
 21

2. Programming Environment Research Team

2.1. Team members

Mitsuhisa Sato (Team Leader)

Hitoshi Murai (Research Scientist)

Tetsuya Abe (Postdoctoral Researcher)

Swann Perarnau (Visiting Researcher, JSPS Research Fellow)

Tomotake Nakamura (Research Associate)

Takenori Shimosaka (Research Associate)

Masahiro Yasugi (Visiting Researcher)

Tomio Kamada (Visiting Researcher)

Hitoshi Sakagami (Visiting Researcher)

Hiroaki Umeda (Visiting Researcher)

Miwako Tsuji (Visiting Researcher)

Horitz Helias (Visiting Researcher)

Susanne Kunkel (Visiting Researcher)

Masahiro Nakao (Visiting Researcher)

Tomoko Nakashima (Assistant (Concurrent))

2.2. Research Activities

The K computer system running in AICS is a massively parallel system which has a huge number

of processors connected by the high-speed network. In order to exploit full potential computing

power to carry out advanced computational science, efficient parallel programming is required to

coordinate these processors to perform scientific computing. We conducts researches and

developments on parallel programming models and language to exploit full potentials of large-scale

parallelism in the K computer and increase productivity of parallel programming.

In 2012FY, in order to archive these objectives above, we carried out the following researches:

1) We continued the development of XcalableMP(XMP) programming languages. XcalableMP is

a directive-based language extension which allows users to develop parallel programs for

distributed memory systems easily and to tune the performance by having minimal and simple

notations. The specification has been designed by XcalableMP Specification Working Group

(XMP Spec WG) which consists of members from academia and research labs to industries in

Japan. We have been working with XMP Spec WG to improve the specification. In this year,

we released XMP Fortran, and deployed it to the K computer. According to the results from a

preliminary performance evaluation using a XMP version of the SCALEp code (a climate code

for LES), we improved the runtime system on the K computer. We conducted the evaluation of

 22

XMP programs on the K computer using HPCC benchmark and submitted the results to SC12

HPCC class 2 competition, and were selected as a finalist. We also continued the design of the

interface to MPI programs in XMP, and IO supports of the XMP language.

2) For the research for performance tuning tools for large-scale scientific applications running on

the K computer, we have ported the Scalasca performance turning and analysis tool developed

by JSC, Germany, to the K computer. Our update on the Scalasca for the K computer was

included in the formal release.

3) We investigated methods and tools to support a correct parallel program. We proposed a

light-weight XMP verification tool which helps users to verify XMP programs using

descriptions of global-view programming directives in XMP. And also, we studied the model

checking technique of the PGAS language including XMP.

4) The processor of the K computer has an interesting hardware mechanism called “sector cache”,

which allows partition of L2 on-chip cache to optimize the locality for important data. We

published a paper about the technique to optimize the usage of sector cache.

5) We joined Japan-France project FP3C, "Framework and Programming for Post Petascale

Computing", from this year. In this year, we worked on porting and performance evaluation of

the integrated programming environment of XcalableMP and YML which is developed by the

French team.

6) We conducted several collaborations on the performance evaluation with JSC, University of

Tsukuba and other groups.

2.3. Research Results and Achievements

2.3.1. Development of XcalableMP and Performance Evaluation on the K computer

We continued the development of XcalableMP compiler in collaboration with University of

Tsukuba. At the last SC12, the version 0.6 which includes the implementation of XMP Fortran as

well as XMP C has been released. Several members of our team joined the XMP specification

Working Group to update the XMP language specification to version 1.1 which was published at

SC12.

Several performance evaluation of XcalableMP programs were conducted on the K computer. One

of the important results was that of HPC Challenge Benchmarks. We have submitted the results to

the SC12 HPC Challenge Benchmark, Class2 Competition, which was selected as a finalist.

In the evaluation of HPCC Benchmarks, we presented our XcalableMP implementation of the

HPCC HPL, RandomAccess, FFT, and the Himeno benchmark which is a typical stencil application.

We have measured the performance of HPCC benchmark on two systems: The K computer, upto

8129 nodes, and HA-PACS system at University of Tsukuba, upto 64 nodes. Table 1 shows the

 23

specifications of two systems. Figure 1,2,3,4 shows the performance and scalability of each

benchmark respectively.

Table 1. Specification of K computer and HA-PACS

number	
 of	
 CPU	
 core

TF
lo
ps

HPL	
 (K	
 computer)

number	
 of	
 CPU	
 core

TF
lo
ps

HPL	
 (HA-­‐PACS)

Fig 1. Performance and Scalability of HPL

number	
 of	
 CPU	
 core

G
U
Ps

RA	
 (K	
 computer)

number	
 of	
 CPU	
 core

RA	
 (HA-­‐PACS)

G
U
Ps

Fig.2 Performance and Scalability of Random Access

 24

number	
 of	
 CPU	
 core

FFT	
 (K	
 computer)
G
Fl
op

s

number	
 of	
 CPU	
 core

FFT	
 (HA-­‐PACS)

G
Fl
op

s

Fig. 3 Performance and Scalability of FFT

number	
 of	
 CPU	
 core

Himeno (K	
 computer)

G
Fl
op

s

number	
 of	
 CPU	
 core

Himeno (HA-­‐PACS)
G
Fl
op

s

Fig.4 Performance and Scalability of Himeno

Overall, we found the performance gap between the XMP implementation and its counterpart in the

K computer, while in HP-PACS the performance of the XMP implementation is very close to the

original one. We already found and fixed some problems of the XMP in the run-time system and the

algorithms.

Other important factor of programming languages is programability: how easy to program by the

language. Figure 5 shows the source line of code (SLOC) of each benchmark programs in XMP

comparing to the original MPI implementation as a reference. It means that the XMP can help the

programmers to write programs with less lines, resulting in high programmability.

 25

Fig. 5. Source Line of Code (SLOC)

2.3.2. Porting Scalasca performance tool to the K computer

 We have ported Scalasca performance tools developed by Julich Supercomputer Center and

German Research School for Simulation Sciences, and University of Tennessee, on the K computer.

It is designed to analyze parallel application execution behavior on large-scale systems with many

thousands of processors such as the K computer. It offers an incremental performance-analysis

procedure that integrates runtime summaries with in-depth studies of concurrent behavior via event

tracing, adopting a strategy of successively refined measurement configurations.

 Our effort for porting the Scalasca to the K computer was included in the latest release 1.4.3. We

have tested the tool to analyze the performance of CG in NAS Parallel benchmark using 16,384

nodes on the K computer. The view of the tool is shown in Figure 6.

Fig. 6. View of Scalasca performance tool on K computer

 (NPB CG benchmark, 32x32x16, 16,384 nodes)

 26

2.3.3 Program Verification Techniques for PGAS programming models

 In XcalableMP (XMP), programmers can include explicit synchronizations by adding directives to

their source code. In this sense, XMP provides programmers with performance awareness. As such,

part of the performance of programs can be attributed to the programmers, i.e., XMP requires

interactive programming by the programmers.

We developed a tool that alerts programmers to missing and redundant synchronizations they have

included referring, respectively, to non-local array indices and a decrease in the performance of

programs. The tool uses XMP directives, making programs more structured, and on-the-fly checks

whether directives are missing or redundant, while programmers are editing their programs.

Consider the code fragment shown below, the first pragma line specifies the broadcast operation of

data a from node p(1) to nodes from p(2) to p(10), and the second pragma lines performs the

broadcast the data from node p(2) to nodes from p(11) to p(20). Then, the third line which performs

the broadcast from p(1) to p(10) and p(10), can be detected as a redundant operation. by our tool.

#pragma xmp bcast (a) from p(1) on p(2:10)

#pragma xmp bcast (a) from p(2) on p(11:20)

#pragma xmp bcast (a) from p(1) on p(10:11)

In the second example shown below, the array a is declared as a distributed array with block

distribution. In the XMP execution, each node executes the same code independently if no xmp

pragmas are specified. This means the assignment b=a[0] is executed on every nodes, and it

causes the error on nodes where a[0] is not allocated. This kind of errors can be easily detected by

static semantics check of our tool.

#pragma xmp distribute t(block) onto p

int i;

int a[100];

#pragma xmp align a[i] with t(i)

...

b=a[0];

We designed a light-weight static checking program for our tool, which is implemented by using a

parser combinator library Parsec, and user-defined datatypes in Haskell performing

pattern-matchings by constructors of the user-defined data types. And the tool is integrated with

GNU Emacs editor. The pragma and the line containing passible errors are high-lighted in the editor,

as shown in Figure 7.

 27

Figure 7. Integrated environment with Emacs

Through the development of our tool, we found that abstract descriptions in XMP are useful to not

only development of a program but also verification of the program.

One of the problems with PGAS languages including XcalableMP is that programmers can easily

introduce concurrency bugs into their programs. For example, race conditions tend to occur because

a portion of a single address space can be manipulated by multiple threads simultaneously. A

solution that avoids race conditions is to synchronize accesses from multiple threads with

synchronization primitives (e.g., synchronization locks), but this is not that easy for two reasons.

First, excessive use of synchronization may severely degrade the performance of the program.

Second, synchronization primitives themselves sometimes introduce other problems. For example,

improper use of synchronization locks may cause deadlock.

Model checking is one approach for addressing the problem of concurrency bugs. Basically,

software model checking explores all the states that can be reached by executing a given program,

and checks whether a given property is ensured (e.g., there are no race conditions or deadlock).

Model checking of partitioned global address space programs tends to suffer from the state

explosion problem because these programs allow concurrent and/or parallel execution and memory

sharing. To avoid this problem, it is essential to perform proper abstractions based on the properties

to be verified because these can dramatically reduce the number of states to be explored in programs.

However, it is not always easy to automatically infer proper abstractions because programs and

properties to be verified vary.

To address the problem, we proposed a model checking framework that includes user-definable

 28

abstractions. The key idea of the framework is that it exposes the intermediate representation of the

program’s abstract syntax tree, enabling users to define their own abstractions flexibly and concisely

by creating a translator for the tree. By allowing users to create translators at the level of abstract

syntax trees, the cost of implementing the translator is lower than that of coding text-based pattern

matching and rewriting rules because unnecessary redundant rules that often appear in the

conventional approach are eliminated.

In addition, we have designed our proof-of-concept implementation of the proposed approach:

CAF-SPIN. CAF-SPIN is a software model checking tool for Coarray Fortran (CAF) programs. In

the current implementation of CAF-SPIN, both its intermediate representation of abstract syntax

trees and translator are written in Haskell. Thus, users are able to define their abstractions by simply

writing Haskell functions. Several experimental results using CAF-SPIN were conducted. The

experimental results confirmed that abstractions can be defined easily and concisely in CAF-SPIN,

and the number of states to be explored for model checking is dramatically reduced with the

abstractions.

It is worth noting that, similar to UPC-SPIN, the current CAF-SPIN does not handle relaxed

memory models directly, except for sequential consistency. This limitation does not cause problems

for checking programs that perform synchronization when accessing shared memory, but may cause

problems if synchronizations are accidentally or intentionally omitted for performance reasons.

Supporting relaxed memory models is a future work.

2.3.4 "Sector Cache" optimization for the K computer

The processor architecture available on the K computer (SPARC64 VIIIfx) features a hardware

cache partitioning mechanism called sector cache. This facility enables software to split the memory

cache in two independent sectors: data loads in one sector cannot trigger the eviction of data in the

second one. Moreover, software is responsible for data placement in each sector by issuing special

instructions tagging the various memory loads performed during execution. The implementation

details of this cache partitioning mechanism also enable fast redistribution of the cache during an

application’s runtime, without any cost, allowing any optimization using the sector cache to be

applied multiple times, with different setups, in the event of phase changes.

Unfortunately, in its current state, the compilers provided on the K computer do not implement any

automatic optimization using this cache facility. In the contrary, the only high-level interface to this

mechanism is a set of directive to instruct the compiler to generate tagging instructions over a code

region. Thus, only application programmers with intricate knowledge of both the memory access

patterns of their code and the K computer architecture can take advantage of this facility.

To address this issue and to study new optimization schemes using cache partitioning, we

investigated a framework using binary instrumentation and reuse distance analysis to discover the

 29

locality of important data structures in an application and to suggest appropriate data distribution

schemes for the sector cache. These optimizations are then translated into calls to the source-level

API provided by the K computer compilers.

Our framework leverages and extends several existing methodologies. First, we use binary

instrumentation of the target application along with debug information parsing to trace the various

memory accesses to major data structures of a code region. This trace is then analyzed using a

derivative of reuse distance to assess the locality of theses structures. Third, by modeling the impact

of these localities on the performance of the application, we identify whether cache thrashing could

be reduced by isolating some of these data structures to a specific sector. We envision these

components as steps in an optimization loop: after identifying cache performance hotspots, a

developer can analyze them, use the sector cache API to optimize them and repeat the process as

much as required.

We applied our framework to analyze and optimize a set of HPC benchmarking applications and

demonstrate significant performance improvements.

We analyzed two benchmarks from the Omni OpenMP C version 2.3 of the NAS Parallel

Benchmarks: CG, LU, and applied our framework. These benchmarks were only using one thread. In

both cases, significant optimizations were found.

Most of the computation time of the CG benchmark is spent inside the conj_grad function. This

function does not call any other, and is repeated multiple times during the benchmark’s lifetime. The

core of this function is a sparse matrix-vector product, with most of the memory accesses touching 3

data structures: the sparse matrix a, the column index colidx and a dense vector p. We analyzed the

locality of these structure and, unsurprisingly, our framework indicated that the p vector could

benefit for isolation using the sector cache. Indeed, both other structures exhibit streaming access

patterns due to indirect accesses that could impact negatively the caching of p. Our optimization thus

isolates p in sector 1, with enough space to allow good caching. Such optimization, adding only two

lines to the source code of the benchmark reduces the execution time of this function by 10%.

Our process to analyze and optimize the LU benchmark was as follows. First, LU spends almost all

of its runtime in the ssor function. This function contains a loop, calling successively several

subroutines over shared data structures. Iteratively, these calls solves a system of Navier-Stokes

equations by successive over relaxation, decomposing it into lower and upper triangular matrices.

Overall, eight structures are of interest here: flux, u, rsd and frct, which are global arrays used as

input and results storage, and a,b,c and d which are working arrays used across subroutines to hold

partial results (triangular matrices). To analyze this benchmark, we configured our framework to

trace recursively all instructions of the ssor function or of any other function called from it. The

resulting analysis identified each of a, b, c and d to benefit from the sector cache in the same way.

 30

The cache requirements of the other arrays could not fit in any sector configuration. While isolating

only one of the 4 arrays identified by our framework only improved by 2% the benchmark’s

execution time, another optimization gave more interesting results. Indeed, protecting those 4 arrays

for streaming accesses to the other variables of the program by pushing them all together in sector

one proved to be a better optimization. It resulted in a 8% reduction of execution time of this

function. We should note that, as the ssor function passes these arrays to some subroutines as

parameters, we had to change the sector cache directives in them to match the actual parameter

names. Overall, code modification added 10 lines of directives: for each of the 5 functions, one line

for sector size and one for variable isolation. We excluded two functions (rhs and l2norm) from

these modifications, as they do not use these arrays.

Table 2 describes the exact optimization on each benchmark’s functions, and the resulting

improvements. Note that the cache misses reduction reported are direct cache misses: cache misses

triggered by the speculative hardware prefetcher are ignored.

Table 2.Results of Optimization of NAB benchmarks (GC and LU)

2.4. Schedule and Future Plan

At the end of 2012FY, we have released the XcalableMP C and Fortran, and Scalasca for the users

of the K computer. The important goal is to organize collaborations with application developers and

improve our software. As one of activities for this goal, we have a plan to organize hands-on

meeting with them. Through these case studies, we will extend it for valuable performance analysis

in the K computer.

As a research agenda especially for the K computer, we will focus on the design on one-sided

communication using K computer's RDMA hardware. We expect that it will contribute the

scalability of large-scale applications for the K computer.

2.5. Publication, Presentation and Deliverables

(1) Journal Papers

- None

 31

(2) Conference Papers

1. Masahiro Nakao, Hitoshi Murai Takenori Shimosaka Mitsuhisa Sato. "XcalableMP for

Productivity and Performance in HPC Challenge Award Competition Class 2", SC12 The 2012

HPC Challenge Awards BoF, Salt Lake City, Utah, USA, Nov., 2012.

2. Tatsuya Abe, Toshiyuki Maeda, and Mitsuhisa Sato., "Model checking with user-definable

abstraction for partitioned global address space languages.", In Proceedings of the 6th

Conference on Partitioned Global Address Space Programming Models (PGAS), Online. Santa

Barbara, October 2012.

3. Tatsuya Abe and Mitsuhisa Sato. On-the-fly synchronization checking for interactive

programming in XcalableMP. In Proceedings of the 5th International Workshop on Parallel

Programming Models and Systems Software for High-End Computing (P2S2), pages 29--37.

Pittsburgh, September 2012.

4. Tatsuya Abe and Mitsuhisa Sato. "Auto-tuning of numerical programs by block multi-color

ordering code generation and job-level parallel execution.", In Proceedings of the 7th

International Workshop on Automatic Performance Tuning (iWAPT), volume 7851 of Lecture

Notes in Computer Science. Springer, Kobe, July 2012.

5. Swann Perarnau and Mitsuhisa Sato, "Discovering Cache Partitioning Optimizations for the K

Computer," in proceedings of APPLC'13 workshop, Shenzhen, 2013.

[not refereed, in Japanese]

1. Tomotake Nakamura and Mitsuhisa Sato, "Performance Analysis using the performance

analysis tool Scalasca on the K computer", IPSJ SIG Technical Report (in Japanese), Vol.

2012-HPC-135, pp.1-7, 2012.

2. Hitoshi Murai, Takenori Shimosaka and Yoshiyuki Ohono, Hisashi Yashiro, Hirofumi Tomita

and Mitsuhisa Sato, "Performance Evaluation of Parallel Programming Language XcalableMP

on the K Computer", IPSJ SIG Technical Report (in Japanese), 2012-HPC-135(44), (2012).

3. Toward Automated Cache Partitioning for the K Computer, Swann Perarnau and Mitsuhisa

Sato, IPSJ SIG Technical Report , Okinawa, 2012.

(3) Invited Talks

1. Mitsuhisa Sato, "The next step for Post-Petascale Computing in Japan", HPC in Asia Workshop,

ISC 2011, June 2012.

2. Mitsuhisa Sato, "XcalableMP PGAS parallel programming language for productive

high-performance scientific programming", International Top-level Forum on Engineering

Science and Technology Development Strategy, 2012 International Forum on HPC Challenges

in China, Oct 2012

 32

3. Mitsuhisa Sato, "The K computer and XcalableMP parallel language project --- Towards

programming environment for productive high-performance scientific programming ---",

ComPAR 2013, Jan 2013

(4) Posters and presentations

1. Hitoshi Murai, Masahiro Nakao, Takenori Shimosaka, Mitsuhisa Sato. “Implementation and

Evaluation of HPC Challenge Benchmarks with the Omni XcalableMP compiler”, The 3rd

AICS International Symposium, Kobe, Hyogo, Japan, Feb, 2013.

2. Tatsuya Abe and Mitsuhisa Sato. Auto-tuning of numerical programs by block multi-color

ordering code generation and job-level parallel execution. Poster Session in HPC in Asia

Workshop, Online. Hamburg, June 2012.

(5) Patents and Deliverables

1. XcalableMP compiler ver. 0.6 (C and Fortran95) for the K computer

2. Scalasca performance analysis tool for the K computer

3. Xcrypt for the K computer

4. GASnet one-sided communication Library for the K computer (test version)

	aics_annualreport_fy2012 22
	aics_annualreport_fy2012 23
	aics_annualreport_fy2012 24
	aics_annualreport_fy2012 25
	aics_annualreport_fy2012 26
	aics_annualreport_fy2012 27
	aics_annualreport_fy2012 28
	aics_annualreport_fy2012 29
	aics_annualreport_fy2012 30
	aics_annualreport_fy2012 31
	aics_annualreport_fy2012 32
	aics_annualreport_fy2012 33

