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2. Research Activities 

The mission of the HPC Usability Research Team is to research and develop a framework and its 

theories/technologies for liberating large-scale HPC (high-performance computing) to end-users and 

developers. In order to achieve the goal, we conduct research in the following three fields:  

 

1. Computing portal 

In a conventional HPC usage scenario, users live in a closed world. That is, users have to play 

roles of software developers, service providers, data suppliers, and end users. Therefore, a very 

limited number of skilled HPC elites can enjoy the power of HPC, while the general public 

sometimes gives a suspicious look to the benefit of HPC. In order to address the problem, we are 

designing and implementing a computing portal framework that lowers the threshold for using, 

providing, and aggregating computing/data services on HPC systems, and liberates the power of 

HPC to the public. 

 

2. Virtualization 

Virtualization is a technology for realizing virtual computers on real (physical) computers. One 

big problem of the above mentioned computer portal that can be used by wide range of users 

simultaneously is how to ensure safety, security, and fairness among multiple users and 

computing/data service providers. In order to solve the problem, we plan to utilize the 

virtualization technology because virtual computers are isolated from each other, thus it is easier 

to ensure safety and security. Moreover, resource allocation can be more flexible than the 

conventional job scheduling because resource can be allocated in a find-grained and dynamic 
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way. We also study lightweight virtualization techniques for realizing virtual large-scale HPC 

for test, debug, and verification of computing/data services. 

 

3. Program analysis/verification 

Program analysis/verification is a technology that tries to prove certain properties of programs 

by analyzing them. By utilizing software verification techniques, we can prove that a program 

does not contain a certain kind of bug. For example, the byte-code verification of Java VM 

ensures memory safety of programs. That is, programs that pass the verification never perform 

illegal memory operations at runtime. Another big problem of the above mentioned computing 

portal framework is that one computing service can be consists of multiple computing services 

that are provided by different providers. Therefore, if a bug or malicious attack code is 

contained in one of the computing services, it may affect the whole computing service (or the 

entire portal system). In order to address the problem, we plan to research and develop software 

verification technologies for large-scale parallel programs. In addition, we also plan to research 

and develop a performance analysis and tuning technology based on source code modification 

history. 

 

3. Research Results and Achievements 

3.1. Design and Implementation of a Computing Portal Framework for HPC 

In FY2013, we developed a web-based user-interface for the computing portal framework developed 

in FY2012-FY2013. With the web interface, software developers can easily publish their 

applications installed in HPC systems, and users are able to launch the published applications. The 

web-interface is designed to be flexible in the sense that it can be accessed by not only web browsers 

run on PCs, but also modern smartphones. Thus, users can launch and monitor their jobs through 

their smartphones, anywhere, anytime. 

In FY2014, we enhanced the computing portal framework with container (virtual execution 

environment) technologies. In the original computing portal framework, software developers are 

able to publish their applications installed in HPC systems, but the installation of the applications 

have to be performed in a conventional manner. That is, the software developers have to copy and 

install their binary executables by themselves. In addition, they may have to install additional 

software/libraries that are required by their own programs, but it is sometimes difficult and/or even 

impossible because the administrators of the HPC systems usually do not allow the software 

developers to install such the software/libraries arbitrary. Another approach of installing software is 

to copy and build the binary executables from their source code, but it is sometimes troublesome and 

messy. 

To address the abovementioned problem of installing software in HPC systems, we utilize container 
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(virtual execution environment) technologies. A container is a kind of lightweight virtual execution 

environment that is isolated from its host environment and other containers. In other words, in a 

container, users are able to freely modify the environment of the container, that is, system 

administrators can let the users install any software they need without compromising security/safety 

of their systems, in theory. 

More specifically, we utilized and integrated Docker (http://docker.io), a container system built on 

the Linux kernel, with our computing portal framework. In the computing portal framework 

extended with Docker, software developers are able to download a Docker container image that 

contains a basic execution environment of a HPC system, freely modify the image (i.e., install 

software/libraries) in order to prepare the execution environment required to run their applications, 

install their applications, and upload back the image to the computing portal framework. When 

publishing the applications, the software developers are able to specify the uploaded container 

images to be instantiated when the applications are launched as jobs. Moreover, the software 

developers are able to publish not only their applications, but also their container images so that 

other software developers can use the images. 

From viewpoint of deploying the computing portal framework, there remain three problems. First 

problem is that the current implementation does not provide an accounting mechanism. That is, there 

is no way to know which application is executed by whom or who is to be charged for consumed 

computing resources. This will be even more complex when multiple applications (published by 

multiple software developers) and multiple users are involved. Second problem is that the container 

system of Docker cannot run on the computing nodes of the K computer (or FX10) because their 

Linux kernel version is too old to execute Docker properly (while its login nodes are new enough). 

The problem can be solved by upgrading the Linux kernel, but it is not easy because the Linux 

kernel running on the K computer is extensively modified in order to address problems caused in 

massively parallel computing environments. Third problem is the operation policy of the K computer. 

The primary purpose of the K computer is to perform scientific computation, thus its operation 

policy focuses on executing such the computation efficiently and reliably. Therefore, it is hard to 

directly integrate our computing portal framework with the K computer. Instead, we are currently 

using FX10 of AICS Research Division for experiments. 

In FY2015, we will continue to develop our computing portal framework. Especially, we plan to 

implement some kind of accounting mechanisms to our framework. We also plan to upgrade the 

Linux kernel of the computing nodes (of our FX10 and/or the K computer), but we recognize that it 

is extremely difficult. 

 

3.2. Virtualization Techniques 

1. Lightweight virtualization for testing/debugging parallel programs 
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Writing a program which makes full use of massively parallel HPC environments (e.g., the K 

computer) is extremely difficult because debugging parallel programs is a hard task due to inherent 

non-determinacy of parallel programs and hard-to-reproduce bugs. Moreover, writing massively 

parallel programs also tend to suffer from a performance problem. For example, even if a program 

scales well on a PC cluster system whose size is small-to-moderate, the program may not scale on 

massively parallel HPC systems. Even worse, the performance may severely degrade and will be 

worse than on a small PC cluster system or even a single PC. Actually, this is not uncommon and the 

reason is that communication costs between computing nodes may largely vary and sometimes 

incurs unacceptable heavy overheads.  

In order to address the abovementioned problem, we have been developing a lightweight network 

virtualization system for testing/debugging programs for massively parallel programs without 

actually using real massively parallel HPC environments. With our system, users can run several 

hundreds of virtual computing nodes on a single physical computing node. 

There are two key ideas in our system: library-hooking and decentralized management of routing 

information. Library-hooking is a kind of virtualization technology which intercepts function calls 

for system operations, and modify their parameters and/or return values in order to trick the 

programs as if they run on in isolated multiple computing nodes, even though they run on a single 

physical computing node. More specifically, in our lightweight virtualization system, we mainly 

hook network related operations (and some file I/O) from user programs. One benefit of the 

library-hooking approach is that it introduces little overheads to program execution (compared to 

other virtualization techniques, e.g., CPU level virtualization, OS level virtualization, and so on) 

because it can be achieved by user-level operations and requires no interaction with OS. 

When implementing a lightweight network virtualization system, decentralized management of 

routing information is necessary in order to avoid maintaining routing information in a single or a 

few physical nodes. Our lightweight virtualization system has to manage routing information by 

itself because it virtualizes network environments. If the routing information is managed in a single 

physical node, all the other physical nodes have to ask the single node in order to correctly route 

network packets from one virtual node to another. Therefore, when the numbers of virtual nodes and 

physical nodes are huge, the single node will become a performance bottleneck and severely degrade 

the overall performance of our lightweight virtualization system.  

More specifically, our lightweight virtualization system statically distributes the information which 

virtual node runs on which physical node before executing user programs on virtual computing 

nodes. In ordinary HPC systems, it is uncommon that computing nodes are directly allocated during 

job execution. In addition, in order to virtualize port numbers, our lightweight virtualization system 

let physical nodes exchange the information about virtualized port numbers when one virtual node 

on one physical node communicates with another virtual node on another physical node. In our 
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previous implementation of FY2013, we also distributed the information of the virtual port numbers 

statically before executing user programs by dividing the range of the available physical ports into 

disjoint ranges and allocating the divided range to each physical node. However, we recognized that 

this approach does not scale when the number of the physical nodes become huge. Thus, we applied 

the dynamic exchange approach as described above. 

Based on the abovementioned approaches, in FY2014, we have implemented a prototype of our 

lightweight virtualization system. It successfully runs on conventional PC clusters and Fujitsu’s 

FX10. On the K computer, it successfully runs 20000 virtual computing nodes on 1000 physical 

computing nodes. In theory, it must be able to run more virtual computing nodes on a single physical 

computing node and run on more physical computing nodes, but this is not possible so far because 

currently the K computer restricts the number of user processes on a physical computing node and 

the operating system kernel of the computing nodes of the K computer has a serious fault which is 

related to memory management. 

In FY2015, we will continue the development of our system and evaluate it with more large numbers 

of virtual computing nodes and physical computing nodes. In addition, we plan to study an approach 

of tricking performance profiling tools so that they feel as if they run on real computing nodes and 

emit profiling data which represents characteristics of real massively-parallel computing 

environments. 

2. Container technologies for HPC 

As slightly described in Sec. 3.1, container technologies are a kind of lightweight virtualization 

technology. Although they tend to be less efficient than the library-hooking approach described in 

the previous section (Sec. 3.2.1), they provide more complete image of virtual execution 

environments. For example, Docker (http://docker.io) provides multiple isolated virtual Linux 

execution environments on a host Linux system. Because Docker is built and depends on several 

functionalities provided by the Linux kernel, it is not able to host non-Linux virtual execution 

environments unlike full-virtualization technologies (e.g., KVM, QEMU, and so on), but far more 

efficient than them. 

One big problem of the current typical HPC systems compared to today’s so-called cloud services 

from viewpoint of software developers/publishers is that the HPC systems are less flexible and/or 

responsive. For example, they are not allowed to install and/or modify system/middleware programs 

in the HPC systems, while the cloud services provide fully-virtualized environments to them and 

they can freely modify the environments. In addition, the typical HPC systems are operated with 

conventional batch schedulers and it sometimes takes time to launch jobs, while the cloud services 

launch virtual execution environments instantly when requested by them. 

The reason why the conventional HPC systems are less flexible and/or responsive is that their 

primary purpose is to compute scientific applications efficiently as much as possible, thus the 
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overheads that may be introduced by utilizing full virtualization technologies are unacceptable. 

On the other hand, as described above, the recent advance in the container technologies achieves 

very small overheads yet provides sufficiently flexible virtual execution environments, thus we 

predict that the container technologies will play important role in forthcoming HPC usage. 

Based on the abovementioned perspective, we are studying the possibilities of applying the container 

technologies (especially, Docker) to the HPC systems. More specifically, in FY2014, we continued 

to develop dockerIaaSTools (https://github.com/pyotr777/dockerIaaSTools), which enables us to 

easily setup isolated multiple virtual execution environments to which users are able to login via 

SSH. In addition, as an application of dockerIaaSTools, we extended K-scope 

(http://www.kcomputer.jp/ungi/soft/kscope/), which is a Fortran source code analysis tool developed 

by Software Development team of AICS, so that users are able to use the backend of K-scope that is 

installed in the remote server seamlessly as if it is installed in their local computers. Moreover, we 

also studying the internals of Docker and developed extensions that enable us to conserve storage 

space for storing/managing imaged of Docker containers (e.g., 

https://github.com/pyotr777/docker-registry-driver-git). Furthermore, as described above (in Sec. 

3.1), we integrated Docker with our computing portal framework. 

In FY2015, we will continue to study the possibility of applying the container technologies to the 

HPC systems. For example, we plan to study the possibility of running Docker on the computing 

nodes of the K computer (or FX10 of AICS Research Division), though it is difficult because the 

Linux kernel running on the computing nodes are too old to run Docker. We have to know (and 

decide) which is more practical, modify the Linux kernel of the K computer, or target the 

forthcoming next-generation super computer. 

 

3.3. Program verification and analysis 

1. Memory Consistency Model-Aware Program Verification 

A memory consistency model is a formal model that specifies the behavior of the memory that is 

shared and simultaneously accessed by multiple threads and/or processes. Under the recent multicore 

CPU architectures and shared memory multithread/distributed programming languages (e.g., Java, 

C++, UPC, Coarray Fortran, and so on), the shared memory sometimes behaves in an unexpected 

way because they adopt relaxed memory consistency models. For example, under some relaxed 

memory consistency models, the effects of the memory operations performed sequentially by one 

thread (e.g., A�B) may be observed in a different order by the other threads (e.g., B�A). Moreover, 

the threads may not agree on the orders of the effects of the memory operations (e.g., one thread 

observes A�B, while the other observes B�A, and so on) they observe. The reason why the recent 

CPUs and shared memory languages adopt relaxed memory consistency models is that enforcing 

sequential (non-relaxed) memory consistency incurs huge synchronization overheads among a large 
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number of the threads/nodes that share a single address memory space. 

From the viewpoint of program verification, there are two problems in handling relaxed memory 

consistency models. First problem is that the conventional program verification does not consider 

relaxed memory consistency models. Thus, they cannot be applied directly to relaxed memory 

consistency models because they may yield false results. Second problem is that there exist various 

kinds of relaxed memory consistency models and each CPU architecture/each programming 

language adopts different memory consistency models. Thus, it is very tedious to define and 

implement program verification for each CPU and programming languages of relaxed memory 

consistency models. 

To address these problems, we have been studying three approaches. First approach is to define a 

new formal system which is able to represent various relaxed memory consistency models. More 

specifically, we define a very relaxed memory consistency model as a base model. Then, we define 

various memory consistency models as additional axioms on the base model. In fact, we are able to 

define a broad range of memory consistency models from CPUs to shared-memory programming 

languages (e.g, Intel64, Itanium, UPC, Coarray Fortran, and so on), in the single formal system. 

Second approach is to design and implement a model checker that supports various relaxed memory 

consistency models based on the formal model of the abovementioned first approach. More 

specifically, we define a non-deterministic state transition system with execution traces where each 

execution trace represents a possible permutation of instruction executions. Roughly speaking, given 

a target program, our model checker explores all the reachable states in the non-deterministic 

transition system of the target problem for all the possible execution traces (that is, permutations of 

instructions). In our model checker, memory consistency models can be defined as constraint rules 

on execution traces. For example, the sequential consistency model can be defined as a constraint 

which allows no permutation on the execution traces. With our model checker, we were able to 

verify the examples programs of the specification manuals of the memory consistency models of 

Itanium and UPC. 

Third approach is to define a new Hoare-style logic for a shared-memory parallel process calculus 

under a relaxed memory consistency model. More specifically, we define an operational semantics 

for the process calculus, and then define a sound (and relatively-complete) logic to the semantics. 

There are two key ideas in our Hoare-style logic. First idea is that a program is translated into a 

dependence graph among instructions in the program, and the operational semantics and the logic 

are defined in terms of the dependence graph. One advantage of handling dependence graphs is that 

while loops, branch statements, and parallel composition of processes can be handled in a uniform 

way. In addition, another advantage is that multiple memory consistency models can be handled by 

adopting different translation approaches for each memory consistency model. Second idea is that 

we introduce auxiliary variables in the operational semantics that temporarily buffer the effects of 
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memory operations.  

In FY2014, we optimized the implementation of our model checker (McSPIN) so that it can be 

applied to larger programs than the original implementation. More specifically, we introduced 4 

optimization approaches: enhancing guard conditions, disabling speculation when unnecessary, 

prefetching instructions if possible, and removing the global time counter. In addition, in FY2014, 

we also enhanced our Hoare-style logic with a conventional rely-guarantee style rule in order to 

make the logic more compositional. More specifically, we added a new rely-guarantee style parallel 

composition rule because the original parallel composition rule is not compositional, that is, it 

requires us to infer all possible interleavings of parallel processes. 

2. Evidence-Based Performance Tuning 

To get the maximum of HPC systems, it is inevitable to optimize the performance of applications. 

However, performance tuning for massively parallel HPC systems is very difficult because it is not 

apparent how to improve programs except for highly skilled programmers. In addition, generally 

speaking, modifying correctly working programs is a bothering task from the viewpoint of 

developers. Thus, performance tuning requires experienced craftsmanship, and relies on intuition 

and experience. 

In order to address the problem, we have been working on evidence-based performance tuning. 

More specifically, we store the results of performance profiling in a database where the results are 

associated with source code modification history. With the database, developers are able to know, 

for example, what kinds of optimization were applied in the past, what kinds of optimization are 

effective for improving a certain performance profiling parameter, and so on. 

In FY2014, we developed a code mining mechanism which finds optimization patterns from source 

code modification history. More specifically, it calculates differences before and after modification 

at the level of abstract syntax trees and stores them to database. Then, we are able to search 

optimization patterns by searching database by queries that represent the patterns. More concretely, 

we defined about 40 queries that include loop unrolling, loop fusion, loop fission, loop interchange, 

array merging, array dimension interchange, code hoisting, and so on. In addition we also created a 

so-called tuning catalog, which enumerates very small example programs that represents various 

optimization patterns for reference data. With the tuning catalog and several real tuning histories, we 

conducted a supervised learning (which is one of machine learning approaches) in order to suggest 

appropriate optimization approaches for a given source code and performance profiling data. More 

specifically, we solved a multi-label classification problem by translating it to multiple single-label 

classification problems with the binary relevance method and solving them with the k-NN algorithm. 

As feature vectors, we used the values of performance profiling data (e.g., cache-miss rate) and 

source code metrics (e.g., max loop depth). With an experiment with 469 tuning cases, we obtained 

satisfactory results, but the experiment was still too small to determine effectiveness of our approach. 
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In FY2015, we plan to conduct the more realistic experiment with larger number of applications by 

designing and implementing automatic collector of source code modification histories and their 

corresponding performance tuning data. 

 

4. Schedule and Future Plan 

In FY 2015, we will continue to improve the implementation of our computing portal. As described 

in Sec. 3.1, one problem of the current implementation is that it does not provide an accounting 

mechanism to know which application is executed by whom or who is to be charged for consumed 

computing resources. In order to address the problem, we plan to implement some kind of 

accounting mechanisms to our framework. 

Regarding the virtualization technologies, we will continue to implement and evaluate the 

lightweight network virtualization framework for testing/debugging parallel programs. More 

specifically, we will evaluate our implementation on larger number of the physical computing nodes 

with larger number of the virtual computing nodes, on the K computer. In addition, we will also 

continue to design and implement a mechanism which tricks performance profiling tools so that they 

feel as if they run on physical computing nodes and emit profiling data which represents 

characteristics under the real parallel computing environments. As for the container technologies, we 

will continue to study the possibility of applying the container technologies to the HPC systems. In 

addition, we plan to pursue the possibility of upgrading the Linux kernel which runs on the 

computing nodes of our FX10 in order to fully leverage the power of the container technology 

(Docker). 

Regarding the program verification and analysis, we will conduct more experiments with our three 

approaches for program verification under relaxed memory consistency models to evaluate their 

effectiveness and practicality, and improve them. Regarding the evidence-based performance tuning, 

we plan to conduct a relatively larger-scale experiment with larger number of applications with more 

realistic source code modification histories to determine effectiveness of our approach. In addition, 

we also plan to design and implement automatic collector of source code modification histories and 

their corresponding performance tuning data. 

In addition to the above mentioned individual research topics, we also plan to design/implement 

integration of the research results of the virtualization technologies and the software verification 

with the computing portal. 

 

5. Publication, Presentation and Deliverables 

(1)  Conference Papers (Refereed) 

1. Abe, T. and Maeda, T., “A General Model Checking Framework for Various Memory 

Consistency Models”, In Proceedings of the 19th International Workshop on High-Level 
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Parallel Programming Models and Supportive Environments (HIPS 2014), pp. 332-341, 

2014. 

2. Terai, M., Bryzgalov, P., Maeda, T., and Minami, K., “Extending Kscope Fortran Source 

Code Analyzer with Visualization of Peformance Profiling Data and Remote Parsing of 

Source Code”, In Proceedings of the 6th International Symposium on Advances of High 

Performance Computing and Networking (AHPCN) within Inrternational Conference on 

High Performance Computing and Communications (HPCC-2014), pp. 878-885, 2014. 

3. Abe, T. and Maeda, T., “Optimization of a General Model Checking Framework for Various 

Memory Consistency Models”, In Proceedings of the 8th International Conference on 

Partitioned Global Address Space Programming Models (PGAS 2014), pp. 14:1 - 14:10, 

2014. 

4. Hashimoto, M., Mori, A., and Izumida, T., “A Comprehensive and Scalable Method for 

Analyzing Fine-grained Source Code Change Patterns”, In Proceedings of the International 

Conference on Software Analysis, Evolution, and Reengineering (SANER 2015), pp. 351 - 

360, 2015. 

5. Hashimoto, M., Terai, M., Maeda, T., and Minami, K., “Extracting Facts from Performance 

Tuning History of Scientific Applications for Predicting Effective Optimization Patterns”, In 

Proceedings of the 12th Working Conference on Mining Software Repositories (MSR 2015), 

To appear. 

 

(2)  Invited Talks 

6. Hashimoto, M., “Towards Evidence-based Performance Tuning Assist”, The 6th 

Symposium on Automatic Tuning Technology and its Application (ATTA 2014), 2014. (In 

Japanese) 

 

(3)  Presentations 

7. Abe, T., “Program Verification for Formalized Relaxed Memory Consistency Models”, The 

31st Symbolic Logic and Computer Science (SLACS), 2014. (In Japanese) 

8. Abet, T., “Towards Semi-automatic Theorem Proving Considering Memory Consistency 

Models”, The 25th Algebra, Logic, Geometry and Informatics (ALGI), 2014. (In Japanese) 

9. Hashimoto, M., “Constructing Finge-Grained Tuning Cases Database and Its Application 

for Prediction of Effective Program Optimizations”, The 10th Autotuning Research Group’s 

Open Academic Session (ATOS10), 2014. (In Japanese) 

10. Kitayama, I., “Parallel File I/O Optimization with SIONlib”, Japan Lustre Users Group 

2014 (JLUG 2014), 2014. 

11. Abe, T., “Compositional Parallel Program Logic for Relaxed Memory Consistency Models”, 
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Workshop on Computer Science and Category Theory (CSCAT 2015), 2015. 

 

(4) Deliverables 

12. Boost library (http://www.boost.org/) ported to the K computer. Available on the K 

computer. 

13. MapReduce-MPI library (http://mapreduce.sandia.gov) ported to the K computer. Available 

on the K computer. 

14. MPI4Py library (http://mpi4py.scipy.org/) ported to the K computer. Available on the K 

computer. 

15. NumPy library (http://www.numpy.org/) ported to the K computer. Available on the K 

computer. 

16. Python (https://www.python.org/) ported to the K computer. Available on the K computer. 

17. A Python wrapper library for EigenExa  

(http://www.aics.riken.jp/labs/lpnctrt/EigenExa_e.html) (updated). Available on the K 

computer.
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