

MACHINE LEARNING PHASES OF MATTER

Juan Carrasquilla D-Wave systems International workshop on numerical methods and simulations for materials design and strongly correlated quantum matters

COLLABORATORS

Roger Melko Simon Trebst Peter Broecker Ehsan Khatami Kelvin Chng Giacomo Torlai Giuseppe Carleo

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnet

Paramagnet

Lars Onsager Phys. Rev. 65, 117

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnet

Paramagnet

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnetic transition: order parameter

LEARNING PHASES OF MATTER: INSPIRATION FROM THE FLUCTUATIONS IN HANDWRITTEN DIGITS AND SUPERVISED LEARNING

INSPIRATION: FLUCTUATIONS HANDWRITTEN DIGITS (MNIST)

gray=spin up

white=spin

down

ML community has developed powerful <mark>supervised</mark> learning algorithms

COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS

COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS

the ordered phase

2D Ising model in the disordered phase

2D Ising model in Training/testing data is drawn from the Boltzmann distribution

$$p(\sigma_1, \sigma_2, ..., \sigma_N) = \frac{e^{-\beta E(\sigma_1, \sigma_2, ..., \sigma_N)}}{Z(\beta)}$$

COLLECTING THE TRAINING/TESTING DATA: MC **SAMPLING** ISING MODEL AND **LABELS**

2D Ising model in the ordered phase

2D Ising model in the disordered phase

Successful training amounts to finding functions

 $F_{\text{High }T}(\sigma_1,...,\sigma_N) \qquad F_{\text{Low }T}(\sigma_1,...,\sigma_N)$

RESULTS: ISING MODEL ON SQUARE AND TRIANGULAR LATTICES

RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)

2D Ising model in the ordered phase

2D Ising model in the disordered phase

ANALYTICAL UNDERSTANDING

Investigating the argument of the hidden layer during the training

$$x = [\sigma_1 \sigma_2, \dots, \sigma_N]^{\mathrm{T}} \qquad m(x) = \frac{1}{N} \sum_{i=1}^N \sigma_i$$

1605.01735, Nature Physics

ANALYTICAL UNDERSTANDING

Investigating the argument of the hidden layer during the training

$$x = [\sigma_1 \sigma_2, \dots, \sigma_N]^{\mathrm{T}} \qquad m(x) = \frac{1}{N} \sum_{i=1}^N \sigma_i$$

SQUARE ICE AND ISING GAUGE THEORY

PHASES OF MATTER WITHOUT AN ORDER PARAMETER AT T=0

Topological phases of matter. Examples: Fractional quantum hall effect, Ising gauge theory. Potential applications in topological quantum computing.

Coulomb phases = Highly correlated "spin liquids" described by electrodynamics. Examples: Common water ice and spin ice materials (Ho₂Ti₂O₇ and Dy₂Ti₂O₇)

ST Bramwell, MJP Gingras Science 294 (5546), 1495-1501

PHASES OF MATTER WITHOUT AN ORDER PARAMETER AT T=0, ∞

Ising square ice

 $H = J \sum_{v} Q_v^2$

 $Q_v = \sum_{i \in v} \sigma_i^z$

Loop update + spin flip MC

Ising gauge theory

$$H = -J \sum_{p} \prod_{i \in p} \sigma_i^z$$

(Kogut Rev. Mod. Phys. 51, 659 (1979))

Gauge update + spin flip MC

PHASES OF MATTER WITHOUT AN ORDER PARAMETER AT T=0

- Defy the Landau symmetry breaking classification. Neural nets capture the subtle differences between low- and hightemperature states successfully!
- ► Square ice: 99% accuracy
- Ising gauge theory: 50% (guessing) with a fully-connected neural net. Training fails. How to overcome this issue?

For two configurations

For two configurations

Ground state hahaha

ISING GAUGE THEORY (Kogut Rev. Mod. Phys. 51, 659 (1979))

ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

- The convolutional neural net relies on the detection of satisfied local constraints to make accurate predictions of whether a state is drawn at low or infinite temperature.
- Based on this observation we derived the weights of a streamlined convolutional network *analytically* that works perfectly on our test sets.

ANALYTICAL MODEL FOR THE ISING GAUGE THEORY

Convolutional layer

f s=A f s=A s=Bs=B1 1 $(1 \ 0$ 1 - 1 $1 \ 0$ 9 $1 \ 0$ $\left| \begin{array}{c} 0 \end{array} \right|$ 1 0|0|0 $1 \ 0$ $-1 \ 0$ $-1 \ -1$ $-1 \ 1$ 10 2 $1 \ 0$ $-1 \ 0$ 0 0 0 0 $1 \ 0$ $1 \ 1$ $1 \ 0$ -1-13 11 $-1 \ 0$ |1 0|0 0 0 0 $1 \ 0$ $-1 \ 0$ $|1 \ 1$ $-1 \ 1$ 124 $0 \ 0$ 0 0 $1 \ 0$ $-1 \ 0$ $1 \ 1$ $-1 \ 0$ $-1 \ 0$ $-1 \ 1$ 13 50 00 0 $-1 \ 0$ $-1 \ 0$ $-1 \ 0$ $-1 \ 0$ -1-11 1 6 14|0|0 |0| $1 \ 0$ $-1 \ 0$ 0 $1 \ 0$ $-1 \ 0$ -1-1-11 157 $-1 \ 0$ 0 1 0 0 0 0 $-1 \ 0$ $-1 \ 0$ $-1 \ 1$ -1-116 8 $-1 \ 0$ $0 \ 0$ 1 0 0 0 1 $b_c = -(2+\epsilon)$ •

fully-connected layer

$$W_{\rm o} = \begin{pmatrix} \underbrace{8L^2 \text{ terms}}_{1 \ \dots \ 1} & \underbrace{-L^2 \ \dots \ -L^2}_{-1 \ \dots \ -1} & L^2 \ \dots \ L^2 \end{pmatrix}, \text{ and } b_{\rm o} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Basically the Conv. layer encodes the Hamiltonian

LOGARITHMIC CROSSOVER OF THE ISING GAUGE THEORY

slowly cross over to the high-temperature phase. The cross-over temperature T^* happens as the number of thermally excited defects ~ $N \exp(-2J\beta)$ is of the order of one, implying $T^*/J \sim 1/\ln \sqrt{N}$.²³ As the presence of local defects is the mechanism through which the CNN decides Only one defect on average distorts the Wilson loops. Same crossover observed in the topological entanglement entropy.

ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

The convolutional neural net relies on the detection of satisfied local constraints to make accurate predictions of

QUANTUM SYSTEMS

QUANTUM: GROUND STATE OF THE TORIC CODE

Neural net represents a ground state of the toric code: equal weight superposition of closed string states

Non trivial ground states can be written as a NN Optimize using VMC for other more challenging ground state problems (efficient sampling is possible)

AUBRY ANDRE MODEL

NN understands localization in a naive and fragile way: it basically learns the disordered potential

1605.01735, Nature Physics

DIRAC FERMIONS ON THE HONEYCOMB LATTICE: MOTT TRANSITION

1608.07848

3D HUBBARD MODEL AT HALF FILLING: NEEL TRANSITION

Patterns learned by the NN: AF correlations in the d+1 simulation cell. Much like the Ising examples

1609.02552

QUANTUM STATE TOMOGRAPHY WITH RBM

LET'S EXPLOIT THIS <ML|PHYSICS> MORE

CONCLUSION

- ►We encode and discriminate phases and phase transitions, both conventional and topological, using neural network technology.
- ►We have an understanding of what the neural nets do in those cases through controlled analytical models.
- ►We have explored a somewhat new way to look at condensed matter systems. Hopefully this

FUTURE PROJECTS

- ► Variational interpretation of CNNs and their optimization for ground state
- Tomography with experimental data

QUANTUM MACHINE LEARNING POSITIONS AT D-WAVE

There are several positions at D-Wave at the intersection between

Machine learning, reinforcement learning, quantum physics, and quantum computing.

Friendly research atmosphere. Great cities (Vancouver, Toronto) email me at: jcarrasquilla@dwavesys.com https://www.dwavesys.com/careers

DO THE RESULTS EXTEND TO OTHER INTERESTING CASES?

Yes. We can obtain Tc in the triangular lattice from numerically trained model on the square lattice!

ANALYTICAL UNDERSTANDING

Toy model: only three analytically "trained" perceptrons with precise functions: quantifying the magnetization of each configuration

In general the hidden layer discovers the order parameter of the phase during the training

=>Works for AF Ising model

1605.01735

Artificial neural networks

Artificial neural networks are a family of models used to approximate functions that can take values on very high dimensional inputs. They are represented as interconnected "neurons" which are non-linear functions that exchange messages between each other

Connections = sets of adaptive weights, i.e. numerical parameters that are tuned by a learning algorithm

 $f: \mathbf{R}^n \to \mathbf{R}^m$

Wikipedia

WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

.

► It detects the local constraints induced by the Hamiltonian

ARTIFICIAL SQUARE ICE

Wang and collaborators have used lithographic techniques to create a periodic two-dimensional array of single-domain sub micron ferromagnetic islands Nature 439, 303 (2006)

FIG. 1: (color online) Left: Atomic force microscope image of an array studied in Ref. 1. The islands have length l = 220nm, width 80nm and thickness 25nm. Right: Map of the ratio J_2/J_1 of the second to the first nearest neighbor interactions (highlighted in the left part) for different values of lattice constant, a, and sublattice height offset, h. In the white zone, $|J_2/J_1 - 1| < 5\%$. In the left (blue) region, the ordered state is antiferromagnetic, whereas it is ferromagnetic in the right (yellow-red) area.

Condensed matter Statistical Mechanics

PHYSICS INSPIRED MACHINE LEARNING

MACHINE LEARNING INSPIRED PHYSICS

CONCEPTUAL CONNECTIONS

Condensed matter Statistical Mechanics

Machine learning

PHYSICS INSPIRED MACHINE LEARNING MACHINE LEARNING INSPIRED PHYSICS CONCEPTUAL CONNECTIONS

-Boltzmann Machines (Hinton and Sejnowski) Dimensionality reduction, classification

- -Spin glass interpretation of neural nets
- -Quantum Boltzmann machine (1601.02036) quantum annealers, dwave
- -Learning with Quantum-Inspired Tensor Networks (Stoudenmire, Schwab 1605.05775)

Condensed matter Statistical Mechanics

Machine learning

PHYSICS INSPIRED MACHINE LEARNING MACHINE LEARNING INSPIRED PHYSICS CONCEPTUAL CONNECTIONS

-Phases and phase transitions (our work 1605.01735)

-Unsupervised learning phase transitions (Lei Wang 1606.00318)

-Ground state and real-time dynamics with Boltzmann Machines (Carleo, Troyer 1606.02318)

-Relaxation in glassy liquids (Nature Physics 12, 469–471 (2016))

-Materials design (npj Computational Materials 1, Article number: 15008 (2015))

- and many more ...

Condensed matter Statistical Mechanics

Machine learning

PHYSICS INSPIRED MACHINE LEARNING MACHINE LEARNING INSPIRED PHYSICS CONCEPTUAL CONNECTIONS

-Deep learning and the renormalization group (and MERA) (C. Beny 1301.3124)

-An exact mapping between the Variational Renormalization Group and Deep Learning (Schwab, Mehta 1410.3831)

-Could we transform this into a practical ML tool? (like Miles did with DMRG)

Figure 3 Detecting the logarithmic crossover temperatures in the Ising gauge theory. Output neurons for different system sizes averaged over test sets vs βJ . Linear system sizes L = 4, 8, 12, 16, 20, 24, and 28 are represented by crosses, up triangles, circles, diamonds, squares, stars, and hexagons. The inset displays $\beta^* J$ (octagons) vs L in a semilog scale. The error bars represent the one standard deviation statistical uncertainty.

slowly cross over to the high-temperature phase. The cross-over temperature T^* happens as the number of thermally excited defects $\sim N \exp(-2J\beta)$ is of the order of one, implying $T^*/J \sim 1/\ln\sqrt{N}$.²³ As the presence of local defects is the mechanism through which the CNN decides

FOR A REAL NN THIS REMAINS TRUE

