
25

Programming Environment Research Team

1. Team members

Mitsuhisa Sato (Team Leader)

Hitoshi Murai (Research Scientist)

Miwako Tsuji (Research Scientist)

Masahiro Nakao (Research Scientist)

Hidetoshi Iwashita (Research Associate)

Makoto Ishihara (Agency Staff)

Masahiro Yasugi (Senior Visiting Researcher)

Hitoshi Sakagami (Senior Visiting Researcher)

Brian Wylie (Visiting Researcher)

Christian Feld (Visiting Researcher)

Kengo Nakajima (Senior Visiting Researcher)

Tomoko Nakashima (Assistant)

2. Research Activities

The K computer system is a massively parallel system which has a huge number of processors

connected by the high-speed network. In order to exploit full potential computing power to carry out

advanced computational science, efficient parallel programming is required to coordinate these

processors to perform scientific computing. We conduct researches and developments on parallel

programming models and language to exploit full potentials of large-scale parallelism in the K

computer and increase productivity of parallel programming.

In 2014FY, in order to archive these objectives above, we carried out the following researches:

1) We are working on the development and improvement of XcalableMP (XMP) programming

languages. XcalableMP is a directive-based language extension, designed by XcalableMP

Specification Working Group (XMP Spec WG) including some members from our team as a

community effort in Japan. It allows users to develop parallel programs for distributed memory

systems easily and to tune the performance by having minimal and simple notations. In this

year, we have implemented Coarray functions in Fortran and C using one-sided communication

supported efficiently by the K computer.

2) As an extension of XcalableMP to exascale computing, we are proposing a new programming

model, XcalableACC, for emerging accelerator clusters, by integrating XcalableMP and

OpenACC. We are working on the language design and the compiler development of

XcalableACC. We have submitted the results of XcalableACC and XcalableMP to SC14 HPCC

class 2 competition, and awarded "HPCC Class2 Performance Award". This research is funded

Part I: Research Division

26

by JST CREST project on “post-petascale computing”.

3) As a follow-up of Japan-France project FP3C, "Framework and Programming for Post

Petascale Computing" (2010-2013), and have been investigated fault tolerance mechanism for a

multiple SPMD programming environment, FP2C (Framework for Post-Petascale Computing),

developed in FP3C project. This work focuses on the technique of fault tolerance on workflow

by replaying faulted tasks.

4) As a study on performance evaluation of the K computer, we are working on HPGMG, a new

HPC benchmark program developed by Lawrence Berkeley National Laboratory (LBNL). For

large-scale parallel applications, we continue the design of parallel communication library to

support the communication between a set of multiple processes in Multiple processes Multiple

Data (MPMD), named MPMPI library.

5) We conducted several collaborations on the performance evaluation with JSC, University of

Tsukuba and other groups.

In addition to the research activities, we conduct promotion activities to disseminate our software.

To promote XcalableMP as a means for parallelization of programs, we made the XcalableMP

workshop, seminars or lectures as follows.

� XcalableMP workshop (Oct. 24)

� FOCUS seminar on XMP (Sep. 18, Dec. 18)

The seminar or lecture consists of both classroom and hands-on learning

3. Research Results and Achievements

3.1. Development of an XcalableMP compiler

We are developing Omni XcalableMP that is an open-source XcalableMP compiler, in cooperation

with the university of Tsukuba. The latest version 0.9.1 has been released in April, 2015

3.1.1. Coarray Fortran and C

Coarray Fortran (CAF) is a parallel language that is a language extension of Fortran. Since it was

accepted as a part of the latest Fortran standard Fortran2008, it is expected to be popular gradually.

CAF is a lower-level language than XMP we have been developing and seems to be suitable for fine

performance tuning. Therefore, we expect CAF not to be a competitor but to be a complementary to

XMP.

This year we started to develop Coarray features into our XMP translator. In general, it is not easy to

develop such low-level language as a translator, a source-to-source compiler. The gorl of

RIKEN AICS ANNUAL REPORT FY2014

27

development is both functionality to be worth using real-world applications and high performance

comparable with MPI library. And we will extend the experience of CAF also into C language.

Now we have developed major features of CAF1.0 specification such as declaration of coarray

variables, reference and definition of remote coarray data objects, and dynamic allocation and

explicit and automatic deallocation. During the development, we encountered and solved some

issues as follows.

� Memory allocation of a coarray variable brings inter-node synchronization as a side effect. It

had caused overhead cost at the start point of every procedure containing coarray. To move out

and aggregate the costs, we developed a new mechanism which works just before the

linkage-editor. It scans all object and archive files to be linked, finds coarrays to be allocated

and initialized at the runtime, and generates instructions to allocate and initialize them

previously before execution of the user program.

� For effective inter-code communication of coarray data, it is required at runtime to detect how

long data is contiguous and how the contiguous data appear frequently. We developed a new

interface, which has information made from parameters of multi-dimensional subarray data in

Fortran language and is easy to detect

how contiguous the data at runtime.

We evaluated the current compiler we have

developed and concludes that the compiler

works correctly with a program written by

CAF and the performance is very close to the

one of MPI. Fig. 1 shows comparison of CAF

and MPI with Himeno benchmark. The MPI

program is basically the same as the original

and the CAF program was ported from it. In spite

of the data size M and XL, the difference of the

performance was 10 percent or less. And we still have room for improvement both the compiler and

the CAF program.

According to the development and evaluation, we found CAF can be implemented even as a

translator with high performance. And the program written in CAF seems much easier than the one

of MPI. The latest XMP compiler with the CAF features was released in April 2015.

Fig. 1 Comparison of CAF and XMP

Part I: Research Division

28

3.1.2. Evaluation of productivity and performance of XcalableMP

In order to evaluate productivity and performance of XcalableMP, we have implemented HPC

Challenge (HPCC) benchmarks. The HPCC benchmarks are a set of benchmarks to evaluate

multiple attributes of an HPC system. The HPCC benchmarks consist of High Performance Linpack

(HPL), Fast Fourier Transform (FFT), STREAM, and RandomAccess.

Table 1 shows the source lines of code (SLOC) of our implementations. The SLOCs of XcalableMP

are smaller than those of the reference implementations by using MPI.

Table 1: Source lines of code of HPCC benchmarks

All benchmarks were compiled by using the Omni compiler 0.9.0-alpha. In order to evaluate the

performances of these benchmarks, we used all compute nodes at a maximum on the K computer.

For comparison, we also evaluated the some reference implementations. For HPL, we compared our

performance with the theoretical performance. Fig. 2 shows the performance results. The

performances of XcalableMP implementations are almost the same as those of the reference

implementations.

Through these implementations and performance evaluations, we have revealed that XcalableMP has

good productivity and performance. We have submitted the results to the SC14 HPC Challenge

Benchmark Class2 Competition, and we have awarded the HPC Challenge Class 2 Best Performance

Award.

Last year, we had implemented the HPCC benchmarks. This year, we have tuned the Omni Compiler

for the K computer and algorithms of HPCC benchmarks. Fig. 3 shows the comparison between

implementations of last year and this year.

While the SLOCs of this year are almost the same as those of last year, the performance of this year

are better than those of last year.

RIKEN AICS ANNUAL REPORT FY2014

29

Fig. 2 Performance results of HPCC benchmarks

Fig. 3 Comparison between last year and this year

Part I: Research Division

30

3.2. Multiple SPMD programming environment for fault tolerance

To develop a multiple SPMD programming environment supporting fault tolerance feature, we have

extended middleware and developed the prototype environment by incorporating the middleware to

the multiple SPMD programming environment.

During recent years, we have developed a multiple SMPD programming environment called FP2C

(Framework for Post-Petascale Computing) with our domestic and international collaborators such

as University of Tsukuba, University of Versailles, Maison de la Simulation etc… The FP2C

combines several programing methodologies such as workflow, distributed parallel, shared memory

and allows programmers to make hierarchical programs across multiple architectural levels such as

intra-node, inter-node and inter-cluster. In FP2C, a workflow application is executed by YML --- a

development and execution environment for a workflow --- and each task in the workflow can be

distributed parallel program described XMP, MPI and so on.

YML workflow scheduler uses different middlewares for different programming environments.

Especially, in clusters and supercomputers, it adopts OmniRPC-MPI, which is an extension of

OmniRPC (Remote Procedure call library) for parallel remote programs. To realize fault tolerance,

we have extended OmniRPC-MPI to OmniRPC-MPI-FT by implementing heartbeat messages.

Moreover, FJMPI, which is MPI library provided by Fujitsu to realize "safe" communication

between two communicators.

Although the OmniRPC-MPI had been developed for FP2C, it can work as an independent RPC

library. Therefore, we have implemented the OpenFMO, which is one of fragment molecular orbital

methods, with the OmniRPC-MPI-FT. According to the experimental results, while the overhead of

the heartbeat messages seems to be ignorable, FJMPI is not efficient.

Fig. 4 elapse time.

�

��

���

���

���

���

���

���

���

�	
��
���
� �	
��
���
����
��������
��

�	
��
���
����
��������
��

�

��

���

���

���

���

���

���

 ��

 ��

������� 	
��� �������
���
��

	
���
���
��

���
������� ���
���������������������� ���
��������������
�������

RIKEN AICS ANNUAL REPORT FY2014

31

We have also incorporated the OmniRPC-MPI-FT to the FP2C and improve the algorithm of our

workflow scheduler in order to realize automatic fault detection and recovery. FJMPI "safe"

communication had not been adopted. We have considered a "task-wise" strategy, in which if the

scheduler detects an error in a task, it retries the task until successful completion. We have

performed computational experiments with a block Gauss Jordan application and confirmed that

 - If FP2C have several tasks simultaneously, it can recover error and complete the whole

application.

 - The overheads of heartbeat messages and fault recovery are acceptable.

Fig. 5 The ratio of execution time without error(left) and with error(right)

3.3. XcalableMP Extension for Accelerator Clusters

We are designing a new programming model and developing its compiler for emerging accelerator

clusters. Specifically, we target accelerator clusters that are capable of direct communication

between two accelerator devices on different nodes, called Tightly Coupled Accelerators (TCA).

TCA is a next-generation technology for communication between accelerators. This research is

supported by CREST, JST.

3.3.1. XcalableACC language

In order to improve productivity of applications using TCA and accelerators, we have developed a

new programming model XcalableACC (XACC), which is a combination of XcalableMP and

OpenACC, enhanced by features for controlling multi-devices and direct communication between

devices (Table 2)

Table 2 XcalableACC directives

XMP directives distributed-memory parallelism among nodes

OpenACC directives parallelism inside a device

XACC extensions parallelism among devices and direct communication

Part I: Research Division

32

Fig. 6 illustrates the basic concept of XACC.

Fig. 6 Execution Model of XACC for data distribution, offloading, and

communication

The XACC extensions for parallelism among devices and direct communication include the

following clauses and directives.

• acc clause, which specifies which instance of the data (on CPU or ACCs) is to be

communicated;

• device directive, which declares an XACC device that may be a set of ACCs;

• on_device clause, which specifies the target ACC of OpenACC directives;

• layout clause, which specifies data/work mapping onto an XACC device;

• shadow clause, which specifies the stencil area of a distribute array; and

• barrier_device directive, which specifies a barrier among devices.

Programmers could write their programs for ACC cluseters using XACC with less dificullty than

using the de facto approach, the combination of MPI and CUDA. An example code of XACC is

given in Fig. 7

RIKEN AICS ANNUAL REPORT FY2014

33

Fig. 7 Example code of XACC

3.3.2. Omni XcalableACC Compiler

We are also developing a compiler for XACC, named Omni XcalableACC, in collaboration with the

university of Tsukuba. It works as an extended function of the Omni XcalableMP compiler (Fig. 8).

���������	
�
�
��
������������������	�
��
�������������������	�
�
��
������������������������	�
��
�������������
�������������	��������
�
��������� !��" !��"#�
��
���������������� �" �"�$��%����	�
��
����������%���$�� !�!" �"�
��
��������������
�����&��	���&���� �" �����"	��%���$� �" !�!"	���'��������	�
��
��
���������
���������	�����
�
��
����������������	�������	�
����
��������(��#���)�!��#��**	
�
��
�����������
�������������&����� �" +*!"	���'��������	�
������
������+�(��#�+�)���#�+**	
�
������� �" +*!"�(�!#�
����,�
��,�
�
,�

Part I: Research Division

34

Fig. 8 Configuration of Omni XcalableACC

In this year, we have implemented basic functions of XACC, which include the feature of stencil

communication (the reflect directive) based on TCA.

We parallelized the HIMENO benchmark, which is a typical stencil code, with Omni XACC and

evaluated its performance on HA-PACS/TCA, which is an accelerator cluster based on the TCA

architecture located at Center for Computational Sciences, University of Tsukuba. Fig. 9 and Table 3

show that, using XACC, programmers could enjoy both higher performance and productivity than

using the normal means of OpenACC+MPI.

OpenACC
compiler�

Frontend�

Translator�

Backend�

.....

.....
XACC program�

.....

.....�
MPI+OpenACC
program in C/
Fortran

Executable�

MPI library�

XACC runtime�

Omni XcalableACC�
•  Translate XMP and

XACC directives
•  Modify OpenACC

directives�

RIKEN AICS ANNUAL REPORT FY2014

35

Fig. 9 Performance on HA-PACS/TCA

Table 3 Comparison of Source Lines of Code

total XMP OpenACC others

XACC 213 28 9 176

OpenACC + MPI 488 - 15 473

Other achievements in this year include prototyping the features of multi-devices and

communication on a hybrid network of Infiniband and TCA.

3.3. Evaluation of HPGMG and HPCG

HPGMG is a new HPC benchmark program developed by Lawrence Berkeley National Laboratory

(LBNL). Current most famous HPC benchmark program is High Performance Linpack (HPL),

which is adopted by TOP500 (http://www.top500.org). HPL has a weakness of very long execution

time for large-scale parallel computers because the execution time is proportional to the problem size.

HPGMG is developed as an alternative to HPL.

HPCG (https://software.sandia.gov/hpcg/) has also the similar purpose. Both HPGMG and HPCG

use iterative solvers based on the multigrid method: a finite-element solver (HPGMG-FE) and a

finite-volume solver (HPGMG-FV) in HPGMG, and a symmetric Gauss-Seidel preconditioned

conjugate gradient solver in HPCG.

Our team started cooperation in evaluating HPGMG-FV on Apr. 2014. We adjusted tuning

parameters of HPGMG-FV for the K computer and measured its weak scaling performance.. As the

result, we achieved the first rank of performance in Mar. 2015, as shown at the website of LBNL

0

80

160

240

320

1 2 4 8 16

PPe
rf

or
m

an
ce

 (G
FL

O
PS

)

Number of Nodes

XACC (TCA)

OpenACC+MPI(GDR)

Part I: Research Division

36

(http://crd.lbl.gov/departments/computer-science/performance-and-algorithms-research/research/hpg

mg/). Moreover we investigated performance characteristics of HPGMG-FV and HPCG using the

profiler of the K computer.

Table 4 shows the weak scaling performance, the ratio of GFLOPS to the peak, and the SIMD

occupation rate, as well as the performance without SIMD for comparison. Table 5 shows

performance characteristics of HPCG optimized by RIKEN AICS software development team.

Table 4 Weak scaling performance of HPGMG on the K computer

Number of nodes 1 8 64 512 4096 32768 82944

DOF/s (SIMD) 3.99E+07 3.06E+08 2.40E+09 1.89E+10 1.50E+11 1.14E+12 2.83E+12

GFLOPS/Peak(%) 10.3107 9.8652 9.6761 9.5043 9.3916 8.8612 8.6821

SIMD rate(%) 61.5931 61.3401 61.9923 61.1174 61.0208 60.5174 60.425

DOF/s(NOSIMD) 3.88E+07 2.96E+08 2.33E+09 1.84E+10 1.46E+11 1.10E+12

DOF/s: Degree of Freedom per Second

Table 5 Weak scaling performance of HPCG on the K computer

Number of nodes 1 8 64 512 4096

GFLOPS/Peak(%) 4.37229 4.2616 4.1228 4.10028 4.10913

SIMD rate(%) 17.1305 17.0965 17.0283 17.0269 17.0357

The ratio of GFLOPS to the peak and the SIMD occupation rate in Table 4 are different from those

in Table 5 because smoothers of HPGMG and HPCG use different methods: chebychev polynomial

and Gauss-Seidel, respectively. Currently, for both benchmarks, SIMD instruction have no effect.

4. Schedule and Future Plan

One of important action for XcalableMP project in recent years is to disseminate our XcalableMP to

applications users. As in last year, we organized several schools and hands-on, workshop with

potential users also in this year. We will continue these promotion activities for the next year while

we will study more optimization technique of XcalableMP compiler to improve the performance. As

a research agenda especially for the K computer, we will contribute the scalability of large-scale

applications for the K computer.

The programming models for post-petascale will be investigated, including programming models

and runtime techniques to support manycore and accelerators such as GPU in large-scale parallel

system. XcalableACC is our solution for accelerator-based system, which is to be explored in the

RIKEN AICS ANNUAL REPORT FY2014

37

JST CREST project. As the post-K computer will be a large-scale multicore-based system, we will

investigate programming models for manycore-based parallel systems including dynamic tasking

and load balancing as well as advanced PGAS models for distributed memory systems.

5. Publication, Presentation and Deliverables

(1) Journal Papers

(2) Conference Papers

1. Swann Perarnau, Mitsuhisa Sato: Victim Selection and Distributed Work Stealing

Performance: A Case Study. IPDPS 2014: 659-668

2. Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Toshihiro Hanawa,

Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato. ``XcalableACC: Extension of XcalableMP

PGAS Language using OpenACC for Accelerator Clusters,'' Workshop on accelerator

programming using directives (WACCPD), New Orleans, LA, USA, Nov., 2014.

3. Takenori Shimosaka, Hitoshi Murai, Mitsuhisa Sato, "A Design of a Communication

Library between Multiple Sets of MPI Processes for MPMD," 2014 IEEE 17th International

Conference on Computational Science and Engineering (CSE), pp.1886,1893, 19-21 Dec.

2014

(3) Invited Talks

1. Hitoshi Murai, “XcalableACC: a PGAS Language for Accelerated Parallel Computers,”

JST/CREST International Symposium on Post Petascale System Software, Kobe, Japan,

2014-12-04

2. Mitsuhisa Sato, HPC research and development in Japan - Post T2K and post K project -,

EuroMPI/Aisa 2014.

(4) Posters and presentations

1. Miwako Tsuji, FP2C a multi-level programming paradigm, J-F Conference Extreme

Performance Computational Science, Apr. 2014

2. Miwako Tsuji,The extension of OmniRPC-MPI toward fault tolerant computation, 1st

workshop on middleware for fault tolerant, July. 2014 (in Japanese)

3. Takenori Shimosaka, Hitoshi Murai, Mitsuhisa Sato, "Efficient FFT implementation in

XcalableMP". IPSJ SIG Technical Report, 2014-HPC-145, Jul. 2014 (in Japanese)

4. Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Toshihiro Hanawa,

Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato. “XcalableACC : An extension of

XcalableMP for accelerator cluster system”, 2014-HPC-146(7),1-11, Oct. 2014 (in

Japanese).

Part I: Research Division

38

5. Masahiro Nakao, “Performance result and implementation of HPC Challenge Benchmarks

by using XcalableMP”, 2nd XcalableMP workshop, Oct. 2014 (in Japanese).

6. Miwako Tsuji and Mitsuhisa Sato, The extension of OmniRPC-MPI toward fault tolerant

computation in a multi SMPD environment, 2014-HPC-146, Oct. 2014 (in Japanese).

7. Miwako Tsuji, XMP/YML for a multi SPMD programming environment, 2nd XcalableMP

workshop, Oct. 2014 (in Japanese).

8. Masahiro Nakao, Hitoshi Murai, Hidetoshi Iwashita, Takenori Shimosaka, Akihiro Tabuchi,

Taisuke Boku and Mitsuhisa Sato. SC14 The 2014 HPC Challenge Awards BoF, New

Orleans, LA, USA, Nov., 2014.

9. Masahiro Nakao, “Evaluation of XcalableMP by using HPC Challenge Benchmarks”, PC

cluster workshop in Osaka, Feb. 2015 (in Japanese).

10. Miwako Tsuji and Mitsuhisa Sato, An investigation of workflow scheduling to realize fault

tolerant in a multi SPMD programming environment, 2015-HPC-148, Mar. 2015 (in

Japanese)

11. Miwako Tsuji, Fault Tolerance features of YML-XMP, Workshop on Language and

Programming Paradigm for Exascale Applications, Mar. 2015

12. Miwako Tsuji, Fault resilient in a multi SPMD programming environment FP2C, 2nd

workshop on middleware for fault tolerant, Mar. 2015 (in Japanese)

13. Masahiro Nakao, Hitoshi Murai, Hidetoshi Iwashita, Takenori Shimosaka, Mitsuhisa Sato,

“Evaluation and Implementation of HPC Challenge Benchmarks by using PGAS language

XcalableMP, ” 2015-HPC-148(21), Mar. 2015, (in Japanese).

14. Masahiro Nakao, Hitoshi Murai, Miwako Tsuji, Takenori Shimosaka, Ryuhei Harada,

Tetsuya Odajima, Akihiro Tabuchi, Keisuke Tsugane, Laurence Beaude
Mitsuru Ikei,

Taisuke Boku, Mitsuhisa Sato. “Development and evaluation of parallel language for cluster

system equipped with accelerators”. 6th cross-disciplinary symposium of computational

science – development, assimilation, and construction of new knowledge, Oct. 2014 (in

Japanese).

15. Miwako Tsuji and Mitsuhisa Sato, Programming model for post peta sacale computing, 6th

cross-disciplinary symposium of computational science - development, assimilation, and

construction of new knowledge, Oct. 2014 (in Japanese).

16. Hidetoshi Iwashita. Coarray Features Contained in Parallel Language XcalableMP. Short

Lecture at the booth of SC2014, November, 2014.

17. Hitoshi Murai, Masahiro Nakao, Takehiro Shimosaka, Akihiro Tabuchi, Taisuke Boku, and

Mitsuhisa Sato, “XcalableACC - a Directive-based Language Extension for Accelerated

Parallel Computing,” SC14, New Orleans, LA, USA, Nov. 2014.

RIKEN AICS ANNUAL REPORT FY2014

39

(5) Patents and Deliverables

� Omni XcalableMP compiler ver. 0.9.1 (registered as an AICS-supported software)

Part I: Research Division

	aics_annualreport_fy2014 26
	aics_annualreport_fy2014 27
	aics_annualreport_fy2014 28
	aics_annualreport_fy2014 29
	aics_annualreport_fy2014 30
	aics_annualreport_fy2014 31
	aics_annualreport_fy2014 32
	aics_annualreport_fy2014 33
	aics_annualreport_fy2014 34
	aics_annualreport_fy2014 35
	aics_annualreport_fy2014 36
	aics_annualreport_fy2014 37
	aics_annualreport_fy2014 38
	aics_annualreport_fy2014 39
	aics_annualreport_fy2014 40

