New Applications of Advanced Data Assimilation to Improve Models and Observations

E. Kalnay, T. C. Chen, D. Hotta, Y. Ota, T. Miyoshi, Kriti Bhargava, J. Carton, T. Sluka, S.Penny

¹ UMD^{, 2}JMA^{, 3}RIKEN^{, 4}NCEP With many thanks to students, friends and colleagues from the University of Maryland

Classic Data Assimilation: For NWP we need to improve observations, analysis scheme and model

New Data Assimilation: We can also use DA to improve observations and model

The simplicity and power of EnKF should encourage the use of DA for improvements beyond its main goal

Combine optimally observations and model forecasts (mostly done! ^(C))

- We should also use DA to: Improve the observations Improve the model
- Improve the models by parameter estimation
 Example: Estimate the surface carbon fluxes as evolving parameters.
- Earth system models used by IPCC have many sub-models, but they don't include the Human System, which totally dominates the Earth system.

We should do DA of the <u>two-way coupled</u> Earth System-Human System, and use DA for parameter tuning

LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the central grid red dot

LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the central grid red dot

All observations (purple diamonds) within the local region are assimilated

The LETKF algorithm can be described in a single slide!

Local Ensemble Transform Kalman Filter (Hunt et al, 2007)

Globally: Forecast step: Analysis step: construct

$$\mathbf{x}_{n,k}^{b} = M_{n}\left(\mathbf{x}_{n-1,k}^{a}\right)$$
$$\mathbf{X}^{b} = \left[\mathbf{x}_{1}^{b} - \overline{\mathbf{x}}^{b} \mid \dots \mid \mathbf{x}_{K}^{b} - \overline{\mathbf{x}}^{b}\right];$$
$$\mathbf{y}_{i}^{b} = H(\mathbf{x}_{i}^{b}); \mathbf{Y}_{n}^{b} = \left[\mathbf{y}_{1}^{b} - \overline{\mathbf{y}}^{b} \mid \dots \mid \mathbf{y}_{K}^{b} - \overline{\mathbf{y}}^{b}\right]$$

Locally: Choose for each grid point the observations to be used, and compute the local analysis error covariance and perturbations in ensemble space:

$$\widetilde{\mathbf{P}}^{a} = \left[\left(K - 1 \right) \mathbf{I} + \mathbf{Y}^{T} \mathbf{R}^{-1} \mathbf{Y} \right]^{-1}; \mathbf{W}^{a} = \left[(K - 1) \widetilde{\mathbf{P}}^{a} \right]^{1/2}$$

Analysis mean in ensemble space: $\overline{\mathbf{W}}^a = \widetilde{\mathbf{P}}^a \mathbf{Y}^{bT} \mathbf{R}^{-1} (\mathbf{y}^o - \overline{\mathbf{y}}^b)$

and add to \mathbf{W}^a to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of $X_n^a = X_n^b W^a + \bar{x}^b$ Gathering the grid point analyses forms the new global analyses. Note that the the output of the LETKF are analysis weights \bar{w}^a and perturbation analysis matrices of weights W^a . These weights multiply the ensemble forecasts.

Forecast Sensitivity to Observations (Langland and Baker, 2004)

FSOI in Global NWP

Met Office

- Infra-Red (IASI) and microwave (AMSUA) radiances now biggest impact.
- Note only ~50% of observations reduce forecast error(!).
- Estimate: need 6 months time series to assess impact for single observing site.
- EFSO nethodology now being considered when no adjoint available

1) Improve the observations: Ensemble Forecast Sensitivity to Observations and Proactive QC

- Kalnay et al. (2012) derived EFSO.
- Ota et al. (2013) tested 24hr GFS forecasts and showed EFSO could be used to <u>identify bad obs</u>.
- D. Hotta (2014): EFSO can be used after only 6 hours, so that the bad obs. can be collected and withdrawn, with useful metadata, so they can be improved. The analysis is corrected with EFSO.
- We call this **Proactive QC**, much stronger than QC.
- Hotta also showed EFSO can be used to tune R
- Tse-Chun Chen tested impact of EFSO/PQC over 5 day forecasts: VERY PROMISING RESULTS

Hotta (2014)

Feb. 18 06UTC, near the North Pole (Ota et al. 2013 case). Bad obs: MODIS WINDS

Can identify the bad observations after only 6 hours!

Improve observations: Proactive QC: Find and delete the obs that make the 6hr forecast worse using EFSO

Dr. Daisuke Hotta (2014): EFSO is able to find whether <u>each</u> observation improves (blue) or makes the 6hr forecast worse (red)

PQC with metadata can be used to improve the algorithm!

It should accelerate optimal assimilation of new instruments!

Three Data Denial Experiment Methods

- 1. Hotta (from Hotta 2016 and Ota 2013)
 - Identify forecast error degradation regions
 - Perform EFSO w.r.t. those regions for 6-hr impact
 - Reject detrimental observations only from the systems that have net detrimental impact. Case: Feb/06/2012 18Z

Hotta Method: Impact on the Forecasts

Feb/06/2012 18Z

Improved regions strengthen and propagate with weather system

Tse-Chun Chen: new approach

EFSO_2012020618_06

EFSO applied to all observations: red – detrimental, blue – beneficial. Threshold: Red obs withdrawn if EFSO>10⁻⁵J/Kg

Three Data Denial Experiment Methods

2. Threshold

- Compute global EFSO for 06-hr impact of each observation
- Reject detrimental observations with a positive (detrimental) impact larger than a 10^-5 (J/kg) threshold.

3. Assimilation in Unstable Subspace (AUS; reanalysis)

- First introduced in Trevisan (2010) with 4D-Var
- Compute the global EFSO for 06, 24-hr impact
- Assimilate only in the beneficial growing subspace:

Case: Feb/06/2012 18Z Color: 06hr MTE impact (J/kg) Size: Magnitude of impact

Offline Experiment: 18 cases

Z500 ACC Improvement: Threshold (blue) v.s. AUS (red):

- PQC corrects analysis and the subsequent forecast.
- All three methods improves model forecasts on average.
- The AUS and Threshold method have forecast improvements larger than Hotta method.

Cycling PQC Experiment: 10 days

Improvement by cycling PQC maximizes around 3-5 day forecasts by accumulated beneficial effect of past PQCs.

Operational Implementation

Using GFS early analysis saves 3 hours of waiting. Estimated PQC correction using **same Kalman gain K**:

• K is actually depending on H, which determines by observations

$$\bar{\mathbf{x}}_{0}^{a,\text{deny}} - \bar{\mathbf{x}}_{0}^{a} \approx -\mathbf{K}\delta\bar{\mathbf{y}}_{0}^{ob,\text{deny}}$$

$$\mathbf{K} \approx \frac{1}{K-1}\mathbf{X}_{0}^{a}\mathbf{X}_{0}^{aT}\mathbf{H}^{T}\mathbf{R}^{-1} \approx \frac{1}{K-1}\mathbf{X}_{0}^{a}\mathbf{Y}_{0}^{aT}\mathbf{R}^{-1}$$
(Hotta, 2016)

Other advantages of EFSO/PQC

- It can be used to determine whether new instruments are improving the analysis regardless of how many other observations there are.
- EFSO can be used as a clear track of the impact of all observing systems.
- It provides the ability to do a quick QC. For example, Chen found that the detrimental MODIS winds had clear biases.

Alarm bells could be produced in operations!

- Improve NWP by using Ensemble Forecast Sensitivity to Observation (Kalnay et al 2012)
- MODIS winds and Profiler Winds are sometimes detrimental

Biases: Innovation and Wind Direction

- Prevailing positive innovation bias in U comp.
- Cloud tracking winds (top) and Water vapor tracking (bottom) resemble each other in both hemisphere

Biases: Innovation and Wind Direction

No such biases for Geostationary Satellite Winds

Summary: Proactive QC based on EFSO

- We found an efficient way to determine for each observation if it beneficial or detrimental, and can avoid large "skill dropouts" due to detrimental observations.
- We are working with the MODIS winds scientists to find and correct the problem that MODIS winds show.
- This method can also be used to implement the assimilation of new instruments much more efficiently than the present approach of computing many 5-day forecasts to try to find whether there is a tiny positive impact.

2) Ensemble Forecast Sensitivity to Error Covariances Hotta (2014)

- Daescu and Langland (2013, QJRMS) proposed an adjoint-based formulation of forecast sensitivity to B and R matrix.
- Daisuke Hotta formulated its ensemble equivalent for R using EFSO by Kalnay et al. (2012) :

$$\left[\frac{\partial e}{\partial \mathbf{R}}\right]_{ij} \approx \frac{\partial e}{\partial y_i} z_j \approx -\frac{1}{K-1} \left[\mathbf{R}^{-1} \mathbf{Y}_{\mathbf{0}}^{\mathbf{a}} \mathbf{X}_{\mathbf{t}|\mathbf{0}}^{\mathbf{fT}} \mathbf{C} \left(\mathbf{e}_{\mathbf{t}|\mathbf{0}} + \mathbf{e}_{\mathbf{t}|-\mathbf{6}} \right) \right]_i \left[\mathbf{R}^{-1} \delta y^{oa} \right]_j$$

where \mathbf{z} is an "intermediate analysis increment" in observation space

R-sensitivity results from GFS / GSI-LETKF hybrid

- Positive value: error increases as σ_o^2 increases \rightarrow should decrease σ_o^2
- Aircraft, Radiosonde and AMSU-A: large positive sensitivity
- MODIS wind : negative sensitivity
- → Tuning experiment:
 - Aircraft, Radiosonde and AMSU-A: scale σ_o^2 by 0.9
 - MODIS wind: scale σ_o^2 by 1.1

Tuning Experiment: Result EFSO before/after tuning of R

- Aircraft, Radiosonde and AMSU-A: significant improvement of EFSOimpact
- IASI: Significant improvement in EFSO although its error covariance is untouched!
- Very promising results for quick testing of new observing systems!

3) How can we estimate and correct model bias?

Kriti Bhargava, Eugenia Kalnay, Jim Carton, with Fanglin Yang, Mark Iredell

- The best current estimate of nature is the Analysis.
- The First Guess (6hr forecast) contains the initial forecast errors (before they grow nonlinearly).
- Analysis First Guess (6hr forecast)= Analysis
 Increments (AI) = 6hr model errors.
- The time average of AI is the best estimate of the error growth due to model bias in 6 hr.
- However, the analysis increment may also contain observation biases.

Danforth and Kalnay (2007, 2008a, 2008b)

- Danforth, Kalnay and Miyoshi (DKM-2007) estimated the 6hr errors of the SPEEDY model.
- Estimated the average SPEEDY model error (bias) by averaging:

Reanalysis R1 – 6 hour forecast $\gg \overline{AI}$

- They corrected the SPEEDY model with $\overline{AI}/6hr$
- This significantly improved both the forecasts systematic errors and the random errors!

Both bias and random errors were significantly smaller when correcting the model with the model bias!

Online Correction

The 2 leading EOFs of the error anomalies gave the diurnal cycle errors

Can we estimate and correct model bias and random forecast errors in the NCEP/<u>GFS</u>?

- The systematic errors in the GFS (and all NWP models) are not negligible.
- They are statistically corrected *a posteriori* (offline).
- We aim to correct the GFS (online) adding the average AI/6hr to each forecast variable, like Danforth and Kalnay (2008).
- This should not only improve the forecasts but also facilitate testing model improvements.
- If the observations are biased, correcting them should reduce the Analysis Increments

Systematic model errors - GFS

Systematic error range ~1/3 Total error range after 2 weeks **RMS** Total errors GFS **RMS** Systematic errors GFS zonal mean rms sys error T 16dy error GFS Jun9Aug92015 zonal mean rms error T 16dy GFS Jun9Aug92015 200 300 4<u>0</u>0 · 500-600 700 800-900 1000 60N ΕQ 30N ดก่พ 0.15 0.2 0.25 0.3 0.4 0.5 2 2.5 1.5 0.5 ΔT (systematic) ~ 0.5 - 3K $\Delta T(total) \simeq 1.5 - 9K$

100

200

300-

400

500

600-

700

800

900-

1000

Image courtesy: Glenn White

Application to GFS Bhargava, Kalnay, Carton

- We obtained T254 6hr forecasts and analyses for 2012, 2013, 2014 from Dr. Fanglin Yang
- We estimate the GFS systematic errors
 - Mean
 - Diurnal
- Check robustness: compare 2012, 2013, 2014
- Explore low dimensional approaches (e.g. diurnal cycle)
- Explore error sensitivity to resolution

First results: 2014 Analyses, Forecasts and Bias

The analysis and 6hr forecasts are almost identical, but the AI are well defined.

Seasonal Mean Bias: T (K) at ~850 mb for 2012, 2013, 2014

Findings

- Estimate the GFS systematic mean errors \checkmark
- Check the robustness of the seasonal averaged AI (2012 vs 2013 vs 2014) ✓ Errors are robust
- Explore the errors in diurnal cycle
- Check if the low dimensional approaches can be used to correct the diurnal cycle errors
- Validate if errors can be explored at a resolution lower than operational

Diurnal cycle error estimation

- Compare the AI at 00, 06, 12 and 18Z
- Compute Empirical Orthogonal Functions (EOFs) of the AI anomaly
- Check how well the diurnal cycle errors are represented by the leading modes

First 4 vs 120 modes: P_s (mb) Sept'14

First 4 EOFs of AI capture the diurnal cycle errors almost perfectly

Top: 4 modes

Findings

- Estimate the GFS systematic mean errors \checkmark
- Check the robustness of the seasonal averaged AI (2012 vs 2013 vs 2014) ✓ Errors are robust
- Explore the errors in diurnal cycle \checkmark
- Check if the low dimensional approaches can be used to correct the diurnal cycle errors. ✓ Yes, need only 4/120 modes and should be able to correct the diurnal cycle!
- Check if errors can be explored at a resolution lower than operational

Bias is independent of resolution: it is large scale

Projecting July 2014 mean Temperature AI at T62 (top), T126 (middle) and original T254 (bottom)

Errors reduced from 2014 to 2015, 2016 over ocean¹⁵

 01/14/2015 12Z: T1534 Semi-Lagrangian GFS Major Upgrade (<u>NWS TIN</u>) 				
 Model Changes 				17
* Upgrade from current operational T574 Eulerian (~23km) to T1534 Semi-Lagrang	;ian (~13	km)		
 Use high resolution daily RGT SST instead of weekly OI SST, and use daily sea in 	e analys			
* Extend high resolution forecast from 8 days to 10 days.				
* Use McICA radiation approximation	14/	/1/2015 [.] Use high resoluti	ion daily RGT	
* Reduced drag coefficient at high wind speeds	/			
* Hybrid EDMF PBL scheme and TKE dissipative heating	SST	instead of weekly OLSST	and use daily	
* Returned are smarthing conversion rates, background diffusion of momentum	1 551		, and use uan	Y
* Change from Lagrangian to Harmite interpolation in the vertical to reduce strategy		a ice analysis		
* Restructured physics and dynamics restart fields and undated sigio library				
* Consistent diagnosis of snow accumulation in post and model				
* Compute and output frozen precipitation fraction				
* Divergence damping in the stratosphere to reduce noise				1
* Added a tracer fixer for maintaining global column ozone mass		We found the change the	at improved	
* Stationary convective gravity wave drag				
* New blended snow analysis to reduce reliance on AFWA snow		I and Q over oceans. The	e Al	
* Changes to treatment of lake ice to remove unfrozen lake in winter		· · · · · ·		
* Modified initialization to reduce a sharp decrease in cloud water in the first model	time step	approach could be used	to test and	
* Correct a bug in the condensation calculation after the digital filter is applied				
* Replace Bucket soil moisture climatology by CFS/GLDAS		attribute these changes.		
* Add the vegetation dependence to the ratio of the thermal and momentum roughne	ss]
* Fixed a momentum roughness issue				
* Accumulation bucket changed from 12 hour to 6 hour between day 8 and day 10				
GSI Changes * convert GES GSI to vertical atmeture				
* ingrease horizontal resolution of anomphic from T254 to T574				
* reduce number of second outer loop iterations from 150 to 100				
* changes in radiance assimilation: upgrade to CRTM v2.1.3				
* move to enhanced radiance bias correction scheme				
* correct bug in AMSU-A cloud liquid water bias correction term				
* assimilate new radiances: F17 an F18 SSMIS, MetOp-B IASI				
* turn off known bad channels: AQUA AIRS channels 321, NOAA-19 AMSUA cha	nnel 7, N	NOAA-19 MHS channel 3		
* increase ATMS observation errors: increase channels 6 - 10 from 0.3 K to 0.4 K, in	nerease e	channels 11 - 12 from 0.4 K to 0.45 K		
* turn on cloud detection channels for monitored instruments: NOAA-17, -19 HIRS,	GOES-	13 and -14 sounders		
* changes in assimilation of atmospheric motion vectors (AMV): assimilate NESDIS	S GOES	hourly AMVs, improve AMV quality control		
* improve GPS RO quality control				
• 05/11/2016 12Z: Data Assimilation and Model Upgrade (<u>NWS TIN</u>)				
 Data Assimilation Upgrade * Us and the 2D Us brid Ensemble Variational to 4D Us brid Ensemble Variational 	Data A.	alianti and Constants		
* Opgrade the 5D Hydrid Ensemble- variational to 4D Hydrid Ensemble- variational * Multivariate Ozone undate	Data As	similation System		
* Assimilate all-sky (clear and cloudy) radiances				
* Bias correct aircraft data				
* Modify relocation and storm tracking to allow hourly tropical evelone relocation			Source: http://www	WP
* other upgrades (e.g. CRTM, Data selection/thinning, AMV winds, etc.)				./~
 Model Upgrade 			mc.ncep.noaa.gov	7g
* Corrections to land surface to reduce summertime warm, dry bias over Great Plain	IS		mb/STATS/html/m	۱od

el_changes.html

- * Hourly output fields through 120-hr forecasts
 * Improved icing probability products and new icing severity product
 * add five more levels from 10 hPa to 1 hPa in post-processed pgb files

Findings

- Estimate the GFS systematic mean errors \checkmark
- Check the robustness of the seasonal averaged AI: (2012 vs 2013 vs 2014) ✓ Errors are robust
- Find errors in diurnal cycle ✓
- Check if the low dimensional approaches can be used to correct the diurnal cycle errors. ✓ Yes, need only 4/120 modes and should be able to correct the diurnal cycle!
- Check if errors can be explored at a resolution lower than operational. ✓ Yes, the errors project on low wave numbers <<T62 (large scales)
- In 2015-2016 the errors over ocean were smaller: We traced this to the replacement of weekly OI SST with daily high resolution Real Time Global RTG SST. ✓

Proposed plans for GFS correction in collaboration with EMC

- Apply online AI/6hr corrections to GFS
- Examine if it improves bias and random error
- Compare online correction results with standard operational statistical bias correction
- Facilitate testing new parameterizations of the physics: They should reduce the AI
- Compare the 2014 online correction with the impact of the use of improved SST in 2015
- Examine the systematic errors in the CFS
- This should facilitate GFS improvements at NCEP

4)Strongly Coupled Data Assimilation

Travis Sluka

with Steve Penny, Eugenia Kalnay and Takemasa Miyoshi University of Maryland 4) How should we do coupled oceanatmosphere data assimilation?

- Should we do coupled data assimilation?
- Yes: e.g., see Tamara Singleton thesis (in a toy coupled ocean-atmosphere model, strongly coupled DA was best)
- Current approaches assimilate separately the ocean and the atmosphere observations, and then couple the models (weak coupling)
- We proposed strong coupling: the ocean "sees" the atmospheric observations, and the atmosphere "sees" the ocean observations (Sluka, Penny, Miyoshi

Strongly coupled LETKF assimilation

Impact of strong coupling of the oceanatmosphere LETKF (Sluka et al., GRL, 2016)

- **SPEEDY-NEMO** coupled model. Perfect model OSSE.
- Standard (weak) coupling as a control
- Test strong coupling: the ocean sees the atmospheric observations and the atmosphere sees the ocean observations

Experiments: 1) Only atmos. obs.

(2) Only ocean obs.)

- CONTROL: Weakly coupled data assimilation: Only the atmosphere assimilates atmos. observations.
- Strongly coupled DA: ocean also assimilates atmospheric observations (and vice versa).

Sluka et al., GRL, 2016 SPEEDY-NEMO OSSE

Using the fast SPEEDY-NEMO (one year run takes only 12 hours on 1 core)

 Perfect model OSSE conducted first using only atmospheric observations

SPEEDY-NEMO

- T30 atmosphere
- 2 degree ocean
- Coupling every 6 hours

Experiment parameters

- 40 ensemble members
- Localization: 1000km Horiz.
- Relaxation to prior spread: 90% for OCN, 60% for ATM

Sluka et al., GRL, 2016

SPEEDY-NEMO Strongly Coupled DA

Oct 19, 2016

Sluka et al., GRL, 2016

SPEEDY-NEMO Strongly Coupled DA

Upper 500m

Atlantic

SPEEDY-NEMO Strongly Coupled DA

STRONG-WEAK analysis RMSE

- The opposite experiment (assimilating OCN obs into the atmosphere) shows improvement as well
- Interesting! A coupled ocean drives the atmosphere in the tropics, and so, ocean obs dominate in the extratropics!
- Ocean observations affect the ATM where OCN coupling cannot have an impact.
- And ATM OBS impact where ATM coupling cannot have an impact

STRONG-WEAK, blue is good

Now Sluka is testing strongly coupling the NCEP CFS (Coupled Forecasting System) with real observations

- Weak coupling experiment: JJA 2005. Atmosphere assimilates all atmospheric observations except radiances every 6hrs. Ocean assimilates profiles (buoys) every 24hrs, at 12Z, no SST relaxation.
- Strong coupling: Like the weak coupling, but the ocean also assimilates surface ship atmospheric T and Q every 24 hrs.
- Uses LETKF with 50 member ensemble

CFSv2-LETKF

- Combined existing GFS-LETKF (Lien, 2013) and MOM-LETKF (Penny, 2013)
- T62/L64 atm 0.5deg ocn (reduced resolution ATM)
- 50 member ensemble (initialized from CFSR, run freely for 6 months to develop sufficient spread)
- observations from operational ATM PREPBUFR and OCN profiles used by GODAS

Weakly Coupled DA - JJA

5m OCN T BIAS

ATM T bias – SFCSHP obs

5m OCN T RMSD (K)

ATM T RMSD (K) - SFCSHP obs

Weakly Coupled DA – cross covariances

- Cross correlations given by the ensemble for a single date
- ATM and OCN temperature max correlation of 0.36, highest values in that hemisphere's summer, below 850mb and above top of thermocline
- June values likely artificially large due to insufficient spin up time for the ocean

Strongly coupled DA

- 1 way strongly coupled DA
- Strongest cross correlations are between OCN_T and ATM_T/ATM_q, so...
- OCN assimilates surface ship T and q as well, given by the SFCSHP section of the PREPBUFR

Sluka: First results testing weakly coupling the NCEP CFS with real observations

Weakly Coupled DA Ocean 5m T bias

Weakly Coupled DA Atmospheric surface T bias

There is a strong positive temperature bias in the weakly coupled DA in the Pacific and Atlantic oceans, especially near the coasts.

Difference in the RMS errors between strong and weak coupled data assimilation. Blue: Strong is better

Strong-Weak Coupled DA Atmos. Surface T RMS error

Strong-Weak Coupled DA Ocean 5m T RMS error

- The ocean improved its bias because it assimilated surface atmospheric observations.
- The improved coupled ocean model in turn reduced the atmospheric errors.

Strongly Coupled CFS - results

• Errors in 6 hour background for ATM T are greatly reduced in the NH

Strongly Coupled CFS - results

[™]9, 2016

Strongly Coupled CFS - results

Caused by naïve fixed vertical localization of ATM observations into ocn (σ =50m). Need to limit impact to mixed layer only.

Mixed Layer depth (JJA)

Ultimate Goal...

• CFSv3 - NCEP

transitioning to **gain hybrid-GODAS**, based on LETKF for the **ocean**.

 Increased potential after that for an operational strongly coupled hybrid-LETKF global DA system

