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14.	 HPC Programming Framework Research Team 
 

14.1. Team members 

Naoya Maruyama (Team Leader) 

Motohiko Matsuda (Research Scientist) 

Soichiro Suzuki (Technical Staff)  

Mohamed Wahib (Postdoctoral Researcher) 

Michel Müller (Technical Staff) 

 

14.2. Research Activities 

 We develop high performance, highly productive software stacks that aim to simplify development 

of highly optimized, fault-tolerant computational science applications on current and future 

supercomputers, notably the K computer. Our current focus of work includes large-scale data 

processing, heterogeneous computing, and fault tolerance. A major ongoing project in our group will 

deliver a MapReduce runtime that is highly optimized for the intra- and inter-node architectures of 

the K computer as well as its peta-scale hierarchical storage systems. Another major project focuses 

on performance and productivity in large-scale heterogeneous systems. Below is a brief summary of 

each project.  

 

1) Large-Scale Data Processing with KMR 

 MapReduce is a simple programming model for manipulating key-value pairs of data, originally 

presented by Dean and Ghemawat of Google. User-defined map and reduce functions are 

automatically executed in parallel by the runtime, which in turn enables transparent out-of-core data 

processing using multiple machines. Our KMR library, which is currently under active development, 

is similar to the original MapReduce design by Dean and Ghemawat, but its implementation is 

significantly extended for the node and storage architectures of the K computer. In particular, we 

exploit the two-level parallel storage systems so that costly data movement can be minimized. Data 

shuffling in MapReduce is also a subject of optimizations using the 6-D torus interconnect networks. 

2) Physis: An Implicitly Parallel Stencil Computation Framework 

 Physis is a framework for stencil computations that is designed for a variety of parallel computing 

systems with a particular focus on programmable GPUs. The primary goals are high productivity 

and high performance. Physis DSL is a small set of custom programming constructs, and allows for 

very concise and portable implementations of common stencil computations. A single Physis 

program runs on x86 CPUs, NVIDIA GPUs, and even clusters of them with no platform-specific 

code. This software consists of a DSL translator and runtime layer for each supported platform. The 

translator automatically generates platform-specific source code from Physis code, which is then 
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compiled by a platform-native compiler to generate final executable code. The runtime component is 

a thin software layer that performs application-independent common tasks, such as management of 

GPU devices and network connections. 

 

14.3. Research Results and Achievements 

 

14.3.1. Large-Scale Data Processing with KMR 

 Our major achievements with KMR consist of its basic design and the first prototype 

implementation. The design of KRM is similar to Hadoop, which is a popular MapReduce 

implementation in Java, but our implementation is completely different. We initially considered 

reusing much of the Hadoop software components, but because of limited support of the Java 

programming language on the K computer, we define our own MapReduce as a standard C library. 

This allows for simpler integration of existing optimized system software components. For example, 

data shuffling is one of the most challenging processing phase in MapReduce because of its high 

communication intensity, so exploiting the maximal performance of the underlying interconnect, the 

Tofu network, is highly important. Our KMR is designed in a way that such optimizations for 

large-scale supercomputers can be transparently integrated. 

14.3.1.1 Prototype Implementation and its Optimizations 

 The basic prototype implementation runs on both the K computer and standard cluster systems with 

several K-specific extensions and optimizations, including fast file reading and scalable data 

shuffling. The storage architecture of the K computer system consists of the global storage, which 

presents very large capacity (tens of peta bytes), and the local storage, which allows for higher 

bandwidth and lower latency than the global storage when I/O accesses by user applications exhibit 

spatial and temporal locality. The two storage systems are organized by the K’s data staging system, 

however, I/O read performance with the local storage still exhibits scalability problems even with a 

modest number of nodes. This is often the case with MapReduce, where a large number of Mapper 

processes simultaneously access input data. In our KMR, this operation is tuned for the K storage 

architecture by limiting the read concurrency to storage systems and exploiting the inter-node data 

communications. This optimization effectively introduces additional data staging to the application 

I/O data flow, where the first staging is performed between the global and local storage systems, and 

the second staging is between the local storage and compute nodes. A comparative performance 

study can be found in Fig 1, which shows much more scalable performance than a normal I/O 

method. Although the additional stage complicates the overall application structure when it is 

implemented manually, it is completely automated in our KMR library without any user 

intervention.  
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 Another major optimization is the scalable data shuffling. Since each map operation tends to 

generate relatively small data to be consumed by the reduce operation, our KMR uses a collective 

communication algorithm proposed by Bruck et al., which performs communications in log(p) stages, 

where p is the number of processes. As shown in Fig. 2, the performance with our own 

implementation exhibits much better performance for small messages, but it quickly increases as the 

data size grows. Since the selection of communication methods have large performance impact on 

data shuffling, we plan to develop an intelligent mechanism that automatically choose the most 

efficient one depending on message sizes.  

Fig. 2  Comparison of data shuffling time on 16384 nodes. The blue line 

shows the performance when using an all-to-all API of the Fujitsu MPI, 

while the red line shows the performance using the custom collective 

communication. 

Fig. 1  Read latency comparison on 192 nodes. The blue line shows the 

read time when all nodes simultaneously read the data, while the red line 

shows the performance when only a part of the nodes load the data from 

the local storage, which are then transferred to the rest of the nodes by 

using MPI over the Tofu network.  
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14.3.1.2 Case Study: Metagenome Sequence Analysis 

 As a case study, we applied KMR to metagenome sequence analysis. Sequence homology search is 

an important computational method in life science. Sequences similar to known amino acid 

sequences are searched using large-scale metagenome sequences. We have developed a 

MapReduce-based implementation using a homology search program called GHOSTX developed at 

the Tokyo Institute of Technology. We have demonstrated that a large number of compute nodes of 

the K computer can be used to achieve higher performance, even without parallel programming. 

  

14.3.2 Physis: An Implicitly Parallel Stencil Computation Framework 

 The main achievement in the Physis framework is optimized code generation to achieve both high 

productivity and high performance. The Physis DSL translator now has a set of translation passes 

that apply a variety of generic and stencil-specific optimizations, which achieves comparable 

performance as hand-tuned stencil code on a GPU. Furthermore, we developed a prototype 

auto-tuner for Physis, which experimentally finds the best configuration of optimization passes. 

Detailed evaluation and extended case studies are subject of future work. 

 Other major achievements include modeling and implementation of scalable fault-tolerance 

schemes, and evaluation of new accelerator programming models. In particular, we conducted an 

extensive performance study of OpenACC, which is a new directive-based accelerator programming 

interface. Our finding suggests that it can greatly simplify programming burden, however, the 

performance cost compared to tuned CUDA code still needs to be addressed. 

 

14.4. Schedule and Future Plan 

 Our major milestones in FY2013 are the fist release of KMR and further application case studies. 

The release will be freely available on the K computer with documentation and sample applications. 

We plan to apply the implementation to a wider variety of applications to demonstrate its 

effectiveness.   

 Our current implementation has several limitations, including lack of fault tolerance and load 

balancing, both of which are important challenges in large-scale machines such as K and subject of 

our long-term research goals. 

 

14.5. Publication, Presentation and Deliverables 

(1)  Journal Papers 

-None 

 

(2)  Conference Papers 

1.  Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, Ryoji Takaki, "CUDA vs 
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OpenACC: Performance Case Studies with Kernel Benchmarks and a Memory-Bound CFD 

Application," Proceedings of the 2013 IEEE/ACM International Symposium on Cluster, 

Cloud and Grid Computing (CCGrid 2013), Delft, the Netherlands, May 2013. 

2.  Mohamed Slim Bouguerra, Ana Gainaru, Leonardo Bautista Gomez, Franck Cappello, 

Satoshi Matsuoka, Naoya Maruyama, "Improving the Computing Efficiency of HPC Systems 

Using a Combination of Proactive and Preventive Checkpointing," Proceedings of the 27th 

IEEE International Parallel and Distributed Processing Symposium (IPDPS'13), Boston, 

USA, May 2013. 

3.  Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de 

Supinski, Satoshi Matsuoka, "Design and modeling of a non-blocking checkpointing 

system," Proceedings of the 2012 ACM/IEEE conference on Supercomputing (SC'12), pp. 

19:1--19:10, Salt Lake City, Utah, November 2012. 

4.  Kenjiro Taura, Jun Nakashima, Rio Yokota, Naoya Maruyama, "A Task Parallelism Meets 

Fast Multipole Methods," Workshop on Latest Advances in Scalable Algorithms for 

Large-Scale Systems (ScalA), Salt Lake City, Utah, November 2012. 

5.  Leonardo Bautista Gomez, Thomas Ropars, Naoya Maruyama, Franck Cappello, Satoshi 

Matsuoka, "Hierarchical Clustering Strategies for Fault Tolerance in Large Scale HPC 

Systems," Proceedings of the 2012 IEEE International Conference on Cluster Computng 

(CLUSTER), pp. 355--363, Beijing, China, September 2012. 

6.  Leonardo Bautista Gomez, Bogdan Nicolae, Naoya Maruyama, Franck Cappello, Satoshi 

Matsuoka, "Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications on 

IaaS Clouds," Proceedings of Euro-Par 2012, pp. 313--324, Rhodes Island, Greece, August 

2012. 

7.  Irina Demeshko, Naoya Maruyama, Hirofumi Tomita, Satoshi Matsuoka, "Multi-GPU 

Implementation of the NICAM Atmospheric Model," Proceedings of Euro-Par 2012 

Workshops (HeteroPar), pp. 175--184, Rhodes Island, Greece, August 2012. 

8.  Akihiro Nomura, Yutaka Ishikawa, Naoya Maruyama, Satoshi Matsuoka, "Design and 

Implementation of Portable and Efficient Non-blocking Collective Communication," 

Proceedings of the 2012 IEEE/ACM International Symposium on Cluster, Cloud and Grid 

Computing (CCGrid 2012), pp. 1--8, Ottawa, Canada, May 2012. 

 

(3)  Invited Talks 

1.  Naoya Maruyama, CUDA vs OpenACC: Evaluation of OpenACC Compilers with 

microbenchmarks and applications, Fourth symposium on Automatic Tuning Technology 

and its Application (4th ATTA), Invited talk, Dec 2012. 
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(4)  Posters and presentations 

1.  Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, "CUDA vs OpenACC: Performance 

Case Studies," GPU Technology Conference, Poster, San Jose, CA, USA, March 2013. 

2.  Keisuke Fukuda, Naoya Maruyama, Miquel Pericàs, Satoshi Matsuoka, "Fast Multipole 

Method on a Dynamic Scheduling Engine on Heterogeneous Environments," GPU 

Technology Conference, Poster, San Jose, CA, USA, March 2013. 

3.  Mohamed Wahib, Naoya Maruyama, "GPU-acceleration of a Weather Simulation 

Application: SCALE," GPU Technology Conference, Poster, San Jose, CA, USA, March 

2013. 

4.  Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, "Porting and Optimizing a 

Large-Scale CFD Application with CUDA and OpenACC," SIAM Conference on 

Computational Science and Engineering, MS162: Parallel Programming Models, Algorithms 

and Applications for Scalable Manycore Systems, Boston, USA, February 2013. 

5.  Naoya Maruyama, Satoshi Matsuoka, "Achieving High Performance and Portability in 

Stencil Computations," SIAM Conference on Computational Science and Engineering, 

MS162: Parallel Programming Models, Algorithms and Applications for Scalable Manycore 

Systems, Boston, USA, February 2013. 

6.  Miquel Pericas, Abdelhalim Amer, Keisuke Fukuda, Naoya Maruyama, Rio Yokota, Satoshi 

Matsuoka, "Towards a Dataflow FMM using the OmpSs Programming Model," IPSJ HPC, 

September 2012. 

7.  Motoshiko Matsuda, Naoya Maruyama, Implementing MapReduce on K-Computer, IPSJ 

SIG Notes HPC, July 2012. 

8.  Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, Evaluation of Portability for a 

Real-world CFD Application with CUDA and OpenACC, IPSJ SIG Notes HPC, July 2012. 

9.  Kento Sato, Adam Mood, Kathryn Mohror, Todd Gamblin, Bronis R. De Supinski, Naoya 

Maruyama, Satoshi Matsuoka, "Design and Modeling of an Asynchronous Checkpointing 

System," IPSJ SIG-Notes HPC, July 2012. 

10.  Naoya Maruyama, "Physis: An Implicitly Parallel Framework for Stencil Computations," 

GPU Technology Confernence (GTC'12), San Jose, USA, May 2012. 

 

(5)  Patents and Deliverables 

-None 
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