hotta 2016 and Ota 2013)
* |dentify forecast error degradation regions
* Perform EFSO w.r.t. those regions for 6-hr impact
* Reject detrimental observations only from the systems that

Case: Feb/06/2012 18Z




Hotta Method: Impact on the Forecasts

Feb/06/2012 187
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Improved regions strengthen and propagate with weather system



Tse-Chun Chen: new approach

EFSO_2012020618_06
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Three Data Denial Experiment Methods

2. Threshold

* Compute global EFSO for 06-hr impact of each observation

* Reject detrimental observations with a positive (detrimental)
impact larger than a 107-5 (J/kg) threshold.

3. Assimilation in Unstable Subspace (AUS; reanalysis)
* First introduced in Trevisan (2010) with 4D-Var

* Compute the global EFSO for 06, 24-hr impact

* Assimilate only in the beneficial growing subspace:
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Offline Experiment: 18 cases

MTE relative improvement (%)

0 = - Purple: Globe
-5 - 17 f . t& Blue: NH
Hotta Threshold AUS Red: SH
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Z500 ACC Improvement: Threshold (blue) v.s. AUS (red):
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* PQC corrects analysis and
the subsequent forecast.
* All three methods
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Cycling PQC Experiment: 10 days

Z500 ACC Improvement: Offline Threshold (blue) v.s. Cycling Threshold (red)
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Improvement by cycling PQC maximizes around 3-5 day forecasts
by accumulated beneficial effect of past PQCs.
I = 1




estimated PQC corrections

Operational Implementation

Using GFS early analysis saves 3 hours of waiting.

Estimated PQC correction using same Kalman gain K:

* Kis actually depending on H, which determines by observations
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Other advantages of EFSO/PQC

* |t can be used to determine whether new
instruments are improving the analysis
regardless of how many other observations
there are.

 EFSO can be used as a clear track of the
impact of all observing systems.

* |t provides the ability to do a quick QC. For
example, Chen found that the detrimental
MODIS winds had clear biases.



Alarm bells could be produced in operations! 4 3

* Improve NWP by using Ensemble Forecast

Sensitivity to Observation (Kalnay et al 2012)
« MODIS winds and Profiler Winds are sometimes

detrimental
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Biases: Innovation and Wind Direction

MODIS Polar Winds
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Biases: Innovation and Wind Direction

Geostationary Satellite Winds
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* No such biases for Geostationary Satellite Winds




Summary: Proactive QC based on EFSO

 We found an efficient way to determine for each
observation if it beneficial or detrimental, and can
avoid large “skill dropouts” due to detrimental
observations.

 We are working with the MODIS winds scientists to
find and correct the problem that MODIS winds show.

* This method can also be used to implement the
assimilation of new instruments much more efficiently
than the present approach of computing many 5-day
forecasts to try to find whether there is a tiny positive
impact.



2) Ensemble Forecast Sensitivity to Error Covariances
Hotta (2014)

* Daescu and Langland (2013, QJRMS)
proposed an adjoint-based formulation of forecast
sensitivity to B and R matrix.

* Daisuke Hotta formulated its ensemble equivalent for R
using EFSO by Kalnay et al. (2012) :

Oe Oe 1 — a o oa
laTng N Ay, G TR 1 [R 1Y0X'f:|1("C (etlo +et|_6)]i R0y ]j

where z 1s an ”intermediate analysis increment” in observation space



R-sensitivity results from GFS / GSI-LETKF hybrid

Averaged R-sensitivity
Moist Energy norm, EFT=6h_r

Averaged R-sensitivity
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Moist Energy horm, EFT 24hr
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Positive value: error increases as ¢, increases = should decrease g2

Aircraft, Radiosonde and AMSU-A: large positive sensitivity
MODIS wind : negative sensitivity

— Tuning experiment:
* Aircraft, Radiosonde and AMSU-A: scale g2 by 0.9
* MODIS wind: scale ¢,2 by 1.1



Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type  Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr | Moist Energy norm, EFT=24hr
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Aircraft, Radiosonde and AMSU-A: significant improvement of EFSO-
impact

|ASI: Significant improvement in EFSO although its error covariance is
untouched!

Very promising results for quick testing of new observing systems!



3) How can we estimate and correct model bias?
Kriti Bhargava, Eugenia Kalnay, Jim Carton, with Fanglin Yang, Mark Iredell

* The best current estimate of nature is the Analysis.

* The First Guess (6hr forecast) contains the initial
forecast errors (before they grow nonlinearly).

e Analysis - First Guess (6hr forecast)= Analysis
Increments (Al) = 6hr model errors.

* The time average of Al is the best estimate of the
error growth due to model bias in 6 hr.

* However, the analysis increment may also contain
observation biases.



Danforth and Kalnay (2007, 2008a, 2008b)

e Danforth, Kalnay and Miyoshi (DKM-2007)
estimated the 6hr errors of the SPEEDY model.

e Estimated the average SPEEDY model error
(bias) by averaging:
Reanalysis R1 — 6 hour forecast » Al
* They corrected the SPEEDY model with Al /64

* This significantly improved both the forecasts
systematic errors and the random errors!



Both bias and random errors were significantly smaller
when correcting the model with the model bias!

Original Model Online Correction

Jan 1986-1990, uwnd [m/s] 1dy Random Error  Jan 1986-1990, uwnd [m/s] 1dy Improvement

Random errors

- were reduced

925, - by the online

. model
correction!

1 day
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The 2 leading EOFs of the error anomalies gave the diurnal cycle errors

0.95 debiased Temp Jan 1982-86 Increment EOF2

sig=
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Can we estimate and correct model bias and

random forecast errors in the NCEP/GES?
o ———

* The systematic errors in the GFS (and all NWP
models) are not negligible.

* They are statistically corrected a posteriori
(offline).

* We aim to correct the GFS (online) adding the
average Al/6hr to each forecast variable, like
Danforth and Kalnay (2008).

* This should not only improve the forecasts but
also facilitate testing model improvements.

* If the observations are biased, correcting them
should reduce the Analysis Increments



Systematic model errors - GFS

Systematic error range ~1/3 Total error range

after 2 weeks
RMS Systematic errors GFS RMS Total errors GFS

zonal mean rms sys error T 16dy error GFS Jun9Aug92015

:::i-:l-lmw 0!2 0?0.3 o|,4 o|.5 L 1|,5 M ::::_-_-bms !5 lz 2'5
AT(systematic) ~ 0.5 -3K AT(total) ~ 1.5 -9K

Image courtesy: Glenn White



Application to GFS

Bhargava, Kalnay, Carton

 We obtained T254 6hr forecasts and analyses
for 2012, 2013, 2014 from Dr. Fanglin Yang

* We estimate the GFS systematic errors
— Mean
— Diurnal

* Check robustness: compare 2012, 2013, 2014

* Explore low dimensional approaches (e.g.
diurnal cycle)

* Explore error sensitivity to resolution



First results: 2014 Analyses, Forecasts and Bias

Temperature January(above) and July (below) monthly mean(K) at Omb

Surface Temperature January

Analysis Forecast - Analy5|s Increament

-09 -06 -03 0.0 0.3

- Analy5|s Increament

220 235 250 265 280 295 310 -09 -06 -03 0.0

The analysis and 6hr forecasts are almost identical,
but the Al are well defined.



Seasonal Mean Bias: T (K) at ~850 mb for 2012, 2013, 2014

2012 2013 2014

DJF
AI 2012 DjF Temperature mean(K) at 'e.l(‘f'zlo"ﬁgﬁﬁé 0.827sigma2=12344.49

AI 2014 DjF
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Findings

e Estimate the GFS systematic mean errors v/

* Check the robustness of the seasonal averaged Al
(2012 vs 2013 vs 2014)v" Errors are robust



Diurnal cycle error estimation

* Compare the Al at 00, 06, 12 and 187

 Compute Empirical Orthogonal Functions
(EOFs) of the Al anomaly

* Check how well the diurnal cycle errors are
represented by the leading modes



First 4 vs 120 modes: P, (mb) Sept’14

First 4 EOFs of Al capture the diurnal cycle errors almost perfectly

Top: 4 modes

(b) 06 hr

-32 -16 0 16 32 -32 <16 0 16 32 -32 <16 0 16 32 -32 -16 0 16 32

Bottom: 120 modes

(e) Al 00 hr mean (f) Al 06 hr mean

(g) Al 12 hr mean (h) Al 18 hr mean
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Findings

e Estimate the GFS systematic mean errors v/

* Check the robustness of the seasonal averaged Al
(2012 vs 2013 vs 2014)v Errors are robust

* Explore the errors in diurnal cycle v/

* Check if the low dimensional approaches can be used to
correct the diurnal cycle errors. v' Yes, need only 4/120
modes and should be able to correct the diurnal cycle!
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Bias Is independent of resolution: it is large scale

Al 2013 at T254

AI 2014 at T254

Projecting
July 2014
mean
Temperature
Al at T62
(top), T126
(middle)
and original
T254
(bottom)



Errors reduced from 2014 to 2015, 2016 over ocean’

What produced this improvement?

Juneat T(K) Al 2015 2016

850mb




o« 01142015 12272: T1534 Semi-Lagrangian GFS Major Upgrade { NWS TTIN )

Model Changes

#F Upgrade [rom current operational T574 Bulenan (-23km) to T1534 Semi-Lagrangian (L 3km})

=T hich resolution daily RGT SST instead of weekly O SST, and usc daily sca ice analisii—>

17

* Extend high resolution forecast from 8 days to 10 days.

#* Use MclCA radiation approximation . . .
* Reduced drag r.:oetfﬁn:ielf:lpﬂl high lWind. speeds 14/1/2015: Use hlgh reSOlUtIOn dally RGT

#* Hybnid EDMF PBL scheme and TKLE dissipative heating

* Retuned ice and water eloud conversion rates, background diffusion of momentuim SST inStea d Of wee kly OI SST, an d use d d | Iy

* Retuned orographic gravity-wave forcing and mountain block ete

# Change from Lagrangian to Hermite interpolation in the vertical to reduce stratospf S€4 1C€ dNAd IyS|S

* Restructured physics and dynamics restart fields and updated sigio library
* Consistent diagnosis ol snow accumulation m post and model

* Compute and ourput frozen precipitation fraction

#* Divergence damping in the stratosphere to reduce noise

* Added a tracer fixer for maintaining global column ozone mass

* Stationary convective gravity wave drag

* New blended snow analysis lo reduce reliance on AFWA snow

* Changes to treatment of lake ice to remove unfrozen lake in winter

* Madified initialization to reduce a sharp deercase in cloud water in the first model time ste
* Correct a bug in the condensation calculation after the digital filter is applied

* Replace Bucket soil moisture climatology by CFS/GLDAS

* Add the vegelation dependence 1o the ratio of the thermal and momentum roughness

* Fixed a momentum roughness issue

= Accumulation bucket changed from 12 hour to 6 hour between day 8 and day 10

= GSI Changes

« (05/11/2016 12Z; Data Assimilation and Model Upgrade ( NWS TIN )

#* convert GFS GST to vertical structure

* merease horzontal resolution of ensemble [fom T254 o T374
# reduce number of second outer loop iterations from 150 to 100,
* changes in radiance assimilation: upgrade to CRTM v2.1.3

#* mowve to enhanced radiance bhias correction scheme

* correct bug in AMSU-A cloud liquid water bias correction term
* assimilale new radiances: F17 an F18 SSMIS, MelOp-B IASI

We found the change that improved
T and Q over oceans. The Al
approach could be used to test and

attribute these changes.

# furn off known bad channels: AQUA AIRS channels 321, NOAA-19 AMSUA channel 7, NOAA-19 MHS channel 3

* inerease ATMS observation errors: increase channels 6 - 10 from 0.3 K to 0.4 K, incrcase channcls 11 - 12 from 0.4 K to (b45 K

#* turn on cloud detection channels for monitored instruments: NOAA-17, -19 HIRS, (70OES-13 and -14 sounders

* changes in assimilation of atmospheric motion vectors (AMV): assimilate NESDIS GOES hourly AMVs, improve ANMY quality control

* improve GPS RO guality control

= Data Assimilation Upgrade
* Upgrade the 31 Hybrid Ensemble-Variational to 41 Hybrid Ensemble-Variational Data Assimilation System

* Multivariate Ozone update

#* Assimilate all-sky (clear and cloudy) radiances

* Bias corrcet aircratt data

* Modify relocation and storm tracking to allow hourly tropical cvelone relocation
* other upgrades (e.g. CRTM. Data selection/thinning. AMY winds, etc.)

= Model Upgrade

* Corrections to land surface to reduce summertime warm. dry bias over Great Plains
# Hourly output fields through 120-hr forccasts

= Improved icing probability products and new icing severity product

* add five more levels from 10 hPa to 1 hPa in post-processed pgb files

Source:http://www.e
mc.ncep.noaa.gov/g
mb/STATS/html/mod
el_changes.html




Findings

B
e Estimate the GFS systematic mean errors v/

* Check the robustness of the seasonal averaged Al: (2012 vs
2013 vs 2014)v Errors are robust

* Find errors in diurnal cycle v/

* Check if the low dimensional approaches can be used to
correct the diurnal cycle errors. v' Yes, need only 4/120
modes and should be able to correct the diurnal cycle!

 Check if errors can be explored at a resolution lower than
operational. v’ Yes, the errors project on low wave numbers
<<T62 (large scales)

e |n 2015-2016 the errors over ocean were smaller: We traced
this to the replacement of weekly Ol SST with daily high
resolution Real Time Global RTG SST. v/



Proposed plans for GFS correction in
collaboration with EMC

o Apply online Al/6hr corrections to GFS
0 Examine if it improves bias and random error

1 Compare online correction results with standard
operational statistical bias correction

0 Facilitate testing new parameterizations of the
physics: They should reduce the Al

1 Compare the 2014 online correction with the impact
of the use of improved SST in 2015

0 Examine the systematic errors in the CFS
0 This should facilitate GFS improvements at NCEP



4)Strongly Coupled Data
Assimilation

Travis Sluka

with Steve Penny, Eugenia Kalnay
and Takemasa Miyoshi

University of Maryland



4) How should we do coupled ocean-
atmosphere data assimilation?

* Should we do coupled data assimilation?

* Yes: e.g., see Tamara Singleton thesis (in a toy
coupled ocean-atmosphere model, strongly coupled
DA was best)

* Current approaches assimilate separately the ocean
and the atmosphere observations, and then couple
the models (weak coupling)

* We proposed strong coupling: the ocean “sees” the
atmospheric observations, and the atmosphere
“sees” the ocean observations (Sluka, Penny, Miyoshi



Data Assimilation: STANDARD (WEAK) COUPLING

S. Zhang et al.: GFDL Coupled Ocean-Atm EnKF
GHG + NA fadiative forcing

. ADA Component
\ 4

Atmosphere Atmospheric model
assimilates only

0 4] 0 0 4]
, u®, vo, t S
atm. obs.! ’j/;l% ODA Cnmppnent

u, v, t, g, ps




Strongly coupled LETKF assimilation

Observations

asts

Obs. Oper.

b — b observation
y' =H(x’) localization
Obs. Oper.

En lyses | Ocean sees atm. obs.

Atm. sees ocean obs

Coupled Model

Thanks to
Miyoshi, Penny



Impact of strong coupling of the ocean-
atmosphere LETKF (Sluka et al., GRL, 2016)

 SPEEDY-NEMO coupled model. Perfect model OSSE.
e Standard (weak) coupling as a control

e Test strong coupling: the ocean sees the atmospheric
observations and the atmosphere sees the ocean
observations

Experiments: 1) Only atmos. obs.

* CONTROL: Weakly coupled data assimilation: Only the
atmosphere assimilates atmos. observations.

* Strongly coupled DA: ocean also assimilates
atmospheric observations



Sluka et al., GRL, 2016

SPEEDY-NEMO OSSE

Using the fast SPEEDY-

NEMO (one year run takes
only 12 hours on 1 core)

 Perfect model OSSE
conducted first using only
atmospheric observations ORmsordes (LU VLG PS) - @ARS (.0

Experiment parameters
e 40 ensemble members
e Localization: 1000km Horiz.
* 2degree ocean * Relaxation to prior spread:
* Coupling every 6 hours 90% for OCN, 60% for ATM

SPEEDY-NEMO
T30 atmosphere
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Sluka et al., GRL, 2016
SPEEDY-NEMO Strongly Coupled DA

STRONG-WEAK analysis RMSE
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Sluka et al., GRL, 2016

SPEEDY-NEMO Strongly Coupled DA

TRONG-WEAK lysi .
OCN Temperature ANatysIs Iiﬂ\/cliFSalmlty
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SPEEDY-NEMO Strongly Coupled DA
STRONG-WEAK analysis RMSE

STRONG-WEAK, blue is good

The opposite experiment
(assimilating OCN obs into
the atmosphere) shows
improvement as well

Interesting! A coupled
ocean drives the
atmosphere in the tropics,
and so, ocean obs dominate
in the extratropics!

Ocean observations affect
the ATM where OCN
coupling cannot have an
impact.

And ATM OBS impact where
ATM coupling cannot have

an |mpaCt Sluka - CDAW Toulouse

Ocean
Observations

Atmosphere

Observations
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Now Sluka is testing strongly coupling the
NCEP CFS (Coupled Forecasting System)
with real observations

* Weak coupling experiment: JJA 2005.
Atmosphere assimilates all atmospheric

observations except rad
Ocean assimilates profi

24hrs, at 127, no SST re

lances every 6hrs.
es (buoys) every
axation.

e Strong coupling: Like the weak coupling, but
the ocean also assimilates surface ship
atmospheric T and Q every 24 hrs.

e Uses LETKF with 50 member ensemble



CFSv2-LETKF

 Combined existing GFS-
LETKF (Lien, 2013) and
MOM-LETKF (Penny, 2013)

 T62/L64 atm 0.5deg ocn

(reduced resolution ATM) ° rawinsonde @ scatterometer  land surface
SATWND @ aircraft @® marine surface

* 50 member ensemble
(initialized from CFSR, run freely
for 6 months to develop sufficient
spread)

s
¢ ¥

* observations from operational L TN e
ATM PREPBUFR and OCN N

profiles used by GODAS

( J T&S profiies (ARGO, XBT, modred bdoys)
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Weakly Coupled DA - JJA

5m OCN T BIAS

5m OCN T RMSD (K)

ATM T bias — SFCSHP obs ATM T RMSD (K) - SFCSHP obs
g N AL s '\

L . I I
=2.0 -1.6 =12 -0.8 -0.4 0.0 0.4 0.8 1.2 16 2.0
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Weakly Coupled DA — cross covariances

* Cross correlations given by the ensemble for a single date

* ATM and OCN temperature max correlation of 0.36, highest values in that
hemisphere’s summer, below 850mb and above top of thermocline

* June values likely artificially large due to insufficient spin up time for the ocean

June December
WEAK __ ATMTXOCNT 2005-06-01 00Z WEAK __ ATMTXOCNT _ 2005-12-0100Z
0.70 [ y 0.70 -‘j‘ O
0.75 | . 0.75 9 - 0

0.80 | E 0.80 L
© ©
. -\/QI/\/\/\/\_ i

-60 —40 —20 0 20 20 60

latitude latitude
max: 0.64 max: 0.36

== Mixed Layer depth (depth of T, £ 0.2°C)
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Strongly coupled DA

e 1 way strongly coupled DA

e Strongest cross correlations are between
OCN_T and ATM_T/ATM_q, so...

* OCN assimilates surface ship T and g as well,
given by the SFCSHP section of the PREPBUFR

@ ocn profiles (argo, XBT,...)
@ ATM SFCSHP T&q

total: 472699
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Sluka: First results testing weakly coupling the
NCEP CFS with real observations

Sm OCN T bias (K)

o

Weakly Coupled DA Ocean 5m T bias Weakly Coupled DA Atmospheric surface T bias

There is a strong positive temperature bias in the weakly
coupled DA in the Pacific and Atlantic oceans, especially
near the coasts.



Difference in the RMS errors between strong and weak
coupled data assimilation. Blue: Strong is better

ATMT

RMSD (K) strong - weak

Strong-Weak Coupled DA Atmos. Surface T RMS error

Strong-Weak Coupled DA Ocean 5m T RMS error

* The ocean improved its bias because it assimilated
surface atmospheric observations.

* The improved coupled ocean model in turn reduced the
atmospheric errors.

-1.6

-2.0



Strongly Coupled CFS - results

Errors in 6 hour background for ATM T are greatly reduced in the NH

Oct 19, 2016

ATM T SFCHP obs RMSD

4.0
NH SH TP
strong
oo weak |

1.0

Jun Jul Aug
Sluka - CDAW Toulouse
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Strongly Coupled CFS -
results

<- Worse better ->
0 T T T T

50 ¢

100

Depth (m)

150

200

0= =3 =2 0 2 4 6 8

% RMSD Improvment
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Strongly Coupled CFS - results

Caused by naive fixed vertical localization
<-worse  better -> of ATM observations into ocn (0=50m).
/NEed to limit impact to mixed layer only.

50 F

100 |

Depth (m)

150

200 +

250 L 1 L L L L
-8 -6 -4 -2 0 2 4 6 8

% RMSD Improvement
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Ultimate Goal...

* CFSv3 - NCEP
transitioning to gain
hybrid-GODAS, based
on LETKF for the ocean.

* Increased potential after
that for an operational
strongly coupled hybrid-
LETKF global DA system
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