HPC Programming Framework Research Team

1. Team Members

Naoya Maruyama (Team Leader)

Motohiko Matsuda (Research Scientist)
Soichiro Suzuki (Technical Staff)

Mohamed Wahib (Postdoctoral Researcher)

Shinichiro Takizawa (Research Scientist)

2. Research Activities

We develop high performance, highly productive software stacks that aim to simplify
development of highly optimized, fault-tolerant computational science applications on current
and future supercomputers, notably the K computer. Our current focus of work includes
large-scale data processing, heterogeneous computing, and fault tolerance. A major ongoing
project in our group will deliver a MapReduce runtime that is highly optimized for the intra- and
inter-node architectures of the K computer as well as its peta-scale hierarchical storage systems.
Another major project focuses on performance and productivity in large-scale heterogeneous

systems. Below is a brief summary of each project.

1) Simplified Parallel Processing with KMR

MapReduce is a simple programming model for manipulating key-value pairs of data, originally
presented by Dean and Ghemawat of Google. User-defined map and reduce functions are
automatically executed in parallel by the runtime, which in turn enables transparent out-of-core
data processing using multiple machines. Our KMR library, which is currently under active
development, is similar to the original MapReduce design by Dean and Ghemawat, but its
implementation is significantly extended for the node and storage architectures of the K
computer. In particular, we exploit the two-level parallel storage systems so that costly data
movement can be minimized. Data shuffling in MapReduce is also a subject of optimizations

using the 6-D torus interconnect networks.

2) Physis: An Implicitly Parallel Stencil Computation Framework

Physis is a framework for stencil computations that is designed for a variety of parallel
computing systems with a particular focus on programmable GPUs. The primary goals are high
productivity and high performance. Physis DSL is a small set of custom programming constructs,
and allows for very concise and portable implementations of common stencil computations. A

single Physis program runs on x86 CPUs, NVIDIA GPUs, and even clusters of them with no

142

platform-specific code. This software consists of a DSL translator and runtime layer for each
supported platform. The translator automatically generates platform-specific source code from
Physis code, which is then compiled by a platform-native compiler to generate final executable
code. The runtime component is a thin software layer that performs application-independent

common tasks, such as management of GPU devices and network connections.

3. Research Results and Achievements
3.1. Simplified Parallel Programming with KMR

1) Kmrshell: A simple building block for MapReduce-style workflow

MapReduce is already a very simple model, but KMR’s new functionality “kmrshell”, further
simplifies parallel programming which can start thousands of Unix commands without coding in
C or Fortran. Starting thousands of programs on distinct data sets is a typical scenario of the
jobs running on the K computer, but it requires tedious programming if directly implemented
with MPL. “Kmrshell” abstracts invocation of multiple Unix commands as mappers and reducers,
and efficiently combines their results through pipelining using KMR’s high-performance data

shuffling. Unmodified sequential or MPI programs can be executed more easily with kmrshell.

2) Automatic affinity-aware large-scale file I/O

KMR implements a new affinity-aware file loading method, which exploits locality information
of the files to the 1/0 nodes [5-(2)-1]. The FEFS filesystem on K is based on file striping, in which a
content of a file is segmented to many small chunks and they are scattered across many 1/O
nodes. It exposes locality of file contents between the 1/O nodes and the computing nodes,
enabling more efficient accesses to file segments from a near-by computing node, which also
minimizes network contention during file loading. The location information of scattering the
segments of a file can be obtained by using the system interface to the FEFS filesystem. KMR
divides the computing nodes into the groups by the locality to the 1/O nodes, and assigns the
task of file loading by their affinity to the segments of a file. The following figure shows the

improvement achieved by the affinity-aware file loading method.

143

5000
8 4000 .
E
o
£ 3000
‘éo ek my
"g 2000 - one-bcast
o
E 1000 =@=hy-each
= J

0 M

0 200 400 600 800 1000
Data size (MB)

Figure. File loading performance. The line with “kmr” is by affinity-aware file loading. The
“one-bcast” is the older method in which one node loads a file and broadcasts it. The “by-each”

is a naive method in which each node loads a file independently.

3) Fault-tolerant MapReduce

To enable job completion in face of system faults and to enable long term job execution
exceeding the maximum elapse time, we implemented a checkpoint/restart feature to KMR. We
designed this feature to automatically and transparently perform checkpoint/restart from KMR

users. This feature will be included in the next release, which will be available early in FY2014.

4) KMR application examples

As MapReduce is originally designed for data parallel processing, it is easy to apply MapReduce
to scientific data analysis [5-(2)-2]. We applied KMR to implement genome analysis, especially to
cancer cell’s mutations detection. As shown in the following figure, if we split the input genome
sequences into small parts we can perform mapping and split them in parallel. This process can
be mapped to the Map part of MapReduce. The split results should be merged based on their
patterns and it can be mapped to the Shuffle part of MapReduce. The final analysis process can
be implemented as Reduce part of MapReduce. KMR also starts to be used to analyzing huge

amount of images, more than 1 million/day, generated by SACLA.

144

Genome
Read

6 e
o
i
e

T T T
Mapping %ﬁépping] %ﬁépping} mgppmg}
¥ ¥ S ¥
s 3 3 3
split || split | split | |l split |

AN AN A AN
Frry PPPFF PPFPFr rrerr

e - e D = ot
Shuffle

S

oo sl s s ol

SNP & Indel List
MapReduce can be applied to represent certain kind of scientific application’s workflows, such
as embarrassingly parallel tasks and ensemble simulations. We used KMR to implement
Replica-Exchange Molecular Dynamics (REMD), a representative ensemble simulation. REMD is
an iterative application that runs MDs in parallel and performs exchange after that in iteration.
MapReduce can be applied to represent the iteration where Map runs MDs and Reduces does
exchange. KMR starts to be used in AICS research tams to represents their application

workflow, such as data assimilation for weather forecasting, social simulation and visualization.

MD _. Exchange

—,

|

I |

— —> —>

/\,

Temperature

I |
X Y >

- - Time

By applying MapReduce to the above applications, application researchers or developers can
reduce their coding tasks as MapReduce provides mechanisms for task management, and they
can concentrate on implementing the application logics. Furthermore, as KMR is designed

especially for the K computer, using KMR will benefit performance on the K computer.

145

3.2 Physis: An Implicitly Parallel Stencil Computation Framework

One of the main design goals of Physis is to generate high quality code optimized for
memory-bound applications on GPU accelerators. A classical optimization technique for
increasing memory-bound applications is loop fusion, which translates loops using the same
data arrays into a single loop so that accesses to the same data can be reused via on-chip
memories such as registers and caches. A similar technique can be applied to GPU applications
that consist of a call sequence of GPU-offloaded functions (called kernels in CUDA terminology).
By creating a fused kernel that include multiple kernels using the same data arrays, accesses to
off-chip DRAM memory can be reduced by exploiting on-chip memories such as GPU shared

memory.

We envision that such code transformation technique can be automatically implemented with
high-level frameworks such as Physis. The Physis DSL, while limited to stencil computations with
regular grids, gives the framework with flexibility in generating any combinations of fused
kernels within the constraint of data dependencies among stencils. However, a naive greedy
approach to fusing kernels will not be necessarily effective due to the following challenges. First,
kernel fusion does not always lead to more efficient code even with shared data being cached
at on-chip memories. Other performance-critical architectural constraints, such as the capacity
of shared memory, latency to accessing the shared memory, and potential increase of register
pressure, need also be carefully considered when deciding fusing a given set of kernels.
Furthermore, production applications tend to contain a large number of kernels, much as loops
in CPU codes, therefore the number of potential combinations of fusions can be intractably

large with simple greedy approaches.

To address the two challenges and achieve speedup by effectively reducing the off-chip
memory traffic, we formulate kernel fusion as a combinatorial optimization problem and
propose the use of an approximation search heuristic to search the exponentially proportional

space of possible fusions.

More specifically, we derive the optimization problem by constructing a data dependency graph
and order-of-execution graph for the kernels in the program. Our search heuristic uses a
light-weight and accurate projection method of performance upper bound to evaluate the
quality of candidate solutions. The upper bound on performance is projected for potential fused
kernels without requiring any form of code representation. This light-weight method is essential

to enable fusions for applications with a large number of kernels and data arrays.

146

Our main achievements so far are: a) A formulation of the kernel fusion as an optimization
problem, b) The use of a scalable search heuristic to search for near-to-optimal solutions in the
space of possible kernel fusions, c) Using a highly accurate codeless upper-bound performance
projection to guide KF and, d) Experimental evidence of the effectiveness of the kernel fusion
optimization when applied to a test suite and two real world weather applications with tens of
kernels and data arrays. As will be shown later, the introduced search method identified the
optimal kernels to fuse for the weather applications within a reasonable amount of time. The
actual kernel fusion transformation with two climate-modeling applications resulted in more

than 1.35x and 1.2x speedup on NVIDIA Kepler GPUs.

4. Schedule and Future Plan

We plan to continue the development of KMR for further simplifying usage of large-scale
systems. In particular, our primary focus in the coming years is to optimize 1/O intensive
applications by further exploiting data locality on the K computer. Toward that end, we will first
try to identify common I/O access patterns of the computational science applications running on
K, and examine potential improvements of I/O performance by various static and runtime
techniques such as runtime code and data migrations. We plan to implement such advanced
optimizations with the KMR library so that user applications built using the KMR library can
transparently use our optimizations. We also plan to release a new version of KMR with a
checkpoint/restart mechanism so that KMR applications can continue execution even in the

presence of system failures due to, e.g., hardware faults.

The Physis framework will also be further extended with more advanced code generation
techniques such as kernel fusion as presented above. We plan to realize the model-based
scalable kernel fusion within the framework so that the performance of stencil applications

written in Physis can be further more efficient.

5. Publication, Presentation and Deliverables

(1) Conference Papers

[1] Naoya Maruyama, Takayuki Aoki, "Optimizing Stencil Computations for NVIDIA Kepler
GPUs," International Workshop on High-Performance Stencil Computations, Vienna, January
2014.

[2] Shinichiro Takizawa, Motohiko Matsuda and Naoya Maruyama: Supporting Workflow
Management of Scientific Applications by MapReduce Programming Model. IPSJ HPCS2014
(2014).

[3] Toshiya Komoda, Shinobu Miwa, Hiroshi Nakamura, Naoya Maruyama, "Integrating

Multi-GPU Execution into an OpenACC Compiler," 42nd International Conference on Parallel

147

Processing (ICPP), pp. 260--269, Lyon, France, October 2013.

[4] Mohamed Attia Wahib, Naoya Maruyama, "Highly Optimized Full GPU-Acceleration of
Non-hydrostatic Weather Model SCALE-LES," IEEE Cluster 2013, Indianapolis, IN, USA,
September 2013.

[5] Motohiko Matsuda, Naoya Maruyama, Shinichiro Takizawa, "K MapReduce: A Scalable Tool
for Data-Processing and Search/Ensemble Applications on Large-Scale Supercomputers,"
IEEE Cluster 2013, Indianapolis, IN, USA, September 2013.

[6] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, Ryoji Takaki, "CUDA vs OpenACC:
Performance Case Studies with Kernel Benchmarks and a Memory-Bound CFD Application,"
Proceedings of the 2013 IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2013), Delft, the Netherlands, May 2013.

[7] Mohamed Slim Bouguerra, Ana Gainaru, Leonardo Bautista Gomez, Franck Cappello, Satoshi
Matsuoka, Naoya Maruyama, "Improving the Computing Efficiency of HPC Systems Using a
Combination of Proactive and Preventive Checkpointing," Proceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium (IPDPS'13), Boston, USA, May

2013.

(2) Invited Talks

[8] Naoya Maruyama, "Miniapps for Enabling Architecture-Application Co-design for Exascale
Supercomputing," 19th Workshop on Sustained Simulation Performance, Invited Talk, March
2014.

[9] Naoya Maruyama, High performance and high productivity with application frameworks,

Kyoto University, Invited talk, July 2013.

(3) Posters and Presentations

[10] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, "OpenACC Performance and
Optimization Studies With Kernel and Application Benchmarks,”" GPU Technology
Conference, Poster, San Jose, CA, USA, March 2014.

[11] Kento Sato, Akira Nukada, Naoya Maruyama, Satoshi Matsuoka, "I/O Acceleration With GPU
for 1/0-Bound Applications," GPU Technology Conference, Poster, San Jose, CA, USA, March
2014.

[12] Mohamed Wahib, Naoya Maruyama, "Scalable Kernel Fusion for Memory-Bound GPU
Applications," GPU Technology Conference, Poster, San Jose, CA, USA, March 2014.

[13] Mohamed Attia Wahib, Naoya Maruyama, "Scalable Kernel Fusion for Memory-Bound GPU
Applications,”" SIAM Conference on Parallel Processing, MS 49: Parallel Methods and
Algorithms for Extreme Computing, Portland, Oregon, USA, February 2014.

148

(4) Patents and Deliverables
[14] Motohiko Matsuda, Shinichiro Takizawa, Naoya Maruyama, “KMR: A MapReduce Library for
K,” http://mt.aics.riken.jp/kmr/, 2013.

149

	aics_annualreport_fy2013 143
	aics_annualreport_fy2013 144
	aics_annualreport_fy2013 145
	aics_annualreport_fy2013 146
	aics_annualreport_fy2013 147
	aics_annualreport_fy2013 148
	aics_annualreport_fy2013 149
	aics_annualreport_fy2013 150

