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JMA operational ocean forecast system 

MOVE/MRI.COM-WNP 
– operated since 2008 
– western North Pacific model 
– 10km resolution 
– data assimilation with 3DVAR 
– targeting mesoscale phenomena in the 

open ocean (Kuroshio, Oyashio, 
mesoscale eddies,…) 

– cannot resolve coastal processes 
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One-way 
nesting 

http://www.data.jma.go.jp/gmd/kaiyou/shindan/index.html 



Need for coastal system 
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Typhoon “Sanba” 

Sep2012 

Coastal trapped  
waves 

Itsukushima shrine 

Unusual tide in Sep 2011 

Sea-level information 
(Hiroshima local 
meteorological office) 

storm surge 
model 

MOVE/MRI.COM-WNP 

new system 

monitoring and forecasting system for 
the Japanese coastal seas 

Sea Level 
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Observations used for ocean data assimilation 

 Satellite altimeter 

 In-situ observations (T and S) 

• TOPEX/Poseidon, Jason-1/2/3 
• ERS-1/2, Envisat, Cryosat-2 
• GFO, SARAL/AltiKa, HY-2 

 Satellite SST 
• NOAA/AVHRR 
• AQUA/AMSR-E 
• Himawari/AHI 

Jason-2 

• Argo 
• Ship 
• Buoy 

NOAA/AVHRR 

• … 
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Observations used for ocean data assimilation 

Argo  

Altimeter 

Jason-1 
 Envisat 
 T/P 

(11-20AUG2004) 

Positions of floats (Feb 25, 2017） 
http://ds.data.jma.go.jp/gmd/argo/data/indexJ.html 

Few observations in coastal waters 



A strategy for a coastal system  
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• Analysis model 
– Basin-scale model with a 10km resolution (eddy-resolving) 
– 4D-Var assimilation scheme (upgrade from the previous 3D-Var) 

• Aims at improving short-term mesoscale variability 

• Forecast model 
– High resolution (~2km) coastal model 
– Use of up-to-date schemes 
– Initialized with analysis model results 

Analysis model 
(10km)  

Forecast model  
(2km) 

Assimilation cycle: 



Plan for development of coastal systems 
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June 2016- 

Roadmap 

Seto Inland Sea 

Target area: 
• Seto Inland Sea  

(MOVE/MRI.COM-Seto) 
– 2km coastal model (MRI.COM-Seto) 
– 4DVAR analysis model with 10km grid  

in the western North Pacific (MOVE-4DVAR-WNP) 
– implemented at JMA in June 2016 (now trial phase) 

MOVE/MRI.COM-Seto 

Analysis model (10km) 

Forecast model (2km) 

Kobe 
One-way 
nesting 



Plan for development of coastal systems 
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June 2016- 

Roadmap 

Several years later 

Target area: 
• Seto Inland Sea  

(MOVE/MRI.COM-Seto) 
– 2km coastal model (MRI.COM-Seto) 
– 4DVAR analysis model with 10km grid  

in the western North Pacific (MOVE-4DVAR-WNP) 
– implemented at JMA in June 2016 (now trial phase) 

• Whole coastal regions of Japan  
(MOVE/MRI.COM-Jpn) 
– Model Japan with 2km resolution (MRI.COM-Jpn) 
– 4DVAR analysis model in the North Pacific 

(MOVE-4DVAR-NP)  

MOVE/MRI.COM-Seto MOVE/MRI.COM-Jpn 

Two-way 
nesting 

Analysis model (10km) 

Forecast model (2km) 



Coastal Ocean Model 
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z 

σ 
Model MRI Community Ocean Model ver. 4 

(MRI.COM; Tsujino et al. 2011) 

Coordinates free surface, z*-coordinate 

Hori. resolution 1/33°×1/50°(~2km) 

Vert. resolution 2-700m (60 levels) 

Tracer advection Second-order Momentum closure (Prather 1986) 

Hori. mixing Smagrosinky bi-harmonic 

Vert. mixing  Generic length-scale (GLS; Umlauf and Burchard 1999) 

Tides Explicit tidal forcing (Sakamoto et al. 2013) 

Nesting Online two-way nesting 

River run-off JMA Runoff Index (JMARI) 

Sea ice Multi-category sea ice model 

Location of river mouths 
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3DVAR scheme in MOVE/MRI.COM-WNP 

3DVAR with vertically coupled temperature-salinity (T-S) EOF modes 

• Cost function: 

Deviation from first guess 

Deviation from T S observation 

Deviation from altimetry data 

z Amplitudes of vertically coupled T-S EOF modes       control variables 
x Temperature and salinity analyses 

BH Horizontal correlation matrix for background errors 

R Observation error covariance matrix for in-situ T-S profiles 

σh Observation error for altimeter-derived sea-level anomalies 

yTS T-S profile data 

ySLA Altimeter-derived sea level anomaly 

Constraints 

Optimize T and S fields 
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Background error covariance matrix 

z Amplitudes of vertically coupled T-S EOF modes       control variables 

∆𝐱𝐱 T-S increments (= x – xb) 

BH Horizontal correlation matrix for background errors 

S Diagonal matrix composed of background standard errors 

U Orthogonal matrix composed of dominant T-S EOF modes 

𝚲𝚲 Diagonal matrix composed of singular values for T-S EOF modes 

Background error  
covariance matrix: B 

= 𝐳𝐳 

∆𝐱𝐱 = 𝐱𝐱 − 𝐱𝐱𝑏𝑏 
     = 𝐒𝐒𝐒𝐒𝚲𝚲𝐳𝐳 

Background  term: 

Analysis increment (T and S): 

= 𝐳𝐳 

1
2
∆𝐱𝐱T 𝐒𝐒𝐒𝐒𝚲𝚲𝐁𝐁𝐻𝐻𝚲𝚲𝐒𝐒𝐒𝐒 −1∆𝐱𝐱 

=
1
2
𝚲𝚲−1𝐒𝐒T𝐒𝐒−1∆𝐱𝐱 T𝐁𝐁𝐻𝐻−1 𝚲𝚲−1𝐒𝐒T𝐒𝐒−1∆𝐱𝐱  
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Background error covariance matrix 

 Vertical direction  Vertically coupled T-S EOF modes 

1st mode (56.6%) 2nd mode (13.3%) 3rd mode (10.6%) 

 Horizontal direction  Gaussian function 

Kuragano and Kamachi (2000) 

• Gaussian ellipsoid model with parameters of zonal 
and meridional correlation scales 

• Correlation scales are determined each subregion 

Typical scale of oceanic variability 

Subareas for T-S EOFs 

T S T S T S 
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Extension of 3D-Var to 4D-Var 

IAUとnudgingのフィルター特性の比較（左：現象の振幅，右：位相） 

• Control variables are 𝒛𝒛 (amplitude of vertically coupled T-S EOF modes) 
      Same B matrix as that in the 3DVAR system 

• Incorporates an initialization scheme of  Incremental Analysis Update (IAU) 

3D-Var 

4D-Var 

∆𝐱𝐱 = 𝐱𝐱 − 𝐱𝐱𝑏𝑏 = 𝐒𝐒𝐒𝐒𝚲𝚲𝐳𝐳 

∆𝐱𝐱 = 𝐒𝐒𝐒𝐒𝚲𝚲𝐳𝐳 

𝐱𝐱𝑖𝑖 = 𝑀𝑀𝑖𝑖−1 𝐱𝐱𝑖𝑖−1 + 𝑔𝑔𝑖𝑖∆𝐱𝐱 1/𝜏𝜏       0 < 𝑖𝑖 ≤ 𝜏𝜏  
0            𝜏𝜏 < 𝑖𝑖  

𝑔𝑔𝑖𝑖 = 

(𝜏𝜏 ∶ Initialization period)  correction term 
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Combination use of 3D-Var and 4D-Var 

Initial increment： ∆𝐱𝐱 = 𝟎𝟎 

Optimal increment： ∆𝐱𝐱𝒂𝒂 

Analysis value：  
𝐱𝐱𝑖𝑖𝑎𝑎 = 𝑀𝑀𝑖𝑖−1 𝐱𝐱𝑖𝑖−1 + 𝑔𝑔𝑖𝑖∆𝐱𝐱𝑎𝑎 

Initial increment：  ∆𝐱𝐱3DVAR 

Optimal increment： ∆𝐱𝐱𝒂𝒂 

Analysis value：  
𝐱𝐱𝑖𝑖𝑎𝑎 = 𝑀𝑀𝑖𝑖−1 𝐱𝐱𝑖𝑖−1 + 𝑔𝑔𝑖𝑖∆𝐱𝐱𝑎𝑎 

Perform 3D-Var 

Standard 4D-Var  4D-Var starting with 3D-Var 
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Combination use of 3D-Var and 4D-Var 

IAUとnudgingのフィルター特性の比較（左：現象の振幅，右：位相） 

Analysis increment for T400 

4DVAR-
only 

3DVAR + 4DVAR 3DVAR increment 4DVAR increment 

Cost function 



16 

Comparison of 3D-Var and 4D-Var 

Tide gauge 
4D-Var 
3D-Var 
Altimeter (AVISO) 

Sea level at Hachijo-jima 

Usui et al (2015) 

Usui et al (2016) 

8.08   9.54   9.08 

10-day 

RMSE (cm) 
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Initialization of the forecast model 

Incremental Analysis Update (IAU; Bloom et al. 1996) 

(1) Integrate the forecast model during [0, τ/2]  

Analysis model: 
 (10km, 4D-Var) 

Forecast model: 
 (2km) 

Initialization period: τ 

(2) Take model-analysis misfit after a spatial interpolation of  xA and determine increment 

0 τ 2τ 

(1) 
(2) 

(3) 

(3) Again integrate the forecast model with correction term during [0, τ] 

: interpolated to xF space 
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Comparison of SST fields 

Analysis model  
(10km) 

Forecast model  
(2km, 5-day IAU) 

Satellite-based SST map 
(MGDSST ~25km) 
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Comparison of snapshot SST 

Analysis model  
(10km) 

Forecast model  
(2km, 5-day IAU) 

Satellite SST image 
(NOAA/AVHRR) 

http://www.mpstpc.pref.mie.lg.jp
/sui/kaikyo/detail.htm 
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Coastal Sea Level 
Correlation with tide-gauge data 

OBS 
Forecast model 

OBS 
Forecast model 

OBS 
Forecast model 

# Tide-gauge data are not assimilated 



Abnormal high sea level in September 2011 
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Tide-gauge  
Forecast model 
Previous model 
(MOVE-WNP) Osaka Takamatsu Uwajima 

Typhoon 

Itsukushima shrine SSH (contour) and SSH anomaly (shade) 

Se
a 

Le
ve

l a
no

m
al

y 
(c

m
) 

• SLAs exceed 30cm at south coast of 
Japan in the end of Sep 2011 

 

Abnormal sea level 

Typhoon 

Osaka 

Takamatsu 

Uwajima 



Abnormal high sea level in September 2011 

• SLAs exceed 20cm at south coast of 
Japan in the end of Sep 2011 

• The forecast model succeeded in 
reproducing this event 

• The sea-level rise was caused by 
coastal trapped waves induced by a 
Kuroshio path fluctuation 
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Osaka Takamatsu Uwajima 

Typhoon 

SSH (contour) and SSH anomaly (shade) 

Se
a 

Le
ve

l a
no

m
al

y 
(c

m
) 

Typhoon Tide-gauge  
Forecast model 
Previous model 
(MOVE-WNP) 

Osaka 

Takamatsu 

Uwajima 

Abnormal sea level 



Toward coastal scale DA 

23 http://le-web.riam.kyushu-u.ac.jp/radar/ https://swot.jpl.nasa.gov/ 

Vector correlation between v and vg 
geostrophic 

ageostrophic 

• Relative importance of different observations 
– Mesoscale (O(100km): T and S obs are effective 

– Coastal scale (O(10km)): Velocity obs are effective 
                    enable to estimate ageostrophic currents 

• Velocity observations for coastal scale DA: 
– HF radars 
– High-resolution 2D SSH (SWOT, COMPIRA) 



Uncertainty in forcing: wind 
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GSM (TL959 ~ 20km) MSM (~5km) 



Uncertainty in forcing: wind 
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MSM 
GSM 

MSM 
GSM 

Awaji Island 

Wind stress (meridional) Surface current (meridional) 

Frequency (per year) Frequency (per year) 

1 day 1 day 

• High-resolution wind field is indispensable for a coastal system 
• There is still large uncertainty in wind field in coastal areas with complex 

coastal topography  

Awaji Island 

 To correct atmospheric forcing as one of control variables would be a 
possible approach to improve coastal circulation  



Uncertainty in forcing: river discharge 
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Surface Salinity and Surface Current (23SEP2011) 

50 cm/s 

JMARI CLIM 

•Climatology of 1st-class rivers 

Mouths of major rivers 

: 1st-class rivers 
: Other rivers 

Kitagami et al. (2016) 

• JMA Runoff Index (JMARI) 

•Calculated by a hydrological 
model using precipitation  

•Covers 3,986 rivers Runoff Index 

(psu) 



Uncertainty in forcing: river discharge 
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(psu) 
50 cm/s 

Surface Salinity and Surface Current (23SEP2011) 
JMARI CLIM 

Surface Salinity retrieved from  
Ocean Color Imager (GOCI/COMS) 

• JMARI qualitatively well captures observed features in surface salinity  
• CLIM has a high salinity bias 

High salinity bias originated 
from retrieval algorithm 



Uncertainty in forcing: river discharge 
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Surface Salinity and JMARI in the Yodo river basin 

Yodo River discharge at Hirakata 

JMARI 
OBS 

Surface salinity (psu) 

Typhoon 

Runoff Index 

Yodo river basin 

[m
3 /

s]
 

• Timing of river discharge is in good agreement with observation 

• But the maximum discharge is overestimated 

 One possible approach would be to correct the run off data using ocean 
observations such as salinity data. 



Summary 

• Coastal system (MOVE/MRI.COM-Jpn) 
– Forecast model: high resolution coastal model (MRI.COM-Jpn) 

• Up-to-date schemes  
 (Z* coordinate, online two-way nesting, tidal scheme, river runoff …) 
• IAU initialization using 4DVAR analysis field 

– Analysis model: 4DVAR assimilation model (MOVE-4DVAR-NP) 
• Vertical TS-EOF mode for B matrix 
• Combination algorithm of 3D-Var and 4D-Var 
• Improve short-term mesoscale variability from 3D-Var 

• Toward coastal scale DA 
– Importance of assimilation of velocity observations 
– Uncertainty in forcing  

• Surface wind 
• River discharge 
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