
7 
 

 

III. Reports on Research Activities 

1.  System Software Research Team 

1.1. Team members 

Yutaka Ishikawa (Team Leader) 

Atsushi Hori (Researcher) 

Keiji Yamamoto (Postdoctoral Researcher) 

Yoshiyuki Ohno (Research Associate) 

Toshihiro Konda (Research Associate) 

Toyohisa Kameyama (Technical Staff) 

 

1.2. Research Activities 

The system software team focuses on the research and development of an advanced system 

software stack not only for the "K" computer but also for towards exa-scale computing.  There are 

several issues in carrying out future computing. Two research categories are taken into account: i) 

scalable high performance libraries/middleware, such as file I/O and low-latency communication, 

and ii) a scalable cache-aware, power-aware, and fault-aware operating system for next-generation 

supercomputers based on many core architectures. 

Parallel file I/O is one of the scalability issues in modern supercomputers. One of the reasons is due 

to heavy metadata accesses. If all processes create and write different files, the metadata server 

receives so many requests by all processes not only at the creation time but also at writing data to 

each file. Three approaches have been conducted to mitigate this issue. One approach is to introduce 

a file composition technique that gathers multiple data generated by an application and stores these 

data into one or a few files in order to reduce the number of files accessed by processes. Another 

approach is to provide multiple metadata server in which the requests for metadata are sent to a 

metadata server resolved using hash function. The third approach is to provide a smart MPI-IO 

implementation for applications using MPI-IO functions. 

Increasing number of cores and nodes enforces strong scaling on parallel applications. Because the 

ratio of communication time against local computation time increases, a facility of low-latency and 

true overlapping communication and computation communication is desired. A communication 

library, integrated to the MPI library implementation in K computer, has been designed and 

implemented, that utilizes DMA engines of K computer. Each compute node of K computer has four 

DMA engines to transfer data to other nodes. If a communication library knows communication 

patterns in advanced, it may utilize the DMA engines. Indeed, the feature of MPI persistent 

communication, standardized in MPI-1.0, allows the runtime library to optimize data transfers 



8 
 

involved in the persistent communication using the DMA engines. 

System software stack developed by our team is designed not only for special dedicated 

supercomputers, but also for commodity-based cluster systems used in research laboratories.  The 

system will be expected to be used as a research vehicle for developing an exa-scale supercomputer 

system. 

 

1.3. Research Results and Achievements 

1.3.1. Scalable File I/O 

 File Composition Library 

A file composition technique has been proposed, where lots of file data generated by an 

application are gathered and stored into one file or a few files. Figure 1 shows the basic concept 

of the file composition technique. File composition technique composes data, which looks like 

a file from the viewpoint of the application, into an aggregated larger file. Unlike the existing 

aggregation mechanisms, the proposed technique follow POSIX file I/O semantics, thus no 

modification of application programs are required. 

In FY2011, we developed a prototype of file composition library and evaluated the basic 

performance. Figure 2 shows that the file composition technique is three times faster than 

POSIX file I/O functions in the case that each of 128 processes creates an individual file. 

 

Figure 1. Concept of the file composition technique 

 



9 
 

 

Figure 2. Time of 1 MB file creation by parallel process 

 Hash-based Parallel File System 

A parallel file system used in a modern supercomputer is basically composed of MDS 

(Metadata Server) and OSS (Object Storage Server). A MDS handles file open, create and 

status operations. An OSS handles file read and write operations. Most current parallel file 

systems have only one MDS, and thus, such a system causes bottleneck of metadata operations 

requested by all compute nodes. A new scalable parallel file system based on a hash function 

was designed and implemented in FY2011. This system consists of multiple MDSs and OSSs 

as shown in Figure 3. Each MDS is responsible for metadata operations on a part of all files. 

The metadata set of files is determined by a hash value of the file name with path. The client 

determines the MDS of a file accessed in the client by a hash value of that file and path, and 

metadata operations for that file are sent to the MDS. The MDS informs the client to the 

location of OSSs for write/read operations in the client. 

Client Client Client Client Client Client

MDS MDS MDS OSS OSS OSS OSS OSS OSS

MetaData Servers Object Storage Servers

Network

Open, Create, Stat Read, WriteComputation Nodes

 
Figure 3. Hash-based Parallel File System 

 

In FY2011, we developed only MDS for prototype file system and evaluated a metadata 

performance. Evaluations show that throughput of proposed file system is faster than that of 

current Lustre File System and has good scalability as shown in Figure 4. 

  



10 
 

1 2 4 8 16 32

0

2000

4000

6000

8000

10000

12000

14000

O
pe

ra
ti
o
n
s 

/
 s

e
c

Number of Clients

Proposed FS

Lustre

1 2 4 8 16 32

0

50000

100000

150000

200000

250000

O
pe

ra
ti
o
n
s 

/
 s

e
c

Number of Servers  
Figure 4. Throughput of the mkdir command execution 

 

 A Smart MPI-IO Library Implementation 

The nature of highly parallelized parallel file access that consists of lots of fine grain, 

non-contiguous I/O requests in many cases, can degrade the I/O performance severely. To 

tackle this problem, a novel technique to maximize the bandwidth of the MPI-IO was proposed. 

This technique utilizes a ring communication topology and was implemented as an ADIO 

device of ROMIO, named Catwalk-ROMIO, and evaluated. The evaluation shows that 

Catwalk-ROMIO utilizing only one disk can exhibit comparable performance with widely-used 

parallel file systems, PVFS2 and Lustre, both of them utilizes several file servers and disks. As 

shown in Figure 5, Catwalk-ROMIO performance is almost independent from file access 

patterns, in contrast to the performance of parallel file systems performing only well with 

collective I/O shown in “Full” cases of Figure 5. Catwalk-ROMIO requires conventional 

TCP/IP network and only one file server. This is a quite common HPC cluster configuration. 

Thus, Catwalk-ROMIO is considered to be a very cost-effective MPI-IO implementation. 

 

 
Figure 5. BT-IO Performance with PVFS2, Lustre and proposed Catwalk-ROMIO 

 



11 
 

1.3.2. Communication Library 

 Persistent Remote DMA 

The implementation of persistent communication provided in MPI was reconsidered to provide 

low latency and true overlapping communication and computation. In the persistent 

communication facility, the end-points of both the sender and the receiver are set up by issuing 

MPI_Send_init and MPI_Send_recv primitives prior to actual communication triggered by the 

MPI_Start or MPI_Startall primitive. The same communication pattern is reused without 

reissuing the initialization. Thus, at the start of actual communications in persistent 

communication, the runtime system already knows all the communication patterns, i.e., peers 

and message sizes if both sender and receiver have issued persistent communication primitives. 

Such situations have a chance for the communication library to utilize four DMA engines 

equipped in K computer and carry out true overlapping communication and computation. 

A new communication protocol and an implementation for persistent communication, called 

PRDMA (Persistent Remote Direct Memory Access), was designed and implemented in FY 

2011. 

 Communication Library 

The power wall issue of current and future supercomputers is gathering attentions. The 

technique of user-level communication to achieve high communication performance is widely 

used by parallel applications, and processes are spinning-wait for the incoming messages. This 

spinning loop in the absence of incoming messages is simply wasting energy, and thus it 

increases the power consumption of a parallel computer. The proposed technique is implemented 

in two ways; 1) combination of spin-loop and blocking system call, and 2) combination of 

spin-loop and using the Intel x86 monitor/mwait synchronization instructions which put 

computational core into a low-power mode. Unlike the techniques using the DVFS (Dynamic 

Voltage and Frequency Scaling) function of CPU, our proposed technique does not sacrifice 

application performance but can save energy. Figure 6 shows that 7% total system power can be 

saved with the FT application of NAS parallel benchmarks. 

 

 



12 
 

 

Figure 6. Power and Performance, NAS Parallel Benchmark Class B 

 

1.3.3. Multi-Threaded Library 

Towards the Exa-scale computing, hiding the latencies of memory and communication is one of 

crucial issues. To provide such a capability, the thread management must be fast enough in the order 

of sub-micro seconds. The thread library, named Shadow Thread, is developed to utilize 

Simultaneous Multi-Threading mechanism which schedules threads by hardware in a very fast way, 

and utilizes the monitor and mwait instructions supported by some Intel processors. Figure 7 shows 

that the two-phase synchronization technique combining the conventional spin-wait method and the 

pair of the monitor/mwait instructions can satisfy the requirement of speed and low-power 

consumption simultaneously. Figure 8 shows that a memory copy function using the proposed 

Shadow Thread library can exhibit better performance up to 20% compared with the normal 

memcpy() function. 

 
Figure 7. CPU temperature over time while synchronization 



13 
 

 

Figure 8. Multi-threaded memcpy bandwidth over region size 

 

1.4. Schedule and Future Plan 

The prototype implementation of File I/O and Communication libraries/middleware will be 

deployed to K computer in FY2012. Due to limited functionalities, the users will be restricted. The 

enhanced version of those libraries/middleware will be developed and deployed in FY 2013. In 

FY2013, those libraries/middleware will be deployed for users. 

A scalable cache-aware, power-aware, and fault-aware operating system for next-generation 

supercomputers based on many core architectures are being designed and implemented by 

collaboration with University of Tokyo, NEC, Hitachi, and Fujitsu. The first prototype system will 

be distributed in FY2012 and the basic system will be available in FY2013. 

 

1.5. Publication, Presentation and Deliverables 

(1)  Journal Papers 

1. Atsushi Hori, Jinpil Lee, Mitsuhisa Sato, “Audit: A new synchronization API for the 

GET/PUT protocol”, In Journal of Parallel and Distributed Computing, 2012. 

 

(2)  Conference Papers 

1. Atsushi Hori, Jinpil Lee, Mitsuhisa Sato, “Audit: New Synchronization for the GET/PUT 

Protocol,”  In the 1st Workshop on Communication Architecture for Scalable Systems, 2011. 

2. Atsushi Hori, Keiji Yamamoto, Yutaka Ishikawa, “Catwalk-ROMIO: A Cost-Effective 

MPI-IO,” In Proceedings of the 2011 IEEE 17th International Conference on Parallel and 

Distributed Systems, IEEE Computer Society, 2011. 

3. Keiji Yamamoto, Atsushi Hori, Shinji Sumimoto, Yutaka Ishikawa, “Xruntime: A Seamless 

Runtime Environment for High Performance Computing,” In the 2011 International 

Workshop on Extreme Scale Computing Application Enablement - Modeling and Tools, 2011. 



14 
 

4. Atsushi Hori, Toyohisa Kameyama, Mitarou Namiki, Yuichi Tsujita, Yutaka Ishikawa, “Low 

Energy Consumption MPI Using Hardware Synchronization,” In IPSJ-SIGHPC 

2011-HPC-132(7), 2011. (In Japanese) 

5. Atsushi Hori, Keiji Yamamoto, Yoshiyuki Ohno, Toshihiro Konda, Toyohisa Kameyama, 

Yutaka Ishikawa, “A Ultra-light Thread Library Using Hardware Synchronization,” In 

IPSJ-SIGHPC 2011-HPC-130(6), 2011. (In Japanese) 

6. Yoshiyuki Ohno, Atsushi Hori, Yutaka Ishikawa, “Proposal and preliminary evaluation of a 

mechanism for file I/O aggregation to one file in a parallel job,” In IPSJ-SIGHPC 

2011-HPC-132(34), 2011. (In Japanese) 

 

(3)  Invited Talks 

1. Yutaka Ishikawa, “HPCI and SDHPC: Towards Sustainable High Performance Computing in 

JAPAN,” PRAGMA21 Workshop, October, 2011. 

 

(4)  Posters and presentations 

1. Atsushi Hori, Yutaka Ishikawa, “MINT: a fast and green synchronization technique,” In 

Proceedings of the 2011 companion on High Performance Computing Networking, Storage 

and Analysis Companion, ACM, 2011. 

2. Keiji Yamamoto, Yoshiyuki Ohno, Atsushi Hori, Yutaka Ishikawa, “Hash-based Metadata 

Management for Parallel File System,” Symposium on High Performance Computing and 

Computational Science, 2012. 

3. Keiji Yamamoto, Yoshiyuki Ohno, Atsushi Hori, Yutaka Ishikawa , “Current Issue in Parallel 

File System,”  The 4th Forum on Data Engineering and Information Management, 2012. 

 


	aics_annualreport_fy2011 9
	aics_annualreport_fy2011 10
	aics_annualreport_fy2011 11
	aics_annualreport_fy2011 12
	aics_annualreport_fy2011 13
	aics_annualreport_fy2011 14
	aics_annualreport_fy2011 15
	aics_annualreport_fy2011 16

