HPC Usability Research Team

1. Team Members

Toshiyuki Maeda (Team Leader)

Masatomo Hashimoto (Research Scientist)

Tatsuya Abe (Research Scientist)

Petr Bryzgalov (Research Scientist)

Itaru Kitayama (Technical Staff I)

Yves Caniou (Visiting Scientist, University of Tokyo)
Yoshiki Nishikawa (Visiting Scientist, University of Tokyo)
Sachiko Kikumoto (Assistant)

2. Research Activities

The mission of the HPC Usability Research Team is to research and develop a framework and its
theories/technologies for liberating large-scale HPC (high-performance computing) to end-users

and developers. In order to achieve the goal, we conduct research in the following three fields:

1. Computing portal

In a conventional HPC usage scenario, users live in a closed world. That is, users have to play
roles of software developers, service providers, data suppliers, and end users. Therefore, a
very limited number of skilled HPC elites can enjoy the power of HPC, while the general
public sometimes gives a suspicious look to the benefit of HPC. In order to address the
problem, we are designing and implementing a computing portal framework that lowers
the threshold for using, providing, and aggregating computing/data services on HPC

systems, and liberates the power of HPC to the public.

2. Virtualization

Virtualization is a technology for realizing virtual computers on real (physical) computers.
One big problem of the above mentioned computer portal that can be used by wide range
of users simultaneously is how to ensure safety, security, and fairness among multiple users
and computing/data service providers. In order to solve the problem, we plan to utilize the
virtualization technology because virtual computers are isolated from each other, thus it is
easier to ensure safety and security. Moreover, resource allocation can be more flexible
than the conventional job scheduling because resource can be allocated in a find-grained
and dynamic way. We also study lightweight virtualization techniques for realizing virtual

large-scale HPC for test, debug, and verification of computing/data services.

55



3. Program analysis/verification

Program analysis/verification is a technology that tries to prove certain properties of
programs by analyzing them. By utilizing software verification techniques, we can prove
that a program does not contain a certain kind of bug. For example, the byte-code
verification of Java VM ensures memory safety of programs. That is, programs that pass the
verification never perform illegal memory operations at runtime. Another big problem of
the above mentioned computing portal framework is that one computing service can be
consists of multiple computing services that are provided by different providers. Therefore,
if a bug or malicious attack code is contained in one of the computing services, it may affect
the whole computing service (or the entire portal system). In order to address the problem,
we plan to research and develop software verification technologies for large-scale parallel
programs. In addition, we also plan to research and develop a performance analysis and

tuning technology based on source code modification history.

3. Research Results and Achievements

3.1. Design and Implementation of a Computing Portal Framework for HPC

Based on the prototype design and implementation of a computing portal framework in FY2012,
we actually developed a prototype user-interface for the computing portal framework. More
specifically, we implemented a web interface that runs on users’ web browsers and directly
communicates with the backend system of the computing portal under the protocol (also
designed in FY2012). With the web interface, software developers can easily publish their
applications installed in HPC systems. For example, developers can specify the paths to the
executables of their applications, parameters of their applications, and so on, via the web
interface. In addition, developers can manage user accounts that are allowed to execute their
applications. With the same web interface, users are also able to launch jobs. For example, users
can select an application published in the computing portal, make an application to developers
for using it, launch jobs by executing the application with arbitrary parameters, and manage the

launched/exited jobs.

One feature of our computing portal framework is that the communication protocol between
the framework and its clients is based on the popular web-based application frameworks (e.g.,
WebSockets, JSON, etc.). Therefore, developers can develop their own custom interfaces for
their applications if the web interface of our framework does not satisfy their requirements.
Another distinguishing feature of our framework is that users can use portable devices (e.g.,
smartphones, mobile tablets, and so on) because our web interface is carefully designed so that

it can be viewed and accessed with any screen size.

56



One big limitation of our current computing portal framework is that security mechanisms are
still not introduced. That is, (maybe malicious) users and/or applications can easily access the
other users/applications data. This problem has been already recognized in FY2012, but we have
not addressed the problem directly in our prototype framework. Instead, in FY2013, we studied
so-called container (or sandbox) mechanisms, that enable users to isolate their computing
environments from other users. As a first step, we investigated a lightweight container system
called Docker (https://www.docker.io/), and implemented a utility tool which is able to give

every user an isolated computing environment in the form of a container of Docker.

In FY2014, we will continue to develop our computing portal framework. Especially, we plan to
integrate some kind of security mechanism (e.g., Docker, if possible) to our framework. We also
plan to integrate our framework to the real K computer, but we recognize that it is not so easy

from the viewpoint of the operation policy of the K computer.

3.2. Virtualization Techniques

1. Lightweight virtualization for testing/debugging parallel programs

Writing a program for massively parallel HPC environments (e.g., K computer) is a hard task.
This is mainly because parallel programs inherently have non-determinacy, thus, it is
sometimes extremely difficult to debug a bug in parallel programs, because the bug may
not be easily reproducible. In addition to the hard-to-debug problem, there is also a
performance problem in writing massively parallel programs. It is not uncommon that, even
if a program scales on a PC cluster system whose size is small-to-moderate, the
performance of the program severely degrades on massively parallel HPC systems. This is
because communication costs between computing nodes may largely vary and sometimes

incurs unacceptable heavy overheads.

In order to address the problem, we have been developing a lightweight network
virtualization system for testing/debugging programs for massively parallel programs
without actually using real massively parallel HPC environments. With our system, users can

run several hundreds of virtual computing nodes on a single physical computing node.

One key idea of our lightweight virtualization system is to utilize the library-hooking
approach, that is, intercept function calls for network related operations from user
programs, and modify parameters and/or return values of the function calls in order to

“trick” the user programs as if they are executed in isolated virtual computing nodes, even

57



though they run on a single computing node. One benefit of the library-hooking approach is
that it introduces little overheads to program execution (compared to other virtualization
techniques, e.g., CPU level virtualization, OS level virtualization, and so on) because it can

be achieved by user-level operations only and requires no interaction with OS.

Another key idea of our lightweight virtualization system is reduction of the costs of
network routing management by statically distributing routing information as much as
possible. The routing information is necessary to correctly route network packets from one
virtual node to another where they may reside in different physical computing node.
Therefore, if the routing information is maintained by one single physical node, all the
physical nodes have to communicate with the manager node each time they need to route
packets from one virtual node to another, thus the node results in a performance

bottleneck.

In order to address the problem, our lightweight virtualization system statically distributes
the routing information as much as possible before executing user programs on virtual
computing nodes. In ordinary HPC environments, the network topology of each job
execution is fixed during the job execution. Therefore, our static distribution of the routing
information should work in most cases. Even if some jobs require dynamic node allocation,
our system tries to minimize the cost of updating the routing information by carefully
allocating virtual network port. More concretely, we first divide the range of the available
network ports into disjoint ranges, and allocate the divided range to each physical

computing node.

Based on the above approaches, in FY2013, we have implemented a prototype of our
lightweight virtualization system. Although there still remain bugs, it successfully runs on
conventional PC clusters and Fujitsu’s FX10. More specifically, several MPI applications
(including some of the NAS parallel benchmarks (NPB)) ran on our prototype virtualization
system. In addition, we also ran Scalasca (a network performance profiling tool) on our

system.

In FY2014, we will continue the development of our system and plan to study an approach
of tricking performance profiling tools so that they feel as if they run on real computing
nodes and emit profiling data which represents characteristics of real massively-parallel

computing environments.

58



2. CPU emulators for SPARC 64 VIIIfx

One big problem of the current K computer from the viewpoint of usability is that it
adopted SPARC architecture (more precisely, SPARC 64 VIIIfx architecture), which is rarely
used in ordinary PCs, servers, and HPC (they are almost dominated by Intel architectures).
Therefore, in order to utilize the K computer, ordinary users have to prepare source code of
applications that they want to run, cross-compile the source code on the front-end node of
the K computer because binary executables for Intel architecture do not run on SPARC
architecture directly. To make things worse, cross-compilation of applications sometimes
produce malfunctioning executables partly because the applications do not consider CPU
architectures but Intel architecture. Therefore, users have to test the cross-compiled

executables on the K computer whether they work expectedly or not.

In order to address the problem, we are studying on CPU emulators. A CPU emulator is a
program which emulates the effects of instructions of a CPU architecture. More specifically,
we are working on two kinds of CPU emulators. One is a CPU emulator which emulates
SPARC 64 VIlIfx on Intel architecture, and another is a CPU emulator which emulates Intel
architecture on SPARC 64 VIIIfx. With the former SPARC 64 VIIIfx on Intel emulator, users
are able to test the cross-compiled executables for the K computer on their own
development environments (PC, clusters, and so on). With the latter Intel on SPARC 64
VIlIfx emulator, users are able to run their binary executables for Intel architecture on the K

computer without cross-compiling their source code.

More concretely, we are developing the two emulators by extending the existing CPU
emulator QEMU. For the SPARC 64 VIIIfx on Intel emulator, we extended QEMU to support
the features specific to the SPARC 64 VIIfx architecture (e.g., extended general
purpose/floating-pointer registers, SIMD extension, and so on). For the Intel on SPARC 64
VIlIfx, we fixed bugs of QEMU that prevents normal operations of QEMU on the K

computer.

In FY2013, we continued development of the SPARC 64 VIIIfx on Intel emulator from FY2012,
but we could not complete the development (there still remain several severe bugs that
prevent many applications from working). On the other hand, the prototype
implementation of the Intel on SPARC VIlIfx emulator has been completed and several
applications successfully run on the emulator. However, its performance is not satisfactory

because its execution time is 10 to 20 times slower.

In FY2014, we will continue the development of the two CPU emulators. For the SPARC 64

59



VIIIfx on Intel emulator, we aim to implement a more stable system which is usable for
practical testing of applications that should be executed on the K computer. For the Intel on

SPARC 64 VIIIfx emulator, we will improve its execution performance.

3.3. Program verification and analysis

1. Memory Consistency Model-Aware Program Verification

A memory consistency model is a formal model which specifies the behavior of the shared
memory which is simultaneously accessed by multiple threads and/or processes. The recent
multicore CPU architectures and shared memory multithread/distributed programming
languages (e.g., Java, C++, UPC, Coarray Fortran, and so on) adopt relaxed memory
consistency models. Under the relaxed memory consistency models, the shared memory
sometimes behaves very differently from non-relaxed, sequential memory consistency
models. For example, under some relaxed memory consistency models, the effects of the
memory operations (e.g., A>B) performed sequentially by one thread may be observed in
a different order (e.g., B>A) by the other threads. In addition, the threads may not agree
on the observation orders of the effects of the memory operations (e.g., one thread
observes A->B, while the other observes B->A, and so on). The reason why the recent
CPUs and shared memory languages adopt relaxed memory consistency models is that a
large number of threads and/or nodes share a single address memory space, thus enforcing
non-relaxed, sequential memory consistency incurs huge synchronization overheads

among the threads/nodes.

From the viewpoint of program verification, there are two problems in handling relaxed
memory consistency models. First problem is that the conventional program verification
approaches do not consider relaxed memory consistency models. Thus, they cannot be
applied to relaxed memory consistency models because they may yield false results.
Second problem is that there exist various kinds of relaxed memory consistency models
and each CPU architecture/each programming language adopts different memory
consistency models from each other. Therefore, it is tedious to define and implement a
program verification approach for each CPU and programming languages of relaxed

memory consistency models.

To address the problem, in FY2013, we studied three approaches. First approach is to
define a new formal system which is able to represent various relaxed memory consistency
models. More specifically, we define a very relaxed memory consistency model as a base

model. On top of the base model, we defined various memory consistency models as

60



additional axioms. With our formal system, we are able to define a broad range of memory
consistency models from CPUs to shared-memory programming languages (e.g, Intel64,
Itanium, UPC, Coarray Fortran, and so on), in the single formal system. With our formal
system, we were able to proof the correctness of Dekker’s mutual exclusion algorithm

under the memory consistency model of Itanium.

Second approach is to design and implement a model checker which supports various
relaxed memory consistency models based on the formal model of the first approach.
More specifically, we define a non-deterministic state transition system with execution
traces where each execution trace represents a possible permutation of instruction
executions. Roughly speaking, given a target program, our model checker explores all the
reachable states in the non-deterministic transition system of the target problem for all the
possible execution traces (that is, permutations of instructions). In our model checker,
memory consistency models can be defined as constraint rules on execution traces. For
example, the sequential consistency model can be defined as a constraint which allows no
permutation on the execution traces. With our model checker, we were able to verify the
small examples programs of the specification manuals of the memory consistency models
of Itanium and UPC. In addition, we were also able to formally discuss comparison of the

two memory consistency models (Itanium and UPC).

Third approach is to define a new Hoare-style logic for a shared-memory parallel process
calculus under a relaxed memory consistency model. More specifically, we define an
operational semantics for the process calculus. Then define a sound (and
relatively-complete) logic to the semantics. There are two key ideas in our Hoare-style logic.
First idea is that a program is translated into a dependence graph among instructions in the
program, and the operational semantics and the logic are defined in terms of the
dependence graph. One advantage of handling dependence graphs is that while loops,
branch statements, and parallel composition of processes can be handled in a uniform way.
In addition, another advantage is that multiple memory consistency models can be handled
by adopting different translation approaches for each memory consistency model. Second
idea is that we introduce auxiliary variables in the operational semantics that temporarily
buffer the effects of memory operations. Based on our Hoare-style logic, we also

implemented a prototype semi-automatic theorem prover.

2. Evidence-Based Performance Tuning
In order to fully utilize the power of HPC systems, it is necessary to optimize and tune the

performance of applications. However, performance tuning is a troublesome task because,

61



even if performance bottlenecks/hotspots can be detected by performance profiling, it is
not apparent how to rewrite programs to remove the bottlenecks/hotspots. In addition,
generally speaking, modifying correctly working programs is reluctant from the viewpoint
of developers. Thus, performance tuning requires experienced craftsmanship, and relies on

intuition and experience.

In order to address the problem, we are working on an idea of evidence-based
performance tuning. More specifically, we store the results of performance profiling in a
database where the results are associated with source code modification history. With the
database, developers are able to know, for example, what kinds of optimization were
applied in the past, what kinds of optimization are effective for improving a certain
performance profiling parameter, and so on. In FY2013, we conducted a preliminary
experiment to implement the database and obtained promising results. However, because
the experiment was still very preliminary with very little number of application programs,
we do not have full confidence, so far. In FY2014, we plan to conduct the more realistic
experiment with larger number of applications with more realistic source code

modification histories.

4. Schedule and Future Plan

In FY 2014, we will improve the prototype implementation of our computing portal. As
mentioned above, the current implementation does not have rigid security mechanism. In order
to address the security problem, we will modify and/or extend the current APIs/protocols of our
computing portal and apply them to the implementation. In addition, we will also consider
integrating a security sandbox system (e.g., Docker) to our implementation. Besides the
security problem, we also plan to integrate our framework to the real K computer, if our

security and political policies allow.

Regarding the virtualization technologies, we will continue to implement the lightweight
network virtualization framework for testing/debugging parallel programs. Especially, we will
design and implement a mechanism which tricks performance profiling tools so that they feel as
if they run on real computing nodes and emit profiling data which represents characteristics of
real massively parallel computing environments. In addition, we will also continue to implement

the SPARC 64 VIIIfx on Intel emulator and Intel on SPARC 64 VIIIfx emulators.

Regarding the program verification and analysis, we will conduct more experiments with our
three approaches for program verification under relaxed memory consistency models to

evaluate their effectiveness and practicality. In addition, we will also consider designing and

62



implementing a more simple and concise logic/model based on the experiences of the three
approaches. Regarding the evidence-based performance tuning, we plan to conduct the more
realistic experiment with larger number of applications with more realistic source code

modification histories with the prototype implementation developed in FY2013.

In addition to the above mentioned individual research topics, we plan to start integrating the
research results of the virtualization technologies and the software verification into the

computing portal somewhere from the second half of FY 2014 to the first half of FY 2015.

5. Publication, Presentation and Deliverables

(1) Conference Papers

[1] Abe, T. and Maeda, T., “Model Checking Stencil Computations Written in a Partitioned Global
Address Space Language”, In Proceedings of the 18th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS 2013).

[2] Abe, T. and Maeda, T., “Model Checking with User-Definable Memory Consistency Models”,
In Proceedings of the 6th Conference on Partitioned Global Address Space Programming
Models (PGAS 2013), Short paper, online.

[3] Abe, T. and Maeda, T., “A General Model Checking Framework for Various Memory
Consistency Models”, In Proceedings of the 19th International Workshop on High-Level

Parallel Programming Models and Supportive Environments (HIPS 2014). To appear.

(2) Presentations
[4] Kitayama, I., “A User’s Experience with FEFS”, In Japan LUG (Lustre User Group) 2013.
[5] Maeda, T., “Brief Introduction of HPC Usability Research Team”, In the 4th AICS International

Symposium, 2013.

(3) Software

[6] K-scope with SSHConnect (joint work with Software Development team of AICS):
URL: http://www.kcomputer.jp/ungi/soft/kscope/

[7] Python binding of EigenExa (joint work with Dr. Shimazaki of Computational Molecular
Science Research Team of AICS. Partially feedbacked to the original developers of
Large-scale Parallel Numerical Computing Technology Research Team)

[8] DockerlaaStool: Tools for creating a simple Infrastructure-as-a-Service system with Docker
URL: https://github.com/pyotr777/dockerlaaSTools

[9] QEMU on the K computer: CPU emulator for executing Intel binary executables on the K
computer (implemented by extending the original QEMU emulator. In preparation for

publication.)

63



[10] ABySS on the K computer: Parallel, paired-end sequence assembler (implemented by
modifying the original ABySS so that it scales on the K computer. In preparation for

publication.)

64



	aics_annualreport_fy2013 56
	aics_annualreport_fy2013 57
	aics_annualreport_fy2013 58
	aics_annualreport_fy2013 59
	aics_annualreport_fy2013 60
	aics_annualreport_fy2013 61
	aics_annualreport_fy2013 62
	aics_annualreport_fy2013 63
	aics_annualreport_fy2013 64
	aics_annualreport_fy2013 65

