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Intro (I): Preliminaries

Wish to estimate state x given observations y
. x = discretized representation of atmospheric state

. y = h(x) + ✏, where ✏ is random error
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Preliminaries

Cannot determine x precisely
. both observation, forecasts have error

. most that we can know is p(x|y)

p(x|y) is complete answer to estimation problem
. would like to approximate without assumptions, e.g. of Gaussianity

. fully utilize obs with nonlinear forward operator or non-Gaussian errors

. allow for non-Gaussianity in prior for scales/phenomena that are
significantly nonlinear
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Preliminaries: Calculating the Conditional PDF

Bayes’ rule:

p(x|y) = p(x)p(y|x)/p(y)
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Intro (II): Particle Filters

Additional terminology and notation
. particles ⌘ ensemble members, sample ⌘ ensemble

. N
y

= dim y, N
e

= ensemble size (and N
x

= dim x)

. xi
k

= ith particle/member at t
k

, the kth observation time

. subscript k : l indicates concatenation of quantities from t
k

, . . . , t
l
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Particle Filters

Sequential Monte-Carlo method to sample from p(x
k

|y1:k)
. fully general approach; converges to Bayes rule as N

e

!1,

. Large literature for low-dimensional systems, plus recent interest in
geophysics (e.g. van Leeuwen 2003, 2010; Morzfeld et al. 2011;
Papadakis et al. 2010)
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Particle Filters

Generate particles xi
k

at t
k

(based on xi
k�1 and y

k

)

Compute weights

Resample

Repeat
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Particle Filters

Begin with members xi
k�1 drawn from p(x

k�1|y
k�1)

. generate xi
k

by evolving each member to t
k

under the system dynamics

. compute weight, given new obs y
k

: wi

k

/ p(y
k

|xi
k

)

. resample

Doucet, de Freitas and Gordon: 2001
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Particle Filters

Recall Bayes’ rule,

p(x
k

|y1:k) / p(x
k

|y1:k�1)p(yk|xk)

If p(x
k

|y1:k�1) = N
e

�1PN

e

i=1 �(x� xi
k

), then

p(x
k

|y1:k) /
N

eX

i=1

p(y
k

|xi
k

)�(x� xi
k

)
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Degeneracy of PF Weights

Key issue is tendency for max

i

wi

k

! 1

Test problem: x ⇠ N(0, I), y = x+ ✏, ✏ ⇠ N(0, I)

. ignore forecast and resampling steps
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Degeneracy of PF Weights

. ensemble size N
e

s.t. E(max wi

) ⇡ 0.7, as N
y

varies
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. N
e

must grow exponentially with N
y

to avoid degeneracy
. . . need a better approach
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Asymptotics and Bounds

Asymptotics for maximum weight
. let ⌧2 = var(� log w̃i

k

). As ⌧2 increases, max

i

wi

k

! 1 unless

N
e

⇠ exp(⌧2/2)

. applies to both standard and optimal proposals

. valid only if log w̃i

k

has ⇡ Gaussian distribution

. occurs for well observed, high-dimensional systems having many
independent and comparably important degrees of freedom.

See:

Bengtsson, T., P. Bickel and B. Li, 2008: in Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and
T. Speed, Eds.

Bickel, P, B. Li, and T. Bengtsson, 2008: in Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta

K. Ghosh, B. Clarke and S. Ghosal Eds.

Snyder, C., T. Bengtsson, P. Bickel and J. Anderson, 2008: Mon. Wea. Rev., 136, 4629–4640.

Snyder, C., 2012: Proceedings, ECMWF Seminar on Data Assimilation for Atmosphere and Ocean., September 2011.

Snyder, C., T. Bengtsson and M. Morzfeld, 2015: Mon. Wea. Rev., 143, 4750–4761.
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Asymptotics and Bounds

Performance bounds from optimal proposal
. all PF employing SIS must have degeneracy bounded below by that

of optimal proposal (Snyder et al. 2015)

. all PF employing SIS will need exponential large N
e

to avoid
degeneracy in “large” problems
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EnKF in High Dimensions

EnKF works when N
x

is large. Why?

Return to (first) example: x ⇠ N(0, I), y = x+ ✏, ✏ ⇠ N(0, I)
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EnKF in High Dimensions

. posterior MSE, predicted posterior variance for N
e

= 20 as fn of N
x
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EnKF in High Dimensions

Sampling error
. O(N

e

�1/2
) in each element of ˆP

. errors correlated across elements, so poor global properties of ˆP

Key idea: localization
. assume state variables separated by su�cient distance are uncorrelated

. replace noisy estimated covariances by zero at large separation,
ˆP C � ˆP

Analysis increment
. w/o localization, linear combination of ensemble members

. w/ localization, “spatially varying” linear combination
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EnKF in High Dimensions

. as previous, but using various localizations of sample covariance
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Localization for Particle Filters

0. Local weights

Easy to compute local weights from spatially local subset of obs;
{wi, i = 1, . . . , N

e

} replaced by {wi, i = 1, . . . , N
e

; dim(w)  N
x

}
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Localization for Particle Filters

1. The obvious approach

If we follow usual PF, need to resample locally based on {wi}. Retains fully
general, non-parametric algorithm—but need not respect spatial continuity
etc. between local regions.

One option is conditional resampling to maintain continuity. Recent quasi-
deterministic techniques are also promising.

Bengtsson et al. 2003, J. Geophys. Res., 62(D24), 8775–8785

Penny and Miyoshi 2016, Nonlinear Proc. Geophys., 23, 391–405.

Robert and Künsch 2016, arXiv:1605.05476v2.
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Localization for Particle Filters

2. Moment matching

With local weights, can estimate posterior mean locally:

ˆx =

X
wi � xi

If weights vary smoothly, no issues with continuity. Sliding spatial window,
as in LETKF, is useful.

Also correct deviations from ˆx consistent w/ local, weighted-sample ˆP.

Not a full solution: approximates only the first two moments of x|y.

Lei and Bickel 2011 Mon. Wea. Rev., 39, 3964–3973

Tödter and Ahrens 2015 Mon. Wea. Rev., 143, 1347–1367

Poterjoy 2016 Mon. Wea. Rev., 144, 59–76
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Localization for Particle Filters

3. Optimal coupling

Seek a map that, when applied to random variable with density p(x), yields
r.v. with density p(x|y). For discrete r.v., becomes a linear transformation
between prior and weighted posterior ensembles minimizing an expected
distance.

Again natural to compute weights and transform from local subset of obs.
Transform again varies smoothly with location, with benefit that transform
is designed to minimize change necessary in each xi

k

.

Expensive to compute transform, but can approximate while retaining first
and second moments of posterior.

Cheng and Reich 2015, in Nonlinear Data Assimmilation, Springer-Verlag.

de Wiljes, Acevedo and Reich 2016, arXiv:1608.08179v2.
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Summary

. Naive PF and EnKF fail similarly when N
e

⌧ N
x

, N
y

: poor use of
obs and hugely optimistic estimates of posterior uncertainty

. PF (using sequential importance sampling) requires exponentially
large N

e

to avoid this failure in many problems of interest

. Localization, à la EnKF, likely essential to PF for large problems.
Harder, however; must maintain continuity during local resampling.

. Many promising options on the table for localization. Most other
enhancements (hybrids, splitting likelihood, beter proposals) will help
in any specific case, but cannot cure exp(N

e

) issue.
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Why p(x|y)?
. x = fraction c of opaque, black cloud at each model level

. prior p(x): c nonzero at no more that one model level

. p(x|GOES radiance, single channel and single pixel), unnormalized

courtesy Dongmei Xu, NCAR
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Why p(x|y)? (cont.)

Standard estimators
. E(x|y), state that minimizes expected squared error

. argmax p(x|y), most likely state

courtesy Dongmei Xu, NCAR
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Intuition for Weight Degeneracy

. 1D intuition: p(y
k

|xi
k

) is narrow relative to spread of prior particles

. Optimal proposal pulls new particles toward obs. Why doesn’t this
fix degeneracy?
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Samples From High-Dimensional PDFs

. In high dimensions, sample is almost surely confined to small subset
of total possible outcomes

. e.g., drawing from x ⇠ N(0, I), particles lie in “hypershell” of radius
⇡

p
N

x

and thickness 1/
p
2
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Intuition for Weight Degeneracy

. high-dimensional intuition: overlap between proposal and desired
posterior pdf is very small
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Heuristics for Optimality

Begin with the identity

p(x
k�1, xk|y

k

) = p(x
k

|x
k�1, y

k

)p(x
k�1|y

k

)

. allows sequential sampling: starting from xi
k�1, generate draw for xi

k

. xi
k�1 should be drawn from p(x

k�1|y
k

)

Optimal proposal is given by

⇡(x
k�1, xk|y

k

) = p(x
k

|x
k�1, y

k

)p(x
k�1)

. improvements can only come from condition xi
k�1 on y

k

, i.e.
improving the sample at t

k�1 given new obs y
k
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⌧ 2 and dim(x)

In simple examples, ⌧2 / N
x

, N
y

General linear, Gaussian case:

⌧2 =

N

yX

j=1

�2
j

(3�2
j

/2 + 1),

where �2
j

are eigenvalues of

A =

8
><

>:

cov
⇣
R�1/2Hx

k

⌘
, std. proposal

cov

✓⇣
HQHT

+ R
⌘�1/2

HMx
k�1

◆
, opt. proposal.
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⌧ 2 and dim(x) (cont.)

⌧2 is an observation-space quantity

Large ⌧2 follows from:
. many observations, N

y

large

. relatively accurate observations

. relatively small system noise, for optimal proposal

NWP has many and accurate observations
. ⌧2 is large and PFs require very large ensembles
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