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Visible / near-infrared satellite observations for DA

- relevant for convective scale DA:
  high spatial and temporal resolution.
  Himawari-8/9, GOES-R, MTG:
  0.6μm resolution: 500m (IR: 2km)
  6-8 of 16 channels λ< 4μm
  full disc in 5min, target area 30sec
 

- provide complementary information
  on cloud distribution (convection
  earlier visible than in radar, low
  clouds clearly detectable), cloud
  properties (particle size,
  water phase) and cloud structure
 

- Solar channels are not assimilated
  in operational DA: fast forward
  operators not available (scattering
  makes radiative transfer complex)
  → operator development at HErZ

~600km

Himawari 1km visible
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Compute reflectance look-up table (LUT) with discrete
ordinate method (DISORT) for all parameter combinations
→  effort for looking up reflectances: CPU-minutes
 

Problem: Table is huge! O(10GB) → not suitable for
online operator, slow interpolation → compress table to
20MB using truncated Fourier series → CPU-seconds

Simplifications
- Simplified Equation:
  3D RT → 1D RT (plane-parallel, independent columns)
  Computational effort for one Meteosat SEVIRI image:
  CPU-days (3D Monte Carlo) → CPU-hours (1D DISORT)
 

- Simplified vertical structure:
  Cloud water and ice can be separated to form two  
  two homogeneous clouds at fixed heights without
  changing reflectance significantly
  → only 4 parameters (optical depth, particle size)
  + 3 angles, albedo → 8 parameters per column

Reduction of computational effort

~

Strategy for fast radiative transfer method MFASIS
Method for Fast
Satellite Image

Synthesis
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RMS absolute error

mean relative error

VIS006
VIS008

Accuracy and computational effort
Error of MFASIS (8 parameters/pixel) with
respect to DISORT (full profiles available)
(model data: COSMO-DE fcsts for 10-28 June 2012)

Relative error < SEVIRI calibration error
(~4%) for almost all pixels

Computational effort per column:
DISORT (16 streams): 2.3 x 10-2 CPUsec
MFASIS (21MB table): 2.5 x 10-6 CPUsec
(on Xeon E5-2650, for 51 level COSMO data)
  

          R(θ,θ0,φ')

    uncompressed

R(θ,θ0,α), compressedCPU cache

20MB

7.5GB

21MB

Impact of
compression on
performance?
 

Without compr.:
LUT >> cache
 → slow…
 

compression
→ cache used
     efficiently

Scheck et al. 2016: A fast radiative transfer method for the
simulation of visible satellite imagery, JQSRT, 175, pp. 54-67
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Comparison with RTTOV-DOM

Results:
 

• Reflectances for clouds agree well!
  

• Backscatter glory: reduced accuracy
  depends on unknown width of size dist.
 

• Clear sky contributions problems:
 

  -In MFASIS only a constant profile of
   water vapour is taken into account
   (affects the 0.8μm channel)
 

   Requires height-dependent
   reflectance correction
   (work in progress)
 

  - RTTOV-DOM: no multiple cloud - 
    clear-sky scattering processes
    → negative reflectance bias
 

RTTOV-DOM: Implementation of DISORT in development at MetOffice / NWP-SAF
MFASIS & RTTOV-DOM were compared in the framework of DWDs  NWP-SAF contribution 

azimuthal satellite angle

τ=100

τ=10

τ=1

with size distribution from MFASIS

water cloud

See http://www.nwpsaf.eu/vs_reports/nwpsaf-mo-vs-054.pdf

(with J. Hocking, R. Saunders)

back-
scatter

glory
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Improving accuracy and consistency

 Cloud top inclination (3D RT effect)

 Subgrid cloud overlap (consistency)  

Errors in synthetic images

Errors sources in the operator
Approximations (e.g. missing 3D),
Inconsistencies (e.g. subgrid clouds)
missing information (→ spread)

Most important features missing in operator version Kostka et al. 2014:

Errors in the NWP model state
e.g. cloud displacement (random),
cloud cover bias  (systematic)

Operator error sources minimized / understood → model bias can be identified
and removed → random errors can be reduced in DA

Having a fast and sufficiently accurate 1D RT solver is not enough...

} How to take into account without
degrading high performance?
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3D effects not accounted for in 1D radiative transfer

13:30 UTC

cloud shadows

R=0.6μm, G=0.8μm, B=0.5*(R+G)

Important for structure: cloud top inclination
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3D effects not accounted for in 1D radiative transfer

16:30 UTC  (two hours before sunset) R=0.6μm, G=0.8μm, B=0.5*(R+G)
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Cloud top inclination correction

Rotated frame of reference with ground-parallel cloud →  nearly a 1D problem
(inclined ground is taken into account by using a modified surface albedo)
→ Solve modified 1D problem, transform back to non-rotated frame.

plane-
parallel
cloud
(1D)

inclined
cloud
(3D)
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Cloud top inclination

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst without 3D correction

Cloud top definition : optical depth 1 surface
(detect tau=1 in all columns, fit plane to column and 8 neighbour columns)
 

Cloud top inclination correction →  Increased information content
Much more cloud structure is visible, in particular for larger SZAs
For instance, one can distinguish convective from stratiform clouds
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Cloud top inclination

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst with 3D correction

Cloud top definition : optical depth 1 surface
(detect tau=1 in all columns, fit plane to column and 8 neighbour columns)
 

Cloud top inclination correction →  Increased information content
Much more cloud structure is visible, in particular for larger SZAs
For instance, one can distinguish convective from stratiform clouds
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Cloud top inclination correction

Cloud top inclination correction →  Systematic errors are reduced
in particular for larger SZA, but some impact is always visible

0.6mu reflectance histograms for 18UTC area between obs.& model histogram

slope agrees
much better

with obs.

Computational effort: Small (only tau=1 detection + one additional MFASIS call)
It should even be possible to include it in the real-time version (work in progress)
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Master thesis by Theresa Diefenbach in the “Waves to Weather” project:
MFASIS in Met3D (Marc Rautenhaus, TUM), runs interactively with ~10 frames/sec

MFASIS + 3D correction in real-time on GPUs
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• Important for deep convection and broken cloud fields, in particular for 0.8μm
 

• Columns tited towards sun → shadow position. Brightness of shadows will often
    be dominated by diffuse radiation (problematic...)
 

• Preliminary implementation in operator version for the ICON model
   (parallel, offline or online), used for model evaluation (e.g. cloud size statistics)

A second 3D correction: Cloud shadows on the ground

Example: MODIS image + model equivalent for 150m resolution ICON run from HD(CP)2

(see Heinze et al. (2017) “Large-eddy simulations over Germany using ICON”, QJRMS)
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Subgrid cloud overlap
Common for NWP models: Subgrid clouds covering
only a fraction of the grid cell are assumed to exist
where relative humidity exceeds critical value.
 

Two or more partially cloudy cells in one column:
How do they overlap? Affects heating, reflectance
 

COSMO: Random-maximum overlap rules:
Clouds in adjacent layers overlap maximally, clouds
separated by empty layers overlap randomly.
 

Deterministic schemes: Estimate mean reflectance of all allowed configurations
Stochastic schemes:     Compute reflectance for one random realization
                                        (spread quantifies uncertainty in cloud distribution)
 

Several schemes were compared to address these questions:
- How well do different deterministic and stochastic implementations agree?
- Is the spread large enough to be relevant for DA?
- Should the slant viewing path of the satellite be taken into account?

column

e m p t y   l a y e r



16RIKEN International Symposium on Data Assimilation 2017

RTTOV (Matricardi 2005) RTTOV discretized independent columns

(Mayer 2001, Räisänen 2004)

continuous clouds continuous clouds continuous clouds

adjacent group random

Common strategy:  Subdivide column, fill subgrid cells according to overlap rules
(different cloud size dist. possible), perform RT for each subcolumn, average results
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Approach: Use bundle of N x N sub-
columns (3D), compensate for slant
viewing path by shifting clouds into
x-direction in each layer
 

Example: 3 clouds with constant cloud
fraction 0.25 spanning several layers
→ vertical clouds, consistent with model

Overlap rules apply for
vertical direction, but we
use columns tilted
towards satellite

→ Increased total
     cloud cover
     (also cloud sides
     contribute)
 

Not more expensive
than 2D schemes.

fragments
caused by
periodic
boundaries

A new 3D scheme SAT
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Results for operational COSMO forecasts in June 2016

SEVIRI observation

random overlap
random-maximum overlap
(2D stochastic continuous clouds)

grid scale clouds only
Subgrid cloud fraction 1

12UTC total cloud cover

reflectance
histogram for 12UTC 

It is essential to take cloud overlap into account,
setting all clouds fractions to 1 or using only grid
scale clouds causes large errors.
 

Differences related to different assumptions or
implementations are much smaller.
 

Good agreement with observations (no tuning!)
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Overlap schemes: local impact

reflectance spread

<Rrandom> - <Rrandmax>

Random vs. rand.-max. overlap
Local impact can be significant, ensemble mean
random - randmax can be > 0.1, i.e. several
10%, but only ~10% of the pixels are sensitive
to the type of the overlap assumptions
 

Random-maximum Implementations
Mean reflectances of 2D stochastic schemes
are very similar, also to deterministic schemes.
~10 subcolumns are sufficient.
 

Consistency
Taking slant viewing angle into account (3D) has
same impact as switching rand./max. → random
(at latitude ~45°, stronger effect for higher lats.)
 

Spread
Small, spread > 0.01 only in ~15% of pixels
→ should not have significant impact on DA
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Assimilation of conventional and/or
SEVIRI obs. in COSMO/KENDA

Setup:
40 member LETKF
1h assimilation interval
0.6μm observations
Observation error 0.2
Superobbing (radius 3 pixels)
Horiz. localization 100km
No vertical localization

Assimilation of SEVIRI
observations:
lower reflectance
RMSE and bias

Independent GPS humidity
observations: reduced error

BIAS

RMSE

First assimilation results

first guess
analysis

only conventional obs.
conv. + SEVIRI 0.6μm
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Summary

 Visible & near-infrared channels could provide
useful information for convective scale DA

 We have developed MFASIS, a 1D RT method
that is sufficently fast for operational DA

 The most important 3D RT effect is related to the
inclination of cloud tops and can be taken into
account approximately in a efficient way
→ increased information content,
    reduced systematic error

 Overlap of subgrid clouds is important. Most
consistent scheme takes slant satellite viewing
path into account.

 First assimilation experiments with DWD KENDA
(LETKF) are promising, more experiments with
new operator version will be performed soon...
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