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Introduction

Data assimilation at the convective-scale is very difficult!

Challenges relevant to this talk:

1 Displacement errors in storms and clouds lead to
non-Gaussian prior pdfs.

2 Cloud processes are very nonlinear.

3 Measurements often relate nonlinearly to model state.

4 Storm-environment interactions are likely nonlinear.

See van Lier-Walqui et al. (2012) and Posselt (2016) for examples.
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Example of problem 1
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A Rankine vortex reproduces the
data assimilation problem posed by
displacement errors.

The 1-D wind profile (top panel) is
interpolated spatially to produce a
2-D wind field (bottom panel).
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Experiments with Rankine vortex
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Prior: 200 vortices with identical structure, but position error.

Observations radar radial wind measurements, observing part
of the vortex.
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Experiments with Rankine vortex
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Linear/Gaussian methods are suboptimal when position error
is comparable or larger than vortex size (Lawson and Hansen
2005; Chen and Snyder 2007).
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Example of problems 2 and 3
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Prior: 100-member ensemble
forecasts for idealized squall line.

Observation: Radar reflectivity
measurement at ?.

Top and bottom panels show cross
sections through true storm at
observation location.

Reflectivity and storm-relative winds
are plotted.
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Prior ensemble at ?
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Black tickmarks: observed
reflectivity
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EnKF update at ?
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Green markers: posterior mean
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What about particle filters?

Particle filters (PFs) use ensemble members, or “particles,”
to form a general representation of probabilities.

Unlike EnKFs, PFs do not approximate pdfs using Gaussians.

Samples drawn from a
non-Gaussian pdf for x

x		
	

p(x)  
	

Gaussian representation
from samples

x		
	

p(x)  
	



10/34

SIR PF

Sequential importance resampling (Gordon et al. 1993)
provides framework for technique used in this study.

SIR PF
STEP 1:

x		
	

p(x)  
	

Prior pdf is estimated empirically
by a sum of delta functions:

p(x) ≈ 1
Ne

Ne∑
n=1

δ(x − xn).
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SIR PF

Sequential importance resampling (Gordon et al. 1993)
provides framework for technique used in this study.

SIR PF
STEP 2:

x	

p(x) 

p(y|x) Posterior pdf is estimated by
sum of weighted delta functions:

p(x |y) ≈
Ne∑

n=1
wnδ(x − xn),

wn ∝ p(y |xn).
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SIR PF

Sequential importance resampling (Gordon et al. 1993)
provides framework for technique used in this study.

SIR PF
STEP 3:

x	

p(x) Particles are drawn from p(x |y)
by sampling with replacement
based on {xn,wn}, n = 1,2,...,Ne
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Localized SIR PF

The Poterjoy (2016) local PF:

calculates weights for each state variable i in x:

wn,i ∝
Ny∏
j=1
{[p(yj |xn)− 1]cj,i ] + 1}, where cj,i = f (r , yj , xi ).

processes observations serially to merge sampled particles
from SIR PF step with prior particles.

Advantages: computationally inexpensive and resembles
SIR PF as r →∞.

Disadvantage: a sampling step is needed for each
observation in sequence.
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Localized SIR PF

Poterjoy and Anderson (2016) show that the local PF
operates effectively for high-dimensional geophysical systems
(tests using dry, coarse resolution GCM).

Poterjoy, Sobash, and Anderson (accepted) demonstrate
advantages over EAKF for idealized convective-scale
application in NCAR Weather Research and Forecasting
(WRF) model.
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Other localized PF-type methods

Not a new idea:

Bengtsson et al. (2003): “Local local ensemble filter”

Lei and Bickel (2009): “Moment matching ensemble filter”

And many others: Chen and Reich (2015), Tödter et al.
(2015), Chustagulprom et al. (2016), Penny and Miyoshi
(2016), Lee and Majda (2016), Robert and Künsch (2017),...
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The local PF: Problem 1
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200-member local PF maintains vortex symmetry better than
EnKF.

Non-localized SIR PF requires over 1x104 particles to prevent
weight collapse.
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The local PF: Problem 1
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80-member local PF requires shorter correlation length scale
for localization, which degrades vortex structure.

Ensemble size comparable to operational numerical weather
prediction centers.
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The local PF: Problems 2 and 3
EnKF
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Prior with ob located 2 km lower
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reflectivity and microphysics
variables
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Black tickmarks: observed
reflectivity
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PF update
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Green markers: posterior mean
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Local PF update
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Research question

Can current convective-scale NWP efforts
benefit from the local PF?

YES

Dynamical processes are
very nonlinear.

Measurements often relate
nonlinearly to the model
state or have non-Gaussian
errors.

NO

Models errors are still too
much of a problem.

Degrees of freedom are too
large for current ensemble
sizes.
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Convective-scale forecasting at NOAA NSSL

NSSL Experimental Warn-on-Forecast
System for Ensembles (NEWS-e)

HRRRE Dx=15 km BC’s from GFS

HRRRE Dx=3 km

NEWS-e

21Z							0Z								3Z								6Z								9Z							12Z						15Z						18Z
HRRRE

(1-h cycles) NEWS-e
(15-min cycles)

21Z							0Z								3Z

Model: 3-km grid
spacing NCAR WRF
model.
Observations: Radar,
satellite, and surface
data every 15-min
Data assimilation:
36-member NCAR Data
Assimilation Research
Testbed (DART) EAKF
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First test of local PF

24 May 2016 tornado outbreak

Local PF is compared with EAKF for
complex case where convective cells
grow upscale into MCS.

Loading video...

90-min storm evolution
from 00 UTC


NEWSe_demo_short.mov
Media File (video/quicktime)
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EAKF members

(Loading video...)

Composite reflectivity for first 10 members.

Forecasts initialized at 00 UTC 25 May.

35 dBZ contour of observed composite reflectivity shown for
reference.


rel_refl_ens_kf_0000.avi
Media File (video/avi)
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Local PF members

(Loading video...)

Composite reflectivity for first 10 members.

Forecasts initialized at 00 UTC 25 May.

35 dBZ contour of observed composite reflectivity shown for
reference.


rel_refl_ens_pf_0000.avi
Media File (video/avi)
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Forecast verification using radar winds

(Loading video...)

Circles show absolute value of Vr observations - ensemble
mean from forecasts initialized at 00 UTC 25 May.

Contour of ensemble mean 20 dBZ composite reflectivity
shown for reference.


vr_err_0000.avi
Media File (video/avi)
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Local PF vs. EAKF

Forecast time (min)
0 10 20 30 40 50 60 70 80 90

R
M

S
D

 a
nd

 E
xp

ec
te

d 
E

rr
or

 (
m

/s
)

3.5

4

4.5

5

5.5

6
NEWSe EAKF
Local PF

Volume mean Vr RMSDs
(solid lines) and expected
error from ensemble and
observation errors (dashed
lines).

Values averaged from
forecasts initialized every 30
min from 2230 UTC to
0300 UTC.
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More extensive obs coverage for verification

Radar coverage in Domain US NEXRAD Coverage

Multiple radars in domain used to estimate forecast errors.

Example shows radar obs within 5 min of 0000 UTC 24 May
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More extensive obs coverage for verification

Multiple radar obs included

Forecast time (min)
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Verification considers other
storms in domain.

Observation coverage
changes with time because
different scan volumes make
it into each 5-min window.
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Additional cases

Case 2: 9 May 2016

Storms grow upscale into
organized MCSs.

Case 3: 25 May 2016

Long-lived tornadic
supercell across domain.
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EAKF vs. Local PF

Case 2: 9 May 2016

Forecast time (min)
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Storms grow upscale into
organized MCSs.

Case 3: 25 May 2016
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Long-lived tornadic
supercell across domain.
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Discussion

A localized PF is tested in the NOAA National Severe Storms
Laboratory realtime ensemble prediction system.

Despite large sampling error caused by small ensembles and an
imperfect forecast model, the local PF provides comparable
results to a thoroughly tested EAKF data assimilation system.

Other localized PF-based methods may show potential for
data assimilation problems of this type; e.g., Walter Acevedo’s
talk tomorrow and current work by Robert and Künsch with
hybrid EnKF/PF.
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Looking forward

The flexibility provided by PFs allows for a less restricted
treatment of observations than current framework.

Observing systems are designed for linear/Gaussian data
assimilation methods.

Using non-Gaussian observation errors is trivial in PF
framework.

Raw observations can be used without rigorous post
processing (extreme example: radar velocity unfolding).


