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The Earth’s interior and the geomagnetic field
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The Earth’s interior and the geomagnetic field



The Earth’s interior and the geomagnetic field

SIC

FOC

SM

SM: Solid Mantle (rocks), 0–2890 km depth
FOC: Fluid Outer Core (liquid Fe), 2890–5150 km depth
SIC: Solid Inner Core (solid Fe), 5150–6370 km depth



The internal field

Spherical harmonic analysis

B = −∇V in a current-free region; with internal sources,
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Connection between surface observations and the field at the CMB

(CMB: Core-Mantle Boundary)

Gubbins and Roberts (1983)
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The lithosphere is magnetized

World Digital Magnetic Anomaly Map consortium



The geomagnetic field

To take home
I dipole-dominated
I small scales of dynamo field concealed by the small scales of the crustal field
I even if perfect sampling: ` . 13 (lateral resolution of ∼ 1500 km at the core surface)



The catalogs of data
τconv ∼ 150 yr τdi� ∼ 60, 000 yr

I Paleo-,archeomagnetism: 0 − 10(100, 1000+) kyr ago D, I, F
I Mariners: 0 − 400 yr ago D, I
I Observatories: 0 − 150 yr ago X ,Y ,Z
I Satellites: 0 − 20 yr ago X ,Y ,Z



A heterogeneous record: spatial coverage (courtesy Chris Finlay)

archeo/paleo: 0 − 10+ kyr ago

Locations of lake sediment records used to constrain the CALS10k model
of Korte et al. (EPSL, 2011) spanning the past 10kyrs.

logbooks: 0 − 400 yr ago

Locations of historical data (all components) between 1770 and 1790 from
the Jonkers et al. (Rev. Geophys., 2003) database.

observatories: 0 − 150 yr ago

Locations of observatories used in determination of recent internal field
models.

satellites: 0 − 20 yr ago
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Example showing 3 days of CHAMP vector satellite data from 2009
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Processes?



Data assimilation in geomagnetism
Principle

To analyse the variations of the geomagnetic field reflected in the highly heterogeneous record at
our disposal using a dynamical model of its evolution as source of prior information

Ingredients
I observations
I physical laws (dynamical model)

Goals
I Identify those physical processes controlling the geomagnetic secular variation
important because fundamental

I Estimate the internal magnetohydrodynamic structure of Earth’s core
I Forecast the evolution of the geomagnetic field
I Reanalyze its past variations

2 applications (research stage)

1. Assimilation of archeomagnetic data into a 3D numerical model of the geodynamo (3 ka)
2. Assimilation of dipole intensity data spanning the past 2 Ma into a low-dimensional model of

geomagnetic reversals
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1. Assimilation of archeomagnetic data into a 3D numerical
model of the geodynamo (3 ka)

Sabrina Sanchez’ PhD (2016)



Convection-driven models of the geodynamo

A dynamo is a system which has the ability to convert mechanical energy into
electromagnetic energy. In Earth’s core, it is the convective flow u of liquid iron
which sustains the magnetic field B against Ohmic decay.

A model of the geodynamo in a nutshell
I Conservation laws (mass, momentum, energy) and Maxwell’s equations (MHD

approximation)
I Set of 3D non-linear coupled PDEs to solve in a spherical shell (the FOC)
I Pseudo-spectral method (Glatzmaier, 1984): finite di�erence in radius, spherical

harmonics in the horizontal plane (Dormy, 1997).
I Size of state vector ∼ 106 − 107.



The ensemble Kalman filter: Implementation

I The starting dynamo code:
a modified (more modular) version of the
in-house PARODY code (Dormy et al., 1998;
Aubert et al., 2008).
+ SHTns library (Schae�er, 2013).

I The EnKF layer:
a suitably modified version of the Parallel Data
Assimilation Framework of Nerger and Hiller
(2013).

Software for ensemble-based data assimilation systems—Implementation
strategies and scalability
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a b s t r a c t

Data assimilation algorithms combine a numerical model with observations in a quantitative way. For
an optimal combination either variational minimization algorithms or ensemble-based estimation
methods are applied. The computations of a data assimilation application are usually far more costly
than a pure model integration. To cope with the large computational costs, a good scalability of the
assimilation program is required. The ensemble-based methods have been shown to exhibit a
particularly good scalability due to the natural parallelism inherent in the integration of an ensemble
of model states. However, also the scalability of the estimation method – commonly based on the
Kalman filter – is important. This study discusses implementation strategies for ensemble-based filter
algorithms. Particularly efficient is a strong coupling between the model and the assimilation algorithm
into a single executable program. The coupling can be performed with minimal changes to the
numerical model itself and leads to a model with data assimilation extension. The scalability of the data
assimilation system is examined using the example of an implementation of an ocean circulation model
with the parallel data assimilation framework (PDAF) into which synthetic sea surface height data are
assimilated.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Ensemble-based data assimilation algorithms are applied to
combine numerical models with observational data for various
applications like in meteorology, oceanography, or in the problem
of history matching in petroleum research. The algorithms are
typically variants of the ensemble Kalman filter (EnKF, Evensen,
1994; Burgers et al., 1998). The computationally most efficient
methods are currently the so-called ensemble-square root Kalman
filters (EnSKF). Several of these methods have been developed and
classified over the recent years (Bishop et al., 2001; Anderson,
2001; Whitaker and Hamill, 2002; Evensen, 2004; Tippett et al.,
2003; Nerger et al., in press). For strongly nonlinear applications,
particle filters are of growing interest (see van Leeuwen, 2009).

All EnSKFs use an ensemble of model state realizations to
estimate the error of the model state. A prediction of the error at a
future time is computed by integrating each ensemble state
independently by the model. The integrations are typically
performed until observations are available. At this time, the
information from the observations and the ensemble are com-
bined by performing an analysis step based on the Kalman (1960)

filter. The quantitative combination of both information sources is
computed using the estimated errors of the observations and the
ensemble covariance matrix. All ensemble members are updated
in the analysis step resulting in an analysis ensemble that
represents the new state estimate and the corresponding errors.

Typical ensemble sizes in EnSKF applications are between the
order of 10 and 100 states. Because each ensemble state is
integrated by the model, the application of an EnSKF is computa-
tionally extremely costly. To reduce the execution time of a data
assimilation program, the natural parallelism in the ensemble
integration can be utilized. As each ensemble state can be inte-
grated independently from the others, all states can be integrated
at the same time, if a sufficiently big computer is available. In the
analysis step, all ensemble members have to be combined to
compute the ensemble error covariance matrix. The analysis step
can be parallelized to reduce its execution time. For the original
EnKF, parallel implementations were reported by Keppenne (2000),
Keppenne and Rienecker (2002) and Houtekamer and Mitchell
(2001). The scalability of different ensemble-based Kalman filters
was discussed by Nerger et al. (2005b).

The filter algorithms only require a limited amount of infor-
mation from the model. In general, they can operate entirely on
state vectors, rather than individual fields. In the state vector, all
relevant fields, or even parameters in the case of parameter-
estimation applications, are stored. For the implementation of
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subroutines (indicated in the figure by the prefix ‘‘DA_’’). In
addition, a loop can be inserted around the time stepping part
of the model. This ‘‘ensemble loop’’ increases the flexibility when
the execution of the assimilation system is configured with
parallelization. In general, there can be one or several ‘‘model
tasks’’, each of which is computing forecasts of ensemble states. If
there is only a single model task, it has to compute the forecast of
all states in the ensemble. Thus, when the forecast is computed
from time ta to tb, the model task has to jump back to time ta for
each new ensemble member that it has to integrate. The imple-
mentation has to ensure that the integrations are independent
and consistent. For example, if the model uses forcing data, like
surface wind stress in an ocean model, it has to be correctly
re-initialized. If the program utilizes the parallelism of the
ensemble integration, one can configure the execution of the
program such that the ensemble size equals the number of model
tasks. In this case, all model tasks will only compute forward in
time. The consistency of the integration might be easier to
achieve with this configuration as, e.g. the forcing never needs
to be restored to an earlier time. If the number of model tasks is
always equal to the ensemble size, one could also structure the
additional subroutine calls in a way that avoids the ensemble
loop. The possibilities, however, will depend on the number of
processes that are available for the execution of the program. For
efficiency, it is important to ensure that all ensemble members
can be uniformly distributed over the model tasks.

The inserted subroutine calls initialize the assimilation applica-
tion, control the ensemble forecasts, and perform the filter analysis
step. They can be implemented with the following functionality:

! DA_init_parallel: This routine redefines the parallelization
of the program, namely the communicators in the case of

MPI-parallelization. While for the original (forward) model all
processes participate in the integration of a single model state,
the assimilation system might compute several integrations at
the same time. These are performed by the ‘‘model tasks’’, each
with a separate set of processes. Next to these process sets, a
set of processes that compute the analysis step has to be
defined.

! DA_init: Following the initialization phase of the model, this
routine initializes the assimilation system. Necessary para-
meters for the assimilation system are defined, like the size of
the state vector or the number of ensemble members. In
addition, the initial ensemble is read from files. The ensemble
is stored in an array that might be distributed over several
processes.

! DA_get_state: Preceding the integration phase of the model,
this routine initializes model fields from a state vector. In
addition, it defines the number of time steps (‘‘nsteps’’ in
Fig. 1) over which the forecast is computed. During the
forecast phase, it will also define if more ensemble forecasts
should be computed, or if the assimilation sequence is
completed.

! DA_put_state: This routine is called after the integration phase
of the model. First, the routine writes the model fields back
into the array holding the ensemble of model states. Subse-
quently, it checks whether the ensemble forecast is completed
for the model task to which the calling process belongs. If
there are further ensemble states to be integrated by the
model task, the routine is exited and the program will jump
back to the beginning of the ensemble loop. If the ensemble
forecast is completed, the routine for the filter analysis step
will be executed. After the analysis step, the program will
jump back to the beginning of the ensemble loop.

The routines DA_get_state as well as DA_put_state require the
information how the state vectors are related to actual model
fields. These routines also utilize information about the available
observations. In particular, the temporal availability of observa-
tions will define the length of the forecast phase. In addition, the
analysis step requires an implementation of the observation
operator Hk as well as the initialization of the vector of observa-
tions yk. The implementation of these functionalities should follow
two criteria: First, the assimilation routines listed above should be
independent of the definition of the state vector and of the
observations. Second, to minimize the changes to the model code,
one should avoid to perform the operations directly in the model
code. An efficient implementation strategy that fulfills these
criteria is the use of call-back routines. These are routines that
are called by the assimilation routines in order to perform a
specified operation, like the initialization of the observation vector.
It is useful to implement the call-back routines in the context of the
model. For example, if a model uses Fortran modules, these
modules can be utilized in the call-back routines if they provide,
e.g. information about the coordinates of grid points.

To facilitate the implementation of call-back routines for PDAF,
they are designed to include only very elementary operations.
One example is the initialization of the observation vector. An
array in which the observations are stored is allocated within
PDAF. Then, a call-back routine is called to fill the observation
array with the values of the observations. A similar strategy is
followed for the observation operator. In this case, a call-back
routine is called with a state vector x and array for the observed
state vector Hx in its arguments. The task of the call-back routine
is then to compute Hx from X. Finally, also the product ðHdLÞ

TR$1
d ,

which is required in Eqs. (13) and (14), is computed in a call-back
routine. This routine is provided with ðHdLÞ

T and has to perform
the multiplication by R$1

d . This implementation strategy allows

Fig. 1. Left: Flow diagram of a typical numerical model. Right: Flow diagram of the
model extended to an assimilation system by calls to routines of the assimilation
framework. (Based on Nerger et al., 2005b.)
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The archeomagnetic data

Distribution in time

First assimilation experiments using these pointwise measurements
I one analysis every 20 yr (numerical time step ∼ 2 days)
I ensemble size: 512



Initial finding with real data

I The database contains data whose locations are close but whose values are
moderately compatible with each other

I Strong gradients of Br at the core-mantle boundary: unstable scheme

Intensity @ surface (in µT) Br @ CMB (in µT)

Empirical fix (in spectral space) : Pf → P̃f

Each component of degree ` of each xf is scaled by ρ (`) with
ρ (`) = 1 for ` ≤ 5,

ρ (`) ∝ `−2 for ` > 5.



Variance of the ensemble
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2. Assimilation of dipole intensity data spanning the past 2
Ma into a low-dimensional model of geomagnetic reversals



Coarse predictions of dipole reversals (Morzfeld et al., PEPI, 2017)



Paleomagnetic data

Signed relative paleointensity. The blue line represents the signed Sint-2000 data (Valet et al.,
2005) and the light blue cloud represents a 95% confidence interval. The red line represents
the mean of the PADM2M data (Ziegler et al., 2011). One datum every 1,000 years.



A low-dimensional deterministic model of dipole reversals

Gissinger (2012)

dQ
dt

= µQ − VD,

dD
dt

= −νD + VQ,

dV
dt

= Γ − V + QD,

dipole and V represents the flow, more specifically, its equatorially-
antisymmetrical component (e.g., Gubbins and Zhang (1993)). The
rich dynamics of these equations are studied by Gissinger (2012).
In particular, it is shown that reversals are generated by crisis-
induced intermittency when l ¼ 0:119; m ¼ 0:1, and C ¼ 0:9 and
that the model then shares a number of characteristics with the
paleomagnetic data.

2.3.1. Scaling of G12
The G12 model is not equipped with a natural scaling of the

amplitude of the dipole variable D to the geomagnetic dipole
amplitude, or with a scaling of G12 model time, t, to geophysical
time. To find the amplitude scaling of G12 we compute, as before,
the average relative paleointensity of the unsigned Sint-2000 and
PADM2M data sets and also compute the average of the absolute
value of the dipole variable of ten G12 model runs for 250 dimen-
sionless time units. By setting

G12 amplitude scaling :

D ¼
ffiffiffi
2

p
" relative paleointensity ðsignedÞ;

the average of the G12 dipole variable is approximately equal to the
average relative paleointensity. Moreover, this scaling leads to good
agreement of the histograms of the dipole variable D and of the
signed relative paleointensity of Sint-2000 and PADM2M (left panel
of Fig. 3). A typical simulation with G12 is shown in the lower left
panel of Fig. 2.

To find the scaling of G12 model time, we may use the fact that
the distribution of chron duration, i.e., the distribution of the time
periods during which the geomagnetic dipole is in a stable polarity,
is well approximated by a gamma distribution for both the paleo-
magnetic data (Lowrie and Kent, 2004; Cande and Kent, 1995) and
the G12 model, as shown by Gissinger (2012). By matching the
shape parameters of a gamma distribution from G12 simulation

data with the shape parameters of a gamma distribution of the
paleomagnetic chron durations, we derive the

G12 geological time scale :

1unit of G12 dimensionless model time ¼ 1 kyr:

The shape parameters are computed by maximum likelihood
estimation. For the paleomagnetic chron durations, these parame-
ters are estimated from the CK95(1) data set of Cande and Kent
(1995) as defined in Lowrie and Kent (2004), which contains the
sign of the dipole over the past 30 Myr. For the G12 model, the
parameters are estimated from ten simulation for 104 dimension-
less time units. The right panel of Fig. 3 shows histograms and cor-
responding gamma distributions for CK95(1) and G12 when using
this geological time scale.

It is instructive to assess this scaling by comparing the power
spectral densities of G12 simulation data and Sint-2000/
PADM2M data. We compute these spectra by the multi-taper spec-
tral estimation technique described in Constable and Johnson
(2005). The spectra are shown in the left panel of Fig. 4. Note that
the first corner frequencies of the G12 model and of the Sint-2000
and PADM2M data match, but that the G12 model has a larger
high-frequency content than PADM2M or Sint-2000 (by roughly
one order of magnitude for frequencies of 2 Myr%1 and above).
We can attribute the low-frequencies to the occurrence of rever-
sals, and the high frequencies to millennium scale dipole variations
during chrons. This suggests that, when scaled using the above
geological time scale, the dynamics of G12 essentially match the
reversal statistics of the geomagnetic dipole, but fail to match its
millennium behavior. We note that the high frequency content of
Sint-2000 and PADM2M could be underestimated because the data
are obtained by averaging over stacks, which possibly smoothes
the signal. Indeed, Constable and Johnson (2005) constructed a
spectral model whose high-frequency content is also larger than
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Fig. 2. Dipole simulations with low-dimensional models. Top row: B13 (left) and P09 (right). Bottom row: G12 (left) and G12 based SDE (right). ‘‘Time” in the lower left panel
is dimensionless.
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Data assimilation

We considered the EnKF (Evensen, 2006) and implicit sampling (Chorin and Tu, 2009;
Chorin et al., 2010; Morzfeld et al., 2012; Atkins et al., 2013; Morzfeld and Chorin, 2012).

Relative error

e =

∑2000
n=1

(
zn − Ê [xn |z1:n]

)2∑2000
n=1 (zn)2

,

where zn are the data at time
n kyr and Ê [xn |z1:n] is the
approximation of the con-
ditional mean of the dipole
given the data up to time n
kyr.

G12
Method: EnKF IMP

Data/sweep: 1 1 5 10 15
# samples

Si
nt

-2
00

0 50 30.5 5.70 3.74 4.28 10.90
100 30.7 5.43 3.80 4.20 10.93
200 30.0 5.38 3.61 6.19 10.91
400 29.5 5.39 3.51 6.18 10.88

PA
D

M
2M

50 27.1 6.63 5.09 5.98 10.7
100 27.9 6.27 4.92 5.93 10.5
200 26.5 5.99 4.99 5.93 10.9
400 26.8 5.83 4.92 5.83 10.7



Hincasting the last reversal

The Brunhes-Matuyama reversal occurs between 777 and 776 kyr ago.

t = -773 kyr
Prob. of Reversal: 0%

t = -777 kyr
Prob. of Reversal: 94%

t = -781 kyr
Prob. of Reversal: 0%

t = -769 kyr
Prob. of Reversal: 0%

G12 4 kyr forecast, Sint-2000



Prediction: is a reversal going to happen within the next 4 kyr?

Fig. 12. Hindcasting by G12 during the Laschamp event. Solid blue: Sint-2000 data. Light blue cloud: 95% confidence interval. Red: data assimilation (Sint-2000 data, S-IMP,
200 samples). Purple: predictions over 4 kyr. Orange: average of predictions over 4 kyr. Top left to bottom right: hindcasting starts at t ¼ "47 kyr, t ¼ "43 kyr, t ¼ "39 kyr,
t ¼ "35 kyr. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Hindcasting by low-dimensional models. Shown is the predicted probability of a reversal to occur within 4 kyr as function of time (red) along with the Sint-2000 data
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version of this article.)
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Shown is the predicted probability of a reversal to occur within 4 kyr as function of time (red)
along with the Sint-2000 data (blue).



Summary: some aspects of DA in geomagnetism

EnKF applied to a full dynamo model
I Assimilation of pointwise archeomagnetic observations spanning the past 3,000 years
I Empirical fix to cope with the heterogeneity within the dataset
I Systematic study (ensemble size, data selection, etc.)
I Combine archeomagnetic, historical and satellite data (EnKS)
I Prediction (under uncertainty) of the evolution of structure of the field

Low-dimensional modelling of geomagnetic reversals
I No reversal in sight!
I Improve low-dimensional model
I Good news: longer paleointensity records are being built (2 Ma→ 5 Ma)
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Threshold-based predictions

I Intensity based - if the intensity drops below Fmin, the field will reverse (no physics)
I Probability based - if the DA based probability exceeds pcrit, the field will reverse

(low-d physics)

Fmin and pcrit are determined based on the first Myr (training set) and then tested over
the second Myr (verification data).



Threshold-based predictions

other hand, it appears to be more predictable by intensity
threshold-based strategies than the Earth’s dynamo. This point will
be further discussed below.

4.4.2. Probability threshold-based predictions
We now wish to test if low-dimensional models combined with

data assimilation can provide a threshold criterium that is more
reliable than the data-derived intensity threshold above. We thus
modify the above intensity threshold-based strategy and predict
that a reversal will occur with probability one within 4 kyr if the
computed probability of an upcoming reversal exceeds a threshold,
otherwise assign probability zero.

We first consider probabilities derived from the G12 model. The
corresponding results are shown in the right panel of Fig. 14, where
we show IRBS for the training data as a function of the probability
threshold. We observe that the graph flattens for probability
thresholds larger than 70%, and drops quickly for high probabilities
larger than 98% for both paleomagnetic data sets. Specifically, the
optimal threshold based on Sint-2000 is 97.5%, and for PADM2M
threshold values between 90% and 95% are optimal, leading to IRBS
values of 1.63 for Sint-2000, and 1.31 for PADM2M. When these
optimal thresholds are used, we obtain an IRBS of 1.13 for the ver-
ification data of Sint-2000 and between 1.98 and 3.97 for the ver-
ification data of PADM2M (with optimal thresholds between 90%
and 95%). In addition, both reversals within the verification data
sets, whether Sint-2000 or the PADM2M, are correctly predicted
(see Fig. 15).

While the G12 probability threshold-based strategy is some-
what successful, it also has weaknesses. For example, it leads to
one false alert and fails to predict the reversal ending the Cobb

mountain subchron (see zoom (c) in Fig. 15), when considering
training data of Sint-2000. However, the false alert precedes a
reversal by only 13 kyr and the reversal is correctly predicted by
a later alert. In view of the much longer ‘‘typical” chron durations,
such a false alert may be viewed as a ‘‘slightly too early” warning.
Note that assessing the success of predictions by just relying on
IRBS ignores the fact that predicting a reversal slightly too early
is an error that is less severe than not predicting it at all.

Failing to predict the reversal ending the Cobb mountain sub-
chron is of greater concern. This reversal occurred, according to
the Sint-2000 data set, to within 4 kyr of the previous one. Failure
to predict this reversal thus may result from inaccuracies within
the Sint-2000 data. However, it may also suggest that the G12
model is incapable of producing two successive reversals within
a few thousand years. This could be due to the fact that the deter-
ministic G12 dynamics imposes a ‘‘minimum time” between rever-
sals which may be significantly larger than what can be observed
for this event.

Similar issues arise when using the PADM2M data set. In this
case, no false alert occurs before the Cobbmountain subchron.How-
ever, a false alarmdoes occur shortly after (1kyr after the subchron),
again indicating some incompatibility of the G12 model with this
quick sequence of two reversals. The G12 model in combination
with PADM2M and a probability threshold-based prediction strat-
egy further fails to predict the upper Olduvai reversal (1.77 Myr
ago) in the training data set. In this case, the alert is triggered only
once the reversal actually occurred. We did not observe this behav-
ior when using Sint-2000, which suggests that this behavior may
indicate the limits of probability threshold-based strategies, espe-
cially in view of uncertainties in Sint-2000 or PADM2M.

Zoom (a) Zoom (b)

Zoom (c) Zoom (d)

Zoom (e) Zoom (f)

Zoom (b) Zoom (c) Zoom (d) Zoom (e) Zoom (f)Zoom (a)

Intensity based threshold

Probability based threshold

BM reversal missed
reversal missed

Training data Verification data

Fig. 15. Illustration of probability and intensity threshold-based reversal forecasts when considering Sint-2000 data. Center panel: hindcasting by probability threshold-
based strategy when relying on the G12 model; blue – Sint-2000 data; light-blue cloud – 95% confidence intervals; red – coarse reversal prediction over 4 kyr horizon
(indicator function is one if a reversal is predicted to happen, zero otherwise). Top row and bottom row, left two panels: magnified data and predictions. Bottom row, right
panel: hindcasting by intensity-based threshold strategy; blue – Sint-2000 data; light-blue cloud – 95% confidence intervals; orange – reversal prediction over 4 kyr horizon.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The Earth’s main magnetic field

Br (nT) at Earth’s surface in 2007
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Estimate (ensemble mean) since 1700

Scale for radial field: ± 1 mT. Scale for azimuthal flow: ± 30 km/yr
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Measurements and sources of the geomagnetic field

The geodynamo accounts for more than 90% of the field measured at the Earth’s surface.

Hulot et al. (Treatise on Geophysics, 2nd ed., 2015)


