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6.  Field Theory Research Team 
 

6.1. Team members 

Yoshinobu Kuramashi (Team Leader) 

Yoshifumi Nakamura (Research Scientist) 

Hiroya Suno (Research Scientist, Joint Position with the Nishina Center for 

Accelerator-based Research) 

Xia-Yong Jin (Postdoctoral Researcher) 

Jarno Markku Olavi Rantaharju (Postdoctoral Researcher) 

Ken-Ichi Ishikawa (Visiting Scientist) 

Shinji Takeda (Visiting Scientist) 

Takeshi Yamazaki (Visiting Scientist) 

 

6.2. Research Activities 

Our research field is physics of elementary particles and nuclei, which tries to answer questions in 

history of mankind: What is the smallest component of matter and what is the most fundamental 

interactions? This research subject is related to the early universe and the nucleosynthesis through 

Big Bang cosmology. Another important aspect is quantum properties, which play an essential role 

in the world of elementary particles and nuclei as well as in the material physics at the atomic or 

molecular level. We investigate nonperturbative properties of elementary particles and nuclei 

through numerical simulations with the use of lattice QCD (Quantum ChromoDynamics). The 

research is performed in collaboration with applied mathematicians, who are experts in developing 

and improving algorithms, and computer scientists responsible for research and development of 

software and hardware systems.  

 Lattice QCD is one of the most advanced case in quantum sciences: Interactions between quarks, 

which are elementary particles known to date, are described by QCD formulated with the quantum 

field theory. We currently focus on two research subjects: (1) QCD at finite temperature and finite 

density. We try to understand the early universe and the inside of neutron star by investigating the 

phase structure and the equation of state. (2) First principle calculation of nuclei based on QCD. 

Nuclei are bound states of protons and neutrons which consist of three quarks. We investigate the 

hierarchical structure of nuclei through the direct construction of nuclei in terms of quarks.  

 Successful numerical simulations heavily depend on an increase of computer performance by 

improving algorithms and computational techniques. However, we now face a tough problem that 

the trend of computer architecture becomes large-scale hierarchical parallel structures consisting of 

tens of thousands of nodes which individually have increasing number of cores in CPU and 

arithmetic accelerators with even higher degree of parallelism: We need to develop a new type of 
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algorithms and computational techniques, which should be different from the conventional ones, to 

achieve better computer performance. For optimized use of K computer our research team aims at 

(1) developing a Monte Carlo algorithm to simulate physical system with negative weight effectively 

and (2) improving iterative methods to solve large system of linear equations. These technical 

development and improvement are carried out in the research of physics of elementary particles and 

nuclei based on lattice QCD. 

 

6.3. Research Results and Achievements 

 

6.3.1. QCD at finite temperature and finite density 

 Establishing the QCD phase diagram spanned by the temperature T and the quark chemical 

potentialμin a quantitative way is an important task of lattice QCD. The Monte Carlo simulation 

technique, which has been successfully applied to the finite temperature phase transition studies in 

lattice QCD, cannot be directly applied to the finite density case due to the complexity of the quark 

determinant for finiteμ. Recently we investigated the phase of the quark determinant with finite 

chemical potential in lattice QCD using an analytic method: Employing the winding expansion and 

the hopping parameter expansion to the logarithm of the determinant, we have shown that the 

absolute value of the phase has an upper bound that grows with the spatial volume but decreases 

exponentially with an increase in the temporal extent of the lattice. Based on this analysis we have 

carried out a finite size scaling study for 4 flavor QCD using the O(a) improved Wilson quark action 

and the Iwasaki gauge action. This is the first application of the finite size scaling study to the finite 

density QCD. We chooseκ=0.1385 atβ=1.58 whose lattice spacing is roughly 0.33 fm. Spatial 

volume is varied from 63 to 103 with the temporal size fixed at NT=4. The transition point is around 

μ/T〜0.5. The left panel of Fig. 1 shows the susceptibility of the quark number as a function of aμ. 

We observe that the peak height grows as the spatial volume increases. In the right panel of Fig. 1 

we plot the spatial volume dependence of the susceptibility peak for various obsevables including 

the quark number. A clear linear scaling indicates the first order phase transition. These are 

encouraging results demonstrating that the finite size scaling study is useful even in the finite density 

QCD.  



 55 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

χ P

β=1.58

63

668
688

83

103

β=1.60

 0

 10

 20

 30

 40

 50

 60

 0.1  0.12  0.14  0.16  0.18  0.2

χ q

aµ
 0.16  0.18  0.2  0.22  0.24

aµ

FIG. 6: Susceptibility of the plaquette (upper) χP and quark number (lower) χq as function of aµ
at β = 1.58 (left) and β = 1.60 (right).

The resulting fit parameters are summarized in Tab. VI and VII. As a result, the first order
phase transition is strongly suggested for β = 1.58, while it hard to draw a clear distiction
between 1st order and cross-over for β = 1.60. To draw a solid statement for the latter case,
a larger spatial lattice volume say 103 is required but it seems very hard to accumulate an
enough statistics from a point of view of the reweighting factor in Fig 3. This is out of our
reach. In the table given above, we show fitting results for the other physical quantities and
they show essentially a similar behavior. In the bottom panels in Fig. 7, the volume scaling
behavior for all physical quantities are shown together with the fitting form of 1st +1/V
correction.

5. Skewness

The skewness of plaquette and quark number is shown in Fig. 8. The zero of the skewness
is considered to be a critical point and they are consistent with the peak position of the
susceptibility. The volume dependence of the critical chemical potential is less than 10%.
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FIG. 7: The upper figures are the volume scaling of peak value of χP for β = 1.58 (left) and 1.60
(right) together with the some fitting forms. The lower figures show a volume scaling plot for all
observable together with the fitting form of 1st order +1/V . Note that a scaling factor is multiplied
depending on the observable.

6. Kurtosis

The results of the kurtosis of plaqutte and quark number are plotted in Fig.9 and the
Fig. 10 shows a volume scaling of the minimum of kurtosis for all observable. The volume
scaling for all observable have a similar tendency.

The volume dependence of the kurtosis for β = 1.58 is visible and the minimum degreases
for larger volume. Although the minimum tends to be close to −2 for larger volume, the
simulated volumes may be far from the 1/V scaling region. In contrast to the susceptibility,
much larger volume is required to draw a clear conclusion of the order of transition by the
kurtosis.

For β = 1.60, the minimum shows very weak volume dependence and tends to increase
slightly for larger volume instead of decreasing. Thus the kurtosis diagnosis may turn down
a possibility of the 1st order phase transition or one needs much larger lattice volume to be
in the scaling region.

It seems that the scaling region depends on which moment one uses. It is hard to conclude
that the order of transition by the kurtosis and the diagnogis of kurtosis requires much larger
volume to draw a solid conclusion of the order of transition.
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Figure 1: Susceptibility of the quark number as a function of aμ(left) and spatial volume 

dependence for various observables together with the fit results in the form of c1V+c0+c−1/V with V 

the spatial volume (right). 

 

6.3.2 Nuclei in lattice QCD 

 In 2010 we succeeded in a direct construction of the 4He and 3He nuclei from quarks and gluons in 

lattice QCD for the first time. Calculations were carried out at a rather heavy degenerate up- and 

down-quark mass corresponding to mπ=0.8 GeV in quenched QCD to control statistical errors in the 

Monte Carlo evaluation of the helium Green’s functions. As a next step we have investigated the 

dynamical quark effects on the binding energies of the helium nuclei, the deuteron and the dineutron. 

We perform a 2+1 flavor lattice QCD simulation with the degenerate up and down quark mass 

corresponding to mπ=0.51 GeV. To distinguish a bound state from an attractive scattering state, we 

investigate the spatial volume dependence of the energy difference between the ground state and the 

free multi-nucleon state by changing the spatial extent of the lattice from 2.9 fm to 5.8 fm. In Fig. 2 

we plot the spatial volume dependence of the energy differenceΔEL as a function 1/L3 with L the 

spatial extent. A finite energy difference left in the infinite spatial volume limit leads us to the 

conclusion that the measured ground states for all the channels are bound. We also point out a 

possibility that the dynamical quark effects might be small at rather heavy quark mass region. 

C. 3He nucleus

Figure 4 shows the effective energy shift!Eeff
L of Eq. (4).

The quality of the signal is better than the 4He channel in
Fig. 2. An exponential fit of RðtÞ in Eq. (3) with the range
of t ¼ 9–14 yields a negative value, which is denoted by
the solid lines with the statistical error band in Fig. 4. The
systematic error in the fit is estimated in the same way as in
the 4He case.

As listed in Table III, we find nonzero negative values
for the energy shift !EL for all the volumes. The volume
dependence is illustrated in Fig. 5 as a function of 1=L3

with the inner and outer error bars as explained in the
previous subsection. We carry out a linear extrapolation
of Eq. (13). The systematic error is estimated in the same

way as in the 4He channel. The energy shift extrapolated
to the infinite spatial volume limit is nonzero and
negative (see Fig. 5 and Table III), which means that the
ground state is a bound state in this channel. The value of
$!E1 ¼ 20:3ð4:0Þð2:0Þ MeV is roughly three times
larger than the experimental result, 7.72 MeV, though
consistent with our previous quenched result at m! ¼
0:80 GeV [2].
In 3-flavor QCD,$!E1 ¼ 71ð6Þð5Þ MeV was reported

[4] at a heavier quark mass corresponding to m! ¼
0:81 GeV. Here again future work is needed to see if a
quark mass dependence explains the difference from the
experiment.

D. Two-nucleon channels

1. Present work

In Fig. 6 we show the time dependence for !Eeff
L of

Eq. (4) in the 3S1 channel. The signals are lost beyond
t % 14. We observe negative values beyond the error bars
in the plateau region of t ¼ 9–14. We extract the value of
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FIG. 3 (color online). Spatial volume dependence of !EL in
GeV units for the 4He channel. Outer bar denotes the combined
error of statistical and systematic ones added in quadrature. Inner
bar is for the statistical error. Extrapolated result in the infinite
spatial volume limit is shown by filled square symbol together
with the fit line (dashed). Experimental value (star) and
quenched result (open diamond) are also presented.
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Fig. 2. An exponential fit of RðtÞ in Eq. (3) with the range
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the solid lines with the statistical error band in Fig. 4. The
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FIG. 6: Susceptibility of the plaquette (upper) χP and quark number (lower) χq as function of aµ
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The resulting fit parameters are summarized in Tab. VI and VII. As a result, the first order
phase transition is strongly suggested for β = 1.58, while it hard to draw a clear distiction
between 1st order and cross-over for β = 1.60. To draw a solid statement for the latter case,
a larger spatial lattice volume say 103 is required but it seems very hard to accumulate an
enough statistics from a point of view of the reweighting factor in Fig 3. This is out of our
reach. In the table given above, we show fitting results for the other physical quantities and
they show essentially a similar behavior. In the bottom panels in Fig. 7, the volume scaling
behavior for all physical quantities are shown together with the fitting form of 1st +1/V
correction.

5. Skewness

The skewness of plaquette and quark number is shown in Fig. 8. The zero of the skewness
is considered to be a critical point and they are consistent with the peak position of the
susceptibility. The volume dependence of the critical chemical potential is less than 10%.
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!EL from an exponential fit for RðtÞ of Eq. (3) in the range
of t ¼ 9–14. The systematic error of the fit is estimated as
explained in the previous subsections.

Figure 7 shows the result for !Eeff
L in the 1S0 channel on

the ð5:8 fmÞ3 box. The value of !Eeff
L is again negative

beyond the error bars in the plateau region, though the
absolute value is smaller than in the 3S1 case. The energy
shift !EL is obtained in the same way as for the 3S1
channel.

The volume dependences of !EL in the 3S1 and 1S0
channels are plotted as a function of 1=L3 in Figs. 8 and 9,
respectively. The numerical values of !EL on all the
spatial volumes are summarized in Table IV, where the
statistical and systematic errors are given in the first and
second parentheses, respectively. There is little volume
dependence for !EL, indicating a nonzero negative value
in the infinite volume and a bound state, rather than the
1=L3 dependence expected for a scattering state, for the
ground state for both channels.

The binding energies in the infinite spatial volume limit
in Table IV are obtained by fitting the data with a function

including a finite volume effect on the two-particle bound
state [27,28],

!EL ¼ $ !2

mN

8
<
:1þ

C!

!L

X0

~n

expð$!L
ffiffiffiffiffi
~n2

p
Þffiffiffiffiffi

~n2
p

9
=
;; (14)

where ! and C! are free parameters, ~n is a three-

dimensional integer vector and
P0

~n

denotes the summation

without j ~nj ¼ 0. The binding energy$!E1 is determined
from

$ !E1 ¼ !2

mN
; (15)

where we assume

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N $ !2
q

$ 2mN & $ !2

mN
: (16)

The systematic error is estimated from the variation of the
fit results choosing different fit ranges in the determination
of !EL and also using constant and linear fits as
alternative fit forms. We obtain the binding energies
$!E1 ¼ 11:5ð1:1Þð0:6Þ MeV and 7.4(1.3)(0.6) MeV for
the 3S1 and 1S0 channels, respectively. The result for the
3S1 channel is roughly five times larger than the experi-
mental value, 2.22 MeV. Our finding of a bound state in the
1S0 channel contradicts the experimental observation.
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TABLE IV. Same as Table III for the 3S1 and 1S0 channels.

3S1
1S0

L $!EL [MeV] Fit range $!EL [MeV] Fit range

32 12.4(2.1)(0.5) 9–14 6.2(2.4)(0.5) 10–14
40 12.2(1.9)(0.6) 10–15 8.2(4.0)(1.5) 11–15
48 11.1(1.7)(0.3) 10–14 7.3(1.7)(0.5) 10–14
64 11.7(1.2)(0.5) 9–14 7.2(1.4)(0.3) 10–14
1 11.5(1.1)(0.6) ' ' ' 7.4(1.3)(0.6) ' ' '
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Figure 2: Spatial volume dependence of ΔEL in GeV units for the 4He (top left), 3He (top right), 3S1 

(bottom left) and 1S0 (bottom right) channels. Extrapolated results to the infinite spatial volume limit 

in 2+1 flavor QCD (blue square) and quenched QCD (violet diamond) are also presented. 

 

 

6.3.3. Development of algorithms and computational techniques 

 We consider to solve the linear systems with multiple right-hand sides expressed as AX=B, where 

A is an N×N matrix and X, B are N×L matrices with L the number of multiple right-hand side 

vectors. Various fields in computational sciences face this type of problem. In lattice QCD 

simulations, for example, one of the most time consuming part is to solve the Wilson-Dirac equation 

with the multiple right-hand sides, where A is an N×N complex sparse non-Hermitian matrix and X, 

B are N×L complex matrices with N the number of four dimensional space-time sites multiplied by 

12.  We aim at reducing the computational cost with the block Krylov subspace method which 

makes convergence faster than the non-blocked method with the aid of better search vectors 

generated from wider Krylov subspace enlarged by the number of multiple right-hand side vectors. 

We improve the block BiCGSTAB algorithm with the QR decomposition. After an optimization of 

the matrix-vector multiplication on K computer, the sustained performance for the block solver has 

reached nearly 35% of theoretical peak performance.  

 

6.4. Schedule and Future Plan 

 

6.4.1. QCD at finite temperature and finite density 

Before exploring the phase structure in 2+1 flavor QCD, we plan to investigate the 3 flavor case 

with the finite size scaling study. We mainly focus on the location of the critical end line in three 

dimensional parameter space of the pion mass, chemical potential and temperature. 
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6.4.2. Nuclei in lattice QCD 

The existence of the bound state observed in the 1S0 channel in 2+1 flavor QCD looks odd from the 

experimental point of view. We expect that the bound state in the 1S0 channel vanishes at some 

lighter quark mass toward the physical point. To confirm this scenario we are now carrying out a 

simulation around mπ=300 MeV in 2+1 flavor QCD. 

 

6.4.3. Development of algorithms and computational techniques 

We are now ready to check the arithmetic performance and the scalability of the block BiCGSTAB 

with the QR decomposition optimized on K computer employing a real problem in lattice QCD. We 

investigate to what extent the cost is reduced thanks to diminished number of iterations and efficient 

cache usage. 

 

6.5. Publication, Presentation and Deliverables 

(1)  Journal Papers 

1. PACS-CS Collaboration: S. Aoki et al., 1+1+1 Flavor QCD+QED Simulation at the Physical 

Point”, Physical Review D86 (2012) 034507. 

2. T. Yamazaki, K.-I. Ishikawa, Y. Kuramashi, A. Ukawa, “Helium nuclei, deuteron and 

dineutron in 2+1 flavor lattice QCD”, Physical Review D86 (2012) 074514. 

3. Tuomas Karavirta, Jarno Rantaharju, Kari Rummukainen, Kimmo Tuominen, “Determining 

the conformal window: SU(2) gauge theory with Nf = 4, 6 and 10 fermion flavours”, Journal of 

High Energy Physics 1205 (2012) 003. 

 

(2)  Conference Papers 

1. H. Suno, E. Hiyama, M. Kamimura, “Theoretical study of triatomic systems involving helium 

atoms”, (Accepted, talk given at the 20th International IUPAP Conference on Few-Body 

Problems in Physics (Fukuoka, Japan, August 20-24, 2012)). 

2. X.-Y. Jin and R. D. Mawhinney, “Lattice QCD with 12 Quark Flavors: A Careful Scrutiny”, 

(Accepted, talk given at Strong Coupling Gauge Theories in the LHC Perspective (SCGT 12) 

(Nagoya University, Nagoya, Japan, December 4-7, 2012)). 

3. Tuomas Karavirta, Kimmo tuominen, Jarno Rantaharju, Kari Rummukainen, “Mapping the 

Conformal Window: SU(2) with 4, 6 and 10 flavors of fermions”, Proceedings of Science 

LATTICE2012 (2012) 037. 

4. T. Boku, K.-I. Ishikawa, Y. Kuramashi, K. Minami, Y. Nakamura, F. Shoji, D. Takahashi, M. 

Terai, A. Ukawa, T. Yoshie, “Multi-block/multi-core SSOR preconditioner for the QCD quark 

solver for K computer”, Proceedings of Science (Lattice 2012) 188. 

5. T. Yamazaki, K.-I. Ishikawa, Y. Kuramashi, A. Ukawa, “Bound states of multi-nucleon 
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channels in Nf=2+1 lattice QCD”, Proceedings of Science (Lattice 2012) 143. 

6. S. Takeda, X-Y. Jin, Y. Kuramashi, Y. Nakamura, A. Ukawa, “Finite size scaling for 4-flavor 

QCD with finite chemical potential”, Proceedings of Science (Lattice 2012) 066. 

 

(3)  Invited Talks 

1. Yoshinobu Kuramashi, “1+1+1 Flavor QCD+QED Simulation at the Physical Point”, New 

Horizons for Lattice Computations with Chiral Fermions (BNL, New York, USA, May 14-16, 

2012). 

2. Yoshinobu Kuramashi, “Lattice QCD – From Quarks and Nuclei –”, 10th International Meeting 

on High-Performance Computing for Computational Science (VECPAR2012) (Kobe, Japan, 

July 17-20, 2012). 

3. Yoshifumi Nakamura, “Block Krylov Subspace Method for QCD Simulation”, QCDNA VII 

(University of Adelaide, Adelaide, Australia, July 2-4, 2012). 

4. H. Suno, “Efimov effect and resonances in atomic and molecular physics”, YITP workshop: 

Resonances and non-Hermitian systems in quantum mechanics (Kyoto, Japan, December 

13-16, 2012). 

5. X.-Y. Jin and R. D. Mawhinney, “Lattice QCD with 12 Quark Flavors: A Careful 

Scrutiny”, Strong Coupling Gauge Theories in the LHC Perspective (SCGT 12) (Nagoya 

University, Nagoya, Japan, December 4-7, 2012). 

6. X.-Y. Jin and R. D. Mawhinney, “Exploring the phases of QCD with many flavors”, QCD 

Structure I (Central China Normal University, Wuhan, China, October 7-20, 2012). 

7. X.-Y. Jin and R. D. Mawhinney, “Exploring the phases of QCD with many flavors”, New 

Horizons for Lattice Computations with Chiral Fermions (BNL, New York, USA, May 14-16, 

2012). 

8. Jarno Rantaharju, “Mapping Conformal Field theories on the Lattice”, Final Colloquium, 

International Research Training Group, GRK 881, Paris - Bielefeld - Helsinki (Bielefeld 

University, Germany, September 12 - 14, 2012). 

9. Takeshi Yamazaki, “Light nuclei from quenched lattice QCD”, New Horizons for Lattice 

Computations with Chiral Fermions (Brookhaven National Laboratory, NY, USA, May 14-16, 

2012). 

10. Takeshi Yamazaki, “Calculation of light nuclei from Nf=2+1 lattice QCD”, Lattice Hadron 

Physics IV (LHP IV) (University of Adelaide, Adelaide, Australia, July 2-4, 2012). 

11. Takeshi Yamazaki, “Calculation of light nuclei from Nf=2+1 lattice QCD”, Cross over 

workshop "Particle, nucleus, and Universe" x "New Hadron" (Nagoya University, Nagoya, 

July 12-13, 2012). 

12. Takeshi Yamazaki, “Calculation of light nuclei from lattice QCD”, Quarks to Universe in 
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Computational Science (QUCS 2012) (the Reception Hall in Nara Prefectural New Public Hall, 

Nara, December 13-16, 2012). 

13. Takeshi Yamazaki, “Calculation of light nuclei from Nf=2+1 lattice QCD”, HPCI Field 5 

meeting (FUJISOFT AKIBA Plaza, Tokyo, March 5-6, 2013). 

14. Shinji Takeda, “Complex phase of quark determinant of QCD with finite chemical potential 

and phase structure of 4-flavor QCD”, Tokyo Institute of Technology Theoretical Nuclear 

Physics group Seminar (Ookayama, Tokyo, September 27, 2012). 

 

(4)  Posters and presentations 

1. Yoshifumi Nakamura, “Towards high performance Lattice QCD simulations on Exascale 

computers”, SC12 (Salt Lake City, Utah, USA, November 10-16, 2012). 

2. Yoshifumi Nakamura, “Towards high performance Lattice QCD simulations on Exascale 

computers”, The 3rd AICS International Symposium (Kobe, Japan, February 28 - March 1, 

2013). 

3. H. Suno, Y. Nakamura, K.-I. Ishikawa, Y. Kuramashi, “Modified Block BiCGSTAB for 

Lattice QCD on K Computer”, The 3rd AICS International Symposium (Kobe, Japan, 

February 28 - March 1, 2013). 

4. H. Suno, E. Hiyama, M. Kamimura, “Theoretical study of triatomic systems involving helium 

atoms”, The 20th International IUPAP Conference on Few-Body Problems in Physics (Fukuoka, 

Japan, August 20-24, 2012). 

5. H. Suno, E. Hiyama, M. Kamimura, “Theoretical study of triatomic systems involving helium 

atoms” , The 2012 Annual Meeting of Physical Society of Japan (Yokohama, Japan, 

September 18-21, 2012). 

6. H. Suno, E. Hiyama, “Application of the gaussian expansion method to cold atomic few-body 

systems” , Quarks to Universe in Computational Science (Nara, Japan, December 13-15, 

2012). 

7. X.-Y. Jin, S. Takeda, Y. Kuramashi, Y. Nakamura, A. Ukawa, “Studying Quantum 

Chromodynamics at Finite Temperature and Density”, The 3rd AICS International Symposium 

(Kobe, Japan, February 28 - March 1, 2013). 

8. X.-Y. Jin, S. Takeda, Y. Kuramashi, Y. Nakamura, A. Ukawa, “Reweighting and Lee-Yang 

Zero”, The 30th International Symposium on Lattice Field Theory (Cairns Convention 

Centre, Cairns, Australia, June 24-29, 2012). 

9. Jarno Rantaharju, Kari Rummukainen, Kimmo Tuominen, “Running coupling in SU(2) with 

adjoint fermions”, Strong Coupling Gauge Theories in the LHC Perspective (SCGT 12), 

( Nagoya University, Nagoya, Japan, December 4 - 7, 2012 ). 

10. Jarno Rantaharju, Kari Rummukainen, Kimmo Tuominen, “Running coupling in SU(2) with 
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adjoint fermions”, The 3rd AICS International Symposium (Kobe, Japan, February 28 - March 

1, 2013). 

11. Takeshi Yamazaki, Y. Kuramashi, A. Ukawa, “Bound states of multi-nucleon channels in 

Nf=2+1 lattice QCD”, The 30th International Symposium on Lattice Field Theory (Lattice 

2012) (Cairns Convention Centre, Cairns, Australia, June 24-29, 2012). 

12. Takeshi Yamazaki, Y. Kuramashi, A. Ukawa, “Study of multi-nucleon bound states from 

Nf=2+1 lattice QCD”, JPS autumn meeting (Kyoto Sangyo University, Kyoto, September 

11-14, 2012). 

13. Shinji Takeda, “Finite size scaling for 4-flavor QCD with finite chemical potential”, The 30th 

International Symposium on Lattice Field Theory, Lattice 2012 (Cairns Convention Centere, 

Cairns, Australia, June 24-29, 2012). 

14. Shinji Takeda, “Finite size scaling for 4-flavor QCD with finite chemical potential”, New 

Frontiers in Lattice Gauge Theory (The Galileo Galilei Institute for Theoretical Physics, 

Florence, Italy, August 28-September 28, 2012). 

 

(5) Patents and Deliverables  

-None 
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