A consistent view on the terrestrial carbon cycle through simultaneous assimilation of multiple data streams into a model of the terrestrial carbon cycle

Marko Scholze¹, T. Kaminski², W. Knorr¹, Peter Rayner³ and Gregor Schürmann⁴

1 Lund University, Sweden 2 The Inversion Lab, Hamburg, Germany 3 University of Melbourne, Australia 4 Max Planck Institute for Biogeochemisty, Jena, Germany

RIKEN International Symposium on Data Assimilation 27 Februar – 2 March 2017, Kobe, Japan

Outline

- Introduction
- Carbon Cycle Data Assimilation System
- Multiple constraints
- Non-convergence problem
- Conclusions

The Global Carbon Cycle

Global Carbon Budget

The case for data assimilation

- ⇒ Carbon Cycle Data Assimilation System
 - = ecophysiological constraints from forward modelling
 - + observational constraints from inverse modelling

CCDAS methodology

- Based on process-based terrestrial ecosystem model (BETHY)
- Optimizing parameter values (~100) based on gradient info
- Hessian (2nd deriv.) to estimate posterior parameter uncertainty
- Error propagation by using linearised model

Scholze et al. (2007)

Process parameters

- Process parameters are invariant in time
- Parameterisations in biological systems are often based on (semi-)empirical relationships -> no universal/fundamental theory as in physical systems
- Parameters are often plant species specific but model lumps together many species into a plant functional and this upscaling process is highly uncertain

CCDAS approach

Cost function:
$$J(x) = \frac{1}{2} \left[\sum (y - M(x))^t C_y^{-1} (y - M(x)) + (x - x_p)^t C_p^{-1} (x - x_p) \right]$$

Need to define the error matrices C_y^{-1} , C_p^{-1}

BETHY

Posterior uncertainties on parameters

Inverse Hessian of cost function approximates posterior uncertainties

$$\mathbf{C}_{p} \approx \left\{ \frac{\partial^{2} J(\vec{p}_{\text{opt}})}{\partial p_{i,j}^{2}} \right\}^{-1}$$

Net C fluxes and their uncertainties

$$\mathbf{C}_{y} = \left(\frac{\partial y_{i}(\vec{p}_{\text{opt}})}{\partial p_{j}}\right) \mathbf{C}_{p} \left(\frac{\partial y_{i}(\vec{p}_{\text{opt}})}{\partial p_{j}}\right)^{T}$$

Long term mean fluxes to atmosphere (gC/m²/year) and uncertainties

Multiple constraints, 1st example

Consistent Assimilation:

- all data streams jointly
- in a single long assimilation window

Transfer of information in space and between variables

Transfer of information in space

Posterior land uptake

Annual land uptake from 2007 to after assimilation of different combinations of data streams (SM: soil moisture, FAPAR: fraction of absorbed photosynthetic active radiation)

Multiple constraints, 2nd example

- Simultaneous assimilation of two data streams at site level Maun, Botswana over 2 years (2000-2001)
- Daily LE fluxes, no gap-filled data (464 observations)
- Satellite FAPAR observations, 10-daily (70 observations)
- Optimization of 24 model parameters
- 2 Plant Functional Types: tropical broadleaf deciduous tree and C4 grass

Fit to LE and FAPAR data

Posterior parameter uncertainty

Relative reduction:

$$1 - rac{oldsymbol{\sigma}_{post}}{oldsymbol{\sigma}_{prior}}$$

Parameter

Robustness of optimal solution

- Different starting point -> same minimum?
- Local minimum vs global minimum
- Non-convergence problems

Global minimum?

Comparison of two Minima

- c = 3242.32 = 2740.16 (observations) + 502.16 (parameter)
- c = 3442.64 = 3213.68 (observations) + 228.96 (parameter)
 - Parameter values are totally different for both minima

	$eta_{ extsf{1}}$	$eta_{ extsf{2}}$	eta_3	β_{4}	β_5	eta_{6}	β_7	eta_{8}	eta9	eta10	eta_{11}	eta12	eta13
1	0.96	0.42	1.40	0.69	0.47	0.89	1.26	0.23	2.44	0.57	1.02	1.47	-0.26
2	0.99	0.33	-0.17	1.05	1.09	0.26	0.93	1.96	2.20	0.97	0.63	0.93	-0.41

Find sub-set of model which converges using 4D-var, use ensemble for remaining model

-> combined ensemble-adjoint optimisation

Combined ensemble-adjoint optimisation

- Combination of ensemble runs with CCDAS
- Photosynthesis (NPP), hydrology (soil moisture) and phenology (LAI) from stand-alone BETHY ensemble runs (200)
- Optimisation of 19 soil carbon parameters for each run over 25 years
- Propagation of the posterior soil carbon parameter uncertainties provides
 PDF for NEP for each run

Results for a test case: individual cost functions

170 out of 200 member ensemble kept, 30 runs are discarded due to non-convergence or non-physical posterior parameter

Test case: posterior parameter unc.

Blue:

Individual PDFs obtained from CCDAS using input from ensemble

Red:

Superimposed PDF

$$PDF^{s} = \frac{1}{N} \int_{1}^{N} PDF^{i}$$

Green:

Gaussian approximation

Results for a test case: global net C flux

Blue: Individual PDFs obtained from CCDAS using input from

ensemble runs

Red: Superimposed PDF

Green: Gaussian Approximation

Black: Base case PDF

Summary

- CCDAS: Mathematically rigorous combination of process understanding and observations for carbon cycling
- Provides integrated view on global carbon cycle on all variables that can be simulated by the model at any time and place
- Regional scale carbon budgets based on combination of multiple data streams and process-based simulations
- Added value of data streams quantified through uncertainty reduction
- Can be extended to include further data streams, either for assimilation or validation
- Hierarchical Parameter Estimation
 - Combination of ensemble runs and 4D-Var in a data assimilation system
 - Superimpose individual PDFs for parameters and target quantities to obtain final PDF

Fit against GPP

