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16.	
 Data Assimilation Research Team 
 

16.1. Team members 

Takemasa Miyoshi (Team Leader) 

Shigenori Otsuka (Postdoctoral Researcher) 

Juan J. Ruiz (Visiting Researcher) 

Keiichi Kondo (Student Trainee) 

Yukiko Hayakawa (Assistant) 

 

16.2. Research Activities 

     Data Assimilation Research Team (DA Team) was launched on 1 October 2012 and is 

composed of four research staff as of March 2013. Data assimilation is a cross-disciplinary science 

to synergize numerical simulations and observational data, using statistical methods and applied 

mathematics. As computers become more powerful and enable more precise simulations, it will 

become more important to compare the simulation with actual observations. DA Team performs 

cutting-edge research and development on advanced data assimilation methods and their wide 

applications, aiming at integrating computer simulations and observational data in the wisest way. 

Particularly, DA Team will tackle challenging problems of developing efficient and accurate data 

assimilation systems for high-dimensional simulations with large amount of data. The specific areas 

include 1) research on parallel-efficient algorithms for data assimilation with the super-parallel K 

computer, 2) research on data assimilation methods and applications by taking advantage of the 

world-leading K computer, and 3) development of most advanced data assimilation software 

optimized for the K computer. 

     In FY2012, we focused on 1) theoretical research on challenging problems in data assimilation, 

and 2) cutting-edge data assimilation research on meteorological applications. We have made 

substantial progress as follows: 

1. An objective approach to model parameter estimation using data assimilation was investigated. 

(1 paper accepted) 

2. Theories on discrete filtering to deal with model imperfections in ensemble-based data 

assimilation were explored. 

3. A new approach to multi-scale covariance localization was invented and investigated. 

4. The Local Ensemble Transform Kalman Filter (LETKF) system with a mesoscale numerical 

weather prediction model known as the Weather Research and Forecasting (WRF) model was 

ported to the K computer. 

Main achievements are highlighted in the next section. 
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16.3. Research Results and Achievements 

 

16.3.1. Model parameter estimation 

     In general, numerical simulation models contain a number of tuning parameters, and usually 

they are optimized manually and subjectively. Efforts have been made to make the tuning process 

objective and automatic, so that we find optimal parameters and make the simulation fit better to the 

observations. We have explored an approach to analyzing an augmented state vector consisting of 

both prognostic variables and model parameters through ensemble-based data assimilation. This 

allows estimating both prognostic state variables and model parameters simultaneously through data 

assimilation. Ruiz et al. (2013) explored the approach with an intermediate atmospheric general 

circulation model known as the SPEEDY model. Figure 1 shows the time series of three convective 

parameterization model parameters. Bad initial values converge to the right values (dashed lines) 

shortly after data assimilation both for temporally-fixed parameters (left panel) and for 

temporally-varying parameters (right panel). 

 

 
Fig. 1. 

 

     With the success from the idealized experiments with the SPEEDY model, we applied this 

approach to a real Typhoon case in 2008. Using the WRF-LETKF system (Miyoshi and Kunii 2012), 

air-sea exchange coefficients are estimated as a two-dimensional field. Figure 2 indicates estimated 

moisture exchange coefficients. The value 1 is the default; 1.5 and 0.5 correspond to 50% more and 

less effective air-sea exchange of the moisture fluxes, respectively. Over the Pacific, the estimated 

parameters suggest reducing moisture fluxes from the sea surface. As a result, biases are reduced, 
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and Typhoon Sinlaku’s forecast was improved. 

 

 

Fig. 2. 

 

16.3.2 Theoretical development on multi-scale covariance localization 

     Ensemble-based data assimilation methods have been improved consistently and have become 

a viable choice in operational numerical weather prediction. A number of issues for further 

improvements have been explored, including flow-adaptive covariance localization and advanced 

covariance inflation methods. Dealing with multi-scale error covariance and model errors is among 

the unresolved issues that would play essential roles in analysis performance. With higher resolution 

models, generally narrower localization is required to reduce sampling errors in ensemble-based 

covariance between distant locations. However, such narrow localization limits the use of 

observations that would have larger-scale information. Previous attempts include successive 

covariance localization by F. Zhang et al. who proposed applying different localization scales to 

different subsets of observations. The method aims at using sparse radiosonde observations at a 

larger scale, while using dense Doppler radar observations at a small scale simultaneously. This 

study aims at separating scales of the analysis increments, independent of observing systems. 

Inspired by M. Buehner, we applied two different localization scales to find analysis increments at 

the two separate scales, and obtained astonishing improvements at all scales in simulation 

experiments using the SPEEDY model. 

     Figure 3 illustrates analysis increments from a single station observation at the star point. δ𝑥! 

on the top right indicates the analysis increment from the raw ensemble perturbations with a 
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narrower 500-km localization scale. This shows a small-scale feature near the observed location. 

δ𝑥! on the bottom right indicates the analysis increment from a smoothed ensemble perturbations 

with a wider 1000-km localization scale. This shows smoother structure in the longer distance, 

although lacks structure in the shorter range. Merging δ𝑥! and δ𝑥!, although not the simple sum, 

gives the left panel, in which both smaller-scale structure in the shorter range and smoother structure 

in the longer range are preserved. With this new multi-scale localization method, we obtained large 

improvement mostly in the moisture and precipitation analyses. 

 

 

Fig. 3. 

 

16.3.3 Porting the WRF-LETKF system to the K computer 

     For leading meteorological research using the K computer and for improving the 

computational efficiency of the widely-used LETKF code, we use the WRF-LETKF system 

(Miyoshi and Kunii 2012) as a testbed. SPIRE (Strategic Programs for Innovative Research) Field 3 

performs research on super-high-resolution mesoscale numerical weather prediction using the 

LETKF, and DA Team aims at aiding their research through close collaboration on this LETKF code. 

As the first step, we ported the WRF-LETKF system on the K computer, and measured the current 

computational performance. Table 1 shows the computational time for a single-member, 6-hour 

WRF forecast for the default 60-km WRF-LETKF system, and its higher-resolution 20- and 5-km 

versions. Table 2 shows a similar table for the LETKF computations. These two tables suggest that 

the parallel efficiency is about 10% of the optimal for the 5-km experiment compared with the 

60-km experiment. Our future work includes optimizing the parallel efficiency for the K computer, 



 133 

especially with larger ensemble sizes. 

     To confirm that the LETKF works properly on the K computer, 6-hour forecast fields from the 

LETKF analyses were investigated. Figure 4 shows 6-hour accumulated rain (shading, mm/6h) and 

mean-sea-level pressure (contours) for a low pressure system on 9 August 2008, after about a week 

spin-up of the LETKF data assimilation. The low pressure system is analyzed reasonably well for the 

three experiments at different resolutions. It is apparent that the 5-km experiment produces very fine 

structure of the rain bands associated with the low. 

 

Table 1. Timing for the WRF forecasts. 

Resolution Number of nodes 

(CPU) 

Max memory per 

node 

Wall time (sec.) 

60 km 13 (104) 0.914 GB 107 

20 km 15 (120) 1.4 GB 452 

5 km 50 (400) 6.3 GB 6320 

 

Table 2. Timing for the LETKF analysis. 

Resolution Number of nodes 

(CPU) 

Max memory per 

node 

Wall time (sec.) 

60 km 10 (80) 3.2 GB 130 

20 km 40 (320) 4.4 GB 440 

5 km 500 (4000) 8.4 GB 3000 
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Fig. 4. 

 

16.4. Schedule and Future Plan 

     Based on the achievements in FY2012, it is apparent that we need to optimize the LETKF 

code for the K computer, particularly for massively parallel computations. The current WRF-LETKF 

system does not perform well enough with the K computer, and algorithmic development will be 

necessary. Also, we will keep working on the fundamental theoretical problems of multi-scale and 

model-error treatments and of model parameter estimation. Besides, we will explore more theoretical 

aspects including non-linear and non-Gaussian treatments. These theoretical studies will improve the 

capability of ensemble-based data assimilation in wide applications. Moreover, we plan on seeking 

wider applications of data assimilation beyond geophysical applications. We will start working on 

exploratory investigations in FY2013. 

 

16.5. Publication, Presentation and Deliverables 

(1)  Journal Papers 

1. Greybush, S. J., R. J. Wilson, R. N. Hoffman, M. J. Hoffman, T. Miyoshi, K. Ide, T. 

McConnochie, and E. Kalnay, 2012: Ensemble Kalman Filter Data Assimilation of Thermal 

Emission Spectrometer (TES) Temperature Retrievals into a Mars GCM. J. Geophys. Res., 117, 

E11008. doi:10.1029/2012JE004097 

2. Hoffman, M. J., T. Miyoshi, T. Haine, K. Ide, C. W. Brown, and R. Murtugudde, 2012: An 

Advanced Data Assimilation System for the Chesapeake Bay: Performance Evaluation. J. 
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Atmos. Oceanic Tech., 29, 1542-1557. doi:10.1175/JTECH-D-11-00126.1 

3. Kunii, M. and T. Miyoshi, 2012: Including uncertainties of sea surface temperature in an 

ensemble Kalman filter: a case study of Typhoon Sinlaku (2008). Weather and Forecasting, 27, 

1586-1597. doi:10.1175/WAF-D-11-00136.1 

4. Kang, J.-S., E. Kalnay, T. Miyoshi, J. Liu, and I. Fung, 2012: Estimation of surface carbon 

fluxes with an advanced data assimilation methodology. J. Geophys. Res., 117, 

D24101. doi:10.1029/2012JD018259 

5. Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation error 

correlations in data assimilation. Inverse Problems in Science and Engineering, 21, 

387-398. doi:10.1080/17415977.2012.712527  

6. Otsuka, S., S. Nishizawa, T. Horinouchi, and S. Yoden, 2013: An experimental data handling 

system for ensemble numerical weather predictions using a web-based data server and analysis 

tool "Gfdnavi". J. Disaster Research, 8, 48-56. 

7. Ruiz, J. J., M. Pulido, and T. Miyoshi, 2013: Estimating model parameters with 

ensemble-based data assimilation: A review. J. Meteorol. Soc. Japan, 91, in 

press.doi:10.2151/jmsj.2013-201  

 

(2)  Conference Papers 

-None 

 

(3)  Invited Talks 

1. March 2013 Takemasa Miyoshi, “Challenges of Ensemble-based Data Assimilation for 

Large-Scale Simulations”, Invited Presentation, The 3rd AICS International Symposium, 

RIKEN/AICS, Kobe, Japan. 

2. January 2013 Takemasa Miyoshi, “Advances and Challenges in Ensemble-based Data 

Assimilation in Meteorology”, Invited Presentation, Third Data Assimilation Workshop, 

Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan. 

3. October 2012 Takemasa Miyoshi, “Observation Impact Estimates with an Ensemble-based 

Approach”, Invited Presentation, International Symposium on Data Assimilation, German 

Weather Service (DWD), Offenbach, Germany. 

4. October 2012 Juan Ruiz, “Data Assimilation-based parameter estimation schemes”, Exploring 

the Use of Data Assimilation Methods for the Detection and Attribution of Climate Change, 

Buenos Aires, Argentina. 

5. November 2012 Juan Ruiz, “Estimating model error with the ensemble Kalman filter”, Invited 

Presentation, WCRP-SPARC Workshop, Buenos Aires, Argentina. 
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(4)  Posters and presentations 

1. Miyoshi, T.*, K. Kondo, S.-C. Yang, and E. Kalnay: Spatial Structure of the LETKF Weights 

and Multi-scale Treatment in an EnKF. American Meteorological Society Annual Meeting, 

Austin, TX, USA, January 8, 2013. 

2. Ruiz, J. J., T. Miyoshi*, M. Kunii, and M. Pulido: Self-optimization of Model Parameters with 

the LETKF: from Idealized Experiments to a Real-world Application. American 

Meteorological Society Annual Meeting, Austin, TX, USA, January 8, 2013. 

3. Miyoshi, T.* and K. Kondo: Multi-scale Treatment in Ensemble Data Assimilation. 

Meteorological Research Institute, Tsukuba, Japan, February 13, 2013. 

4. Miyoshi, T.* and K. Kondo: An approach to multi-scale localization. Nichii-gakkan, Kobe, 

Japan, March 21, 2013. 

5. Kondo, K.*, T. Miyoshi, and H. L. Tanaka: Multiscale localization in ensemble-based data 

assimilation. AICS International Workshop on Data Assimilation, RIKEN/AICS, Kobe, Japan, 

February 26-27, 2013. 

6. Ruiz, J. J.*, T. Miyoshi, and M. Kunii. Self-optimization of Model Parameters with the 

LETKF: a Real-world Application. AICS International Workshop on Data Assimilation, 

RIKEN/AICS, Kobe, Japan, February 26-27, 2013. 

7. Otsuka, S.*, N. J. Trilaksono, and S. Yoden: Statistics on Convections during the Jakarta Flood 

Event in 2007 Simulated by JMA-NHM. The 3rd AICS International Symposium, 

RIKEN/AICS, Kobe, Japan, February 28-March 1, 2013. 

 

(5)  Patents and Deliverables 

The LETKF code is updated as needed and available at https://code.google.com/p/miyoshi/. 
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