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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnetic transition: order parameter3
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the

Ising model T
c

= 2/ ln
�
1 +

p
2
�
.

system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a
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system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo
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FIG. 6. Two-dimensional t-SNE visualization of the training set used in the Ising model for L = 30

colored according to temperature. The orange line represents a hyperplane separating the low- from

high-temperatures states.

cool region (and vice versa), crossing over to a low value as the system is warmed through

the orange hyperplane. This allows the classification of a state in terms of the neuron values.

Appendix C: Details of the convolutional neural network of the Ising lattice gauge

theory

The exact architecture of the convolutional neural network (CNN) [4], schematically

described in Figure 4, is as follows. The input layer is a two-dimensional Ising spin config-

uration with N = 16 ⇥ 16 ⇥ 2 spins, where �
i

= ±1. The first hidden layer convolves 64

2⇥ 2 filters on each of the two sublattices of the model with a unit stride, no padding, with

periodic boundary conditions, followed by rectified linear unit (ReLu). The final hidden

layer is a fully-connected layer with 64 ReLu units, while the output is a softmax layer with

two outputs (correponding to T = 0 and T = 1 states). To prevent overfitting, we apply a

dropout regularization in the fully-connected layer [28]. Our model has been implemented
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system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c
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simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-
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RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)
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FIG. 1: Machine learning the square-lattice ferromagnetic Ising model. (A) The trained neural

network learns representations of the low- and high-temperature Ising states. (B) The average

of the output layer neurons over the test sets vs. temperature. (C) The average accuracy over

a test set vs. temperature. (D) Toy model of a neural network for the Ising model. (E) The

average output layer and accuracy of the toy model are displayed in (E) and (F), respectively.

The orange lines signal the critical temperature of the Ising model in the thermodynamic limit,

Tc/J = 2/ ln
�
1 +

p
2
�
.
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Investigating the argument of the hidden layer during the training
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values of the low-temperature output neuron in our convolutional neural net for the Ising

lattice gauge theory can be further trained to represent the ground state of the toric code

Hamiltonian [1, 9]. We thus anticipate adoption to the field of quantum technology [25],

such as quantum error correction protocols and quantum state tomography [26]. The ability

of machine learning algorithms to generalize to situations beyond their original design an-

ticipates future applications such as the detection of phases and phase transitions in models

vexed with the Monte Carlo sign problem [3], as well as in experiments with single-site res-

olution capabilities such as the modern quantum gas microscopes [27, 28]. As in all other

areas of “big data”, we expect the rapid adoption of machine learning techniques as a basic

research tool in condensed matter and statistical physics in the near future.
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Appendix A: Details of the toy model

The analytical model encodes the low- and high-temperature phases of the Ising model

through their magnetization. The hidden layer contains 3 perceptrons (a neuron with a

Heaviside step nonlinearity); the first two perceptrons activate when the input states are

mostly polarized, while the third one activate if the states are polarized up or unpolarized.

Notice that the third neuron can also be choosen to activate if the states are polarized down

or unpolarized. The resulting outcomes are recombined in the output layer and produce the

desired classification of the state. The hidden layer is parametrized through a weight matrix

and bias vector given by

W =
1

N (1 + ✏)
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FIG. 5: Hidden layer arguments as a function of the magnetization of the Ising state m(x). (A)

displays the hidden layer arguments for our toy model, while (B) and (C) display the arguments

for a neural net with 3 sigmoid neurons before and after training, respectively.

where 0 < ✏ < 1 is the only free parameter of the model. The arguments of the three hidden

layer neurons, in terms of the weight matrix, bias vector, and a particular Ising configuration

x = [�1�2, ..., �N ]T, are given by

Wx + b =
1

(1 + ✏)

0

BBB@
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�m(x)� ✏
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1
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where m(x) = 1
N

NP
i=1

�i is the magnetization of the Ising configuration. In Figure 5(A) we

display the components of the Wx + b vector as a function of the magnetization of the

Ising state m(x). The first and second neuron activate when the state is predominantly

polarized, i.e., when m(x) > ✏ or m(x) < �✏. The third neuron activates if the state has

a magnetization m(x) > �✏, which means that, in the limit where 0 < ✏ ⌧ 1, it activates

when the state is either polarized or unpolarized. The parameter ✏ is thus a threshold value

of the magnetization that helps deciding whether the state is considered polarized or not.

The output layer is parametrized through a weight matrix and bias vector given by

W2 =

0

@ 2 1 �1

�2 �2 1

1

A , and b2 =

0

@0

0

1

A , (A3)

where these arbitrary choices ensure that the ordered, low-T output neuron OLow-T = 1

is active when either the spins polarize mostly " or #. On the other hand, when the " k 0

neuron is active but the " is not, then the high-temperature output neuron OHigh-T = 1,

symbolizing a high-temperature state.
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FIG. 3: Square ice and Ising lattice gauge models and their typical configurations. (A) A portrays

a high-temperature state. (B) A ground state of the square ice Hamiltonian. (C) A ground state

configuration of the Ising lattice gauge theory Hamiltonian. The vertices and plaquettes defining

the square ice and Ising lattice gauge theory hamiltonians are schematically shown in the insets of

(B) and (C), respectively.

from the high temperature phase.

Just as in the square ice model, we have made an attempt to use the neural net in

Figure 1(A) to classify the high- and low- temperature states in the Ising lattice gauge theory.

Interestingly, a straightforward implementation of supervised training fails to classify a test

set containing samples of the two states to an accuracy over 50% – equivalent to simply

guessing. Such failures typically occur because the neural net overfits to the training set.

To overcome this di�culty we consider a convolutional neural network (CNN) [5, 24] which

readily takes advantage of the two-dimensional structure of the input configurations, as well

as the translational invariance of the models under consideration. The exact architecture

presented in Figure 4 is described in the supplementary materials. We optimize the CNN

using Monte Carlo configurations drawn from the partition function of the Ising gauge

theory at T = 0 and T = 1. Using this setting, the CNN successfully discriminates

high-temperature from ground states with an accuracy of 99% on a test set with 1 ⇥ 104

configurations, in spite of the lack of an order parameter or qualitative di↵erences in the

spin-spin correlations. Through the generation of new test sets that violate an extensive

fraction of the local constraints in the Ising gauge theory, we conclude that the discriminative

power of the CNN relies on the detection of these satisfied local constraints induced by the

5

networks lies in the ability of the learning algorithms to generalize to tasks beyond their

original design. For example, what if one was presented with a data set of Ising configurations

from an unknown Hamiltonian, where the lattice structure (and therefore its Tc) is not

known? We illustrate this scenario by taking our above feed-forward neural network, already

trained on configurations for the square-lattice ferromagnetic Ising model, and feed it a

test set produced by Monte Carlo simulations of the triangular lattice ferromagnetic Ising

Hamiltonian. The network has no information about the Hamiltonian, the lattice structure,

or even the general locality of interactions. In Figure 2 we present the output layer neurons

averaged over the test set as a function of temperature for L = 30. We estimate the critical

temperature based on the crossing point of the low- and high-temperature outputs to be

Tc/J = 3.63581, which is close to the exact thermodynamic Tc/J = 4/ ln 3 ⇡ 3.640957 [21]

– a discrepancy easily attributed to finite-size e↵ects. Further, the same strategy can be

repeated, using instead our toy neural network. Again, without any knowledge of the critical

temperatures on the square or triangular lattices, we estimate Tc/J = 3.63403, di↵ering from

the true thermodynamic critical Tc by less than 1%.

These results on simple symmetry-broken phases may not be entirely surprising given

the theoretical understanding of the neural network’s ability to learn and encode the mag-

netization in the hidden layer, gleaned from our simple toy network of Figure 1(D). Greater

interest would lie in the application of such techniques to problems of modern interest in

condensed matter, such as disordered or topological phases, where no conventional order pa-

rameter exists. Coulomb phases, for example, are states of frustrated lattice models where

local energetic constraints lead to extensively degenerate classical ground states, which are

highly-correlated “spin liquids” without a bulk magnetization or other local order parame-

ter. We consider a two-dimensional square ice Hamiltonian given by H = J
P

v Q2
v where the

charge at lattice vertex v is Qv =
P

i2v �z
i , and �z

i = ±1 are Ising variables located in the lat-

tice bonds as shown in Figure 3. In a conventional condensed-matter approach, the ground

states and the high-temperature states are distinguished by their spin-spin correlation func-

tions: critical power-law decay in the Coulomb phase at T = 0, and exponential decay at

high temperature. Instead we use supervised learning, feeding raw Monte Carlo configura-

tions to train a fully-connected neural net (Figure 1(A)) to distinguish ground states from

high-temperature states. Figure 3(A) and Figure 3(B) display high- and low-temperature

snapshots of the configurations used in the training of the model. For a square ice system

5

networks lies in the ability of the learning algorithms to generalize to tasks beyond their

original design. For example, what if one was presented with a data set of Ising configurations

from an unknown Hamiltonian, where the lattice structure (and therefore its Tc) is not

known? We illustrate this scenario by taking our above feed-forward neural network, already

trained on configurations for the square-lattice ferromagnetic Ising model, and feed it a

test set produced by Monte Carlo simulations of the triangular lattice ferromagnetic Ising

Hamiltonian. The network has no information about the Hamiltonian, the lattice structure,

or even the general locality of interactions. In Figure 2 we present the output layer neurons

averaged over the test set as a function of temperature for L = 30. We estimate the critical

temperature based on the crossing point of the low- and high-temperature outputs to be

Tc/J = 3.63581, which is close to the exact thermodynamic Tc/J = 4/ ln 3 ⇡ 3.640957 [21]

– a discrepancy easily attributed to finite-size e↵ects. Further, the same strategy can be

repeated, using instead our toy neural network. Again, without any knowledge of the critical

temperatures on the square or triangular lattices, we estimate Tc/J = 3.63403, di↵ering from

the true thermodynamic critical Tc by less than 1%.

These results on simple symmetry-broken phases may not be entirely surprising given

the theoretical understanding of the neural network’s ability to learn and encode the mag-

netization in the hidden layer, gleaned from our simple toy network of Figure 1(D). Greater

interest would lie in the application of such techniques to problems of modern interest in

condensed matter, such as disordered or topological phases, where no conventional order pa-

rameter exists. Coulomb phases, for example, are states of frustrated lattice models where

local energetic constraints lead to extensively degenerate classical ground states, which are

highly-correlated “spin liquids” without a bulk magnetization or other local order parame-

ter. We consider a two-dimensional square ice Hamiltonian given by H = J
P

v Q2
v where the

charge at lattice vertex v is Qv =
P

i2v �z
i , and �z

i = ±1 are Ising variables located in the lat-

tice bonds as shown in Figure 3. In a conventional condensed-matter approach, the ground

states and the high-temperature states are distinguished by their spin-spin correlation func-

tions: critical power-law decay in the Coulomb phase at T = 0, and exponential decay at

high temperature. Instead we use supervised learning, feeding raw Monte Carlo configura-

tions to train a fully-connected neural net (Figure 1(A)) to distinguish ground states from

high-temperature states. Figure 3(A) and Figure 3(B) display high- and low-temperature

snapshots of the configurations used in the training of the model. For a square ice system

" "
#
#v

"
#

# "p

A B Ising square ice ground state

C High temperature state D Toric code ground state

Ising square ice

6

FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

Ising gauge theory

Loop update + spin flip MC Gauge update + spin flip MC

(Kogut Rev. Mod. Phys. 51, 659 (1979))
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

late an extensive fraction of the local energetic constraints of the theory, we conclude that

the discriminative power of the CNN relies on the detection of these satisfied constraints.

Furthermore, test sets with defects that retain most local constraints but disrupt non-local

features, like the extended closed-loop gas picture or the associated topological degeneracy

[7], indicate that local constraints are the only features that the CNN relies on for classifica-

tion of the ground state. In view of these observations, we construct a simplified analytical

toy model of our original CNN designed to explicitly exploit local constraints in the clas-

sification task. Such a model discriminates high-temperature from ground states with an

accuracy of 100%. Details of the behavior of the CNN with various test sets, as well as the

details of the analytical model, are contained in the supplementary material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

square ice model and the Ising lattice gauge theory, where they learn local constraints satis-



ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ The convolutional neural net relies on the detection of 
satisfied local constraints to make accurate predictions of 
whether a state is drawn at low or infinite temperature.  

➤ Based on this observation we derived the weights of a 
streamlined convolutional network analytically that works 
perfectly on our test sets.  
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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ANALYTICAL MODEL FOR THE ISING GAUGE THEORY
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TABLE I. Specifying the tensor W
xysf

filters in the CNN. x and y specify the spatial in indices of

the filter while s and f specify the sublattice and the filter, respectively.
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These choices ensure that whenever an unsatisfied plaquette is encountered by the convolutional

layer, the zero-temperature neuron is O0 = 0 and the high-temperature O1 = 1, while only if all

energetic constraints are satisfied O0 = 1 and O1 = 0, thus allowing the classification of the states.

When used on our test sets, the model performs the classification task with a 100% accuracy, which

means that all the high temperature states in the test set contain least one unsatisfied plaquette. Note

that the classification error for this task is expected to be exponentially small in the volume of the

system, since at infinte temperature the ground states appear with exponentially small probability.

Having distilled the model’s basic ingredients, we proceed to train an analogue model numerically

starting from random weights and biases W
yxsf

, Wo, bc, and bo. Further, we replace the perceptron

nonlinearities by ReLu units and a softmax output layer to enable a reliable numerical training.

After the training, the model performs the classification task with a 100% accuracy on the test sets,

as expected.

As a consequence of the classification scheme provided by the analytical toy model, we ob-

serve that the values of the zero-temperature neuron O0 behave exactly like the amplitudes of one

of the ground states of the toric code written in the �
z

basis 33. The ground state described by O0

is a linear combination of all 4 ground states with well defined parity on the torus. More precisely,

such a state can be written as | torici =
P

�z1,...,�zN
O0(�z1...�zN)|�z1...�zNi, where the spin con-

figurations �
zi

= ±1, and O0(�z1...�zN) corresponds to the value of O0 after a feed-forward pass

of the neural network for a given a input configuration �
z 1, ..., �z N . Our model bears resemblance

with the construction of the ground state of the toric code in terms of projected entangled pair

states in that local tensors project out states containing plaquettes with odd parity 34. These ob-

servations suggest that convolutional neural networks have the potential to represent ground states

9

Basically the Conv. layer encodes the Hamiltonian



LOGARITHMIC CROSSOVER OF THE ISING GAUGE THEORY

system size, and as shown in the inset in Fig.3, a clear logarithmic crossover is apparent. This

result showcases the ability of the CNN to detect not only phase transitions, but also nontrivial

crossovers between topological phases and their high-temperature counterparts.

A final implementation of our approach to a system of noninteracting spinless fermions sub-

ject to a quasi-periodic potential 24 demonstrates that neural networks can distinguish metallic from

Anderson localized phases, and can be used to study the localization transition between them (see

the supplementary Figure S3 and S4).
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Figure 3 Detecting the logarithmic crossover temperatures in the Ising gauge theory.

Output neurons for different system sizes averaged over test sets vs �J . Linear sys-

tem sizes L = 4, 8, 12, 16, 20, 24, and 28 are represented by crosses, up triangles, circles,

diamonds, squares, stars, and hexagons. The inset displays �⇤J (octagons) vs L in a

semilog scale. The error bars represent the one standard deviation statistical uncertainty.
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Figure 2(c)). The ground state is again a degenerate manifold8, 21 with exponentially-decaying spin-

spin correlations. As in the square ice model, we attempt to use the neural network in Figure 1(a) to

classify the high- and low- temperature states, but find that the training fails to classify the test sets

to an accuracy of over 50% – equivalent to simply guessing. Instead, we employ a convolutional

neural network (CNN)3, 22 which readily takes advantage of the two-dimensional structure as well

as the translational invariance of the model. We optimize the CNN in Figure 2(d) using Monte

Carlo configurations from the Ising gauge theory at T = 0 and T = 1. The CNN discriminates

high-temperature from ground states with an accuracy of 100% in spite of the lack of an order

parameter or qualitative differences in the spin-spin correlations. We find that the discriminative

power of the CNN relies on the detection of satisfied local energetic constraints of the theory,

namely whether
Q

i2p �z
i is either +1 (satisfied) or -1 (unsatisfied) on each plaquette of the system

(see the supplementary Figures S5). We construct an analytical model to explicitly exploit the

presence of local constraints in the classification task, which discriminates our test sets with an

accuracy of 100% (see supplementary Figure S6).

Notice that, because there is no finite-temperature phase transition in the Ising gauge theory,

we have restricted our analysis to temperatures T = 0 and T = 1, only. However, in finite

systems, violations of the local constraints are strongly suppressed, and the system is expected to

slowly cross over to the high-temperature phase. The cross-over temperature T ⇤ happens as the

number of thermally excited defects ⇠ N exp(�2J�) is of the order of one, implying T ⇤/J ⇠

1/ ln
p

N .23 As the presence of local defects is the mechanism through which the CNN decides

whether a system is in its ground state or not, we expect that it will be able to detect the crossover

temperature in a test set at small but finite temperatures. In Fig.3 we present the results of the

output neurons of our analytical model for different system sizes averaged over test sets at different

temperatures. We estimate the inverse crossover temperature �⇤J based on the crossing point of

the low- and high-temperature output neurons. As expected theoretically, this depends on the

7

Only one defect on average distorts the Wilson loops. Same crossover 
observed in the topological entanglement entropy.

NN is confused=crossover 
temperature



ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ The convolutional neural net relies on the detection of 
satisfied local constraints to make accurate predictions of 
whether a state is drawn at low or infinite temperature.  

➤ Based on this observation we derived the weights of a 
streamlined convolutional network analytically that works 
perfectly on our test sets.  
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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QUANTUM: GROUND STATE OF THE TORIC CODE
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AUBRY ANDRE MODEL
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Figure S3 Supervised learning the Aubry-André model of spinless fermions. (a) The

output layer values averaged over the test set. System sizes L = 100, 200, 300, 400, and

500 are represented by crosses, up triangles, circles, diamonds, and squares, respctively.

The inset displays �⇤/J (hexagons) vs 1/L. The orange line is the exact critical value

while the dashed line is an extrapolation of the data through a linear fit in the inset. (b)

The Pearson product-moment correlation coefficient SSF,V averaged over the different

feature maps Fi (octagons). A fraction of Fi and of the Vi for a system with L = 200,

where the correlations between the filter (black line) and the potential (orange line) are

apparent, is presented in the inset. All the error bars represent the one standard deviation

statistical uncertainty.

3 Low-dimensional visualization of the training data of the Ising ferromagnet and Aubry-

Andre models

A strategy to gain intuition for how neural networks operate in our setups is to produce a low-

dimensional visualization of data used in the training. We consider the t-distributed stochastic

neighbor embedding (t-SNE) technique 3 where high-dimensional data is embedded in two or

three dimensions so that data points close to each other in the original space are also positioned

7

NN understands localization in a naive and  

fragile way:  it basically learns the disordered potential
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DIRAC FERMIONS ON THE HONEYCOMB LATTICE: MOTT TRANSITION
4

1 2 3 4 5 6 7 8

interaction U

0.0 0.0

0.25 0.25

0.5 0.5

0.75 0.75

1.0 1.0

pr
ed

ic
tio

n

L = 15
L = 12
L = 9
L = 6

U = 1.0 U = 16.0

SDWDirac

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2

interaction U

0.0 0.0

0.25 0.25

0.5 0.5

0.75 0.75

1.0 1.0

pr
ed

ic
tio

n

3.8 4.2 4.6 4.8

0.5

0.0

1.0 L = 15
L = 9

Figure 3. (Color online) Machine learning of the phase transition
from a semi-metal to an antiferromagnetic insulator in the spinful
Hubbard model (4) on a honeycomb lattice using the Green’s func-
tion approach (see main text). Visualized in the side panels are rep-
resentative samples of the Green’s function (calculated from the aux-
iliary field) for a 2 · 9 ⇥ 9 system in the two respective phases. The
complex entries of these matrices are color-converted by interpreting
their absolute value as the hue of the color while their angle is chosen
as the saturation (HSV coloring scheme [42]). The main panel shows
the output of the discriminating function F obtained from a CNN
trained for parameters in the two fermionic phases (indicated by the
red dots). Data for different system sizes 2 · L⇥ L are shown where
the colors were selected to highlight an apparent even-odd effect in
the linear system size. The vertical solid line indicates the position
of the phase transition in the thermodynamic limit [38], while the
dashed line marks the position at which the antiferromagnetic order
breaks down [43] for the finite system sizes of the current study.

of the auxiliary field at each of these training parameters. In-
terestingly, the configurations displayed in Fig. 2 show no dis-
cernible difference between the two auxiliary field configura-
tions, apparent to the human eye. Indeed, we find that opti-
mizing the CNN of Fig. 1 to extract information directly from
these auxiliary field configurations does not yield a function
F that allows one to distinguish between the two phases. This
apparent inability is possibly rooted in the particular choice
of the employed Hubbard-Stratonovich transformation, which
preserves SU(2) spin symmetry by decoupling in the charge
channel. In Appendix C we discuss an alternative Hubbard-
Stratonovich transformation by decoupling in the spin channel
(which does not preserve the SU(2) spin symmetry), which for
the phase transition at hand also does not lead to satisfactory
results. While it is well known on general grounds [39, 40]
that the auxiliary field can reflect physical correlations (and
as such should be amenable to the applied pattern recognition
technique [41]) if the Hubbard-Stratonovich transformation is
performed in the right channel, our goal here is to identify a
somewhat more general approach that relies on more generic
physical quantities.

To alleviate this difficulty, we instead consider the Green’s
function G(i, j) = hci c

†
ji as input for our machine learning

approach. The Green’s function is an essential quantity in
statistical physics, which allows e.g. for the calculation of
equal-time correlation functions, and while it can easily be
calculated from a given auxiliary field configuration it is

not sensitive to the specifics of the Hubbard-Stratonovich
transformation. Instead of the bare auxiliary fields, we thus
train the CNN on the unprocessed complex valued Green’s
matrices Gs(i, j) = hci c

†
jis calculated for a given auxiliary

field configuration s. For the training, we used 2 ⇥ 8192

(2 ⇥ 4096 for L = 15) samples of the Green’s function.
This modified approach gives a striking improvement in
results, as illustrated in Fig. 3. The side panels now show
representative examples of the Green’s matrices Gs(i, j) for
the two coupling parameters well inside the two respective
fermionic phases. For the purpose of visualization, we con-
vert the complex-valued entries of the Green’s matrices to a
polar representation which are then interpreted as HSV colors
and finally converted to RGB for illustration [42]. Contrary
to the visual inspection of the auxiliary field configuration
in Fig. 2, the image-converted Green’s function exhibits a
clearly visible distinction for the two phases. Indeed the
CNN trained and applied to the image-converted Green’s
function now succeeds in discriminating the two phases
by producing a function F that indicates a phase transition
around a value of the interaction U ⇡ 4.1 ± 0.1. For a given
finite system size L, we identify the location of the phase
transition with the parameter U for which the averaged state
function F is 1/2, i.e. the parameter for which the CNN
cannot make any distinction between the two phases and
therefore assigns equal probability to both phases. These
estimates for the location of the phase transition and their
finite-size trends are in good agreement with the critical value
of Uc(L = 15) ⇡ 4.3 obtained from Monte Carlo simulations
for similar system sizes [43] and slightly above the critical
value Uc(L ! 1) ⇡ 3.85 of the thermodynamic limit [38].

V. SIGN-PROBLEMATIC MANY-FERMION SYSTEMS

We now turn to many-fermion systems that exhibit a sign
problem in the conventional QMC + statistical analysis ap-
proach, and ask to what extent the QMC + machine learning
framework is sensitive to this sign problem. Simple exam-
ple systems of this sort are spinless fermion models, which
typically exhibit a severe sign problem in the conventional
complex fermion basis (as we will illustrate below). We first
consider a half-filled honeycomb system subject to the Hamil-
tonian,

H = �t
X

hi,ji

c†i cj + V
X

hi,ji

ninj . (10)

The competition between the kinetic term (which we again
set to t = 1) and a repulsive nearest neighbor interaction V
drives the system through a quantum phase transition [44] sep-
arating a semi-metallic state for V < Vc from a charge den-
sity wave (CDW) state for V > Vc. Interestingly, this model
can be made to be sign-problem free through a basis transfor-
mation to a Majorana fermion basis [45], which allows for a
precise estimation of the critical repulsion Vc ⇡ 1.36 directly
from QMC observables [45–49]. For the purpose of this pa-
per, we will not perform this transformation, but rather sample

2

with configurations C in d + 1 dimensions. The partition
function of the quantum system can thereby be expressed
as a sum of statistical weights over classical configurations,
i.e. Z =

P
C WC . Unlike classical systems, for quantum

Hamiltonians the weights WC can be both positive and neg-
ative (or even complex), which invalidates the usual Monte
Carlo interpretation of WC/Z as a probability distribution. In
principle, a stochastic interpretation can be salvaged by con-
sidering a modified statistical ensemble with probability dis-
tribution PC / |WC | and concomitantly moving the sign of
WC to the observable

hOi =

P
C OC · WCP

C WC
=

P
C OC · sign(WC) · |WC |P

C sign(WC) · |WC |

=

hsign · Oi|W |

hsigni|W |
. (1)

This procedure, although formally exact, introduces the QMC
sign problem as a manifestation of the “small numbers prob-
lem”, where the numerator and denominator in the last expres-
sion both approach zero exponentially in system size N and
inverse temperature � [1, 2], i.e. we have

hsigni|W | = exp(��N�f) , (2)

where �f is the difference in the free energy densities of the
original fermionic system and the one with absolute weights.
Thus resolving the ratio in Eq. (1) within the statistical noise
inherent to all Monte Carlo simulations becomes exponen-
tially hard. The advantage of importance sampling, which
often translates into polynomial scaling, is lost.

In this work, instead of attempting to obtain exact expec-
tation values of physical observables, or attempting to find a
basis where the weights WC are always non-negative or that
ameliorates the calculation of hsigni|W |, we introduce a basis-
dependent “state function” FC whose goal is to associate con-
figurations C with the most likely phase of matter they belong
to for a given Hamiltonian. More precisely, we assume that
there exists a function FC such that its expectation value in
the modified ensemble of absolute weights

hF i|W | =

P
C FC · |WC |P

C |WC |
(3)

is 1 when the system is deep in phase A and 0 when the
system is deep in the neighboring phase B. Around the
critical point separating phase A from B, hF i|W | crosses
over from one to zero. The value hF i|W | = 1/2 indicates
that the function can not make a distinction between phases A
and B, and therefore assigns equal probability to both phases.
We therefore interpret this value as locating the position of
the transition separating the two phases in parameter space
[16]. In practice, we use a deep CNN to approximate the
state function F , which is trained on “image” representations
of configurations C sampled from the modified ensemble
|WC |/

P
C |WC | in the two different phases A and B. We

explore several choices for this image representation includ-
ing color-conversions of the auxiliary field encountered in
determinental Monte Carlo approaches, the Green’s function

conv pool conv pool full dropout full

Figure 1. (Color online) Schematic illustration of the neural network
used in this work. A combination of convolutional (conv) and max
pooling layers (pool) is first used to study the image, before the data
is further analyzed by two fully connected neural networks separated
by a dropout layer. The convolutional and the first fully connected
layer are activated using rectified linear functions, while the final
layer is activated by a softmax function.

as well as the Green’s function multiplied by the sign. If the
above procedure indeed allows the crafting of such a state
function F , then one has found a path to a sign-problem
avoiding discrimination of the two phases and their phase
transitions through the evaluation of hF i|W |.

III. CONVOLUTIONAL NEURAL NETWORKS

Artificial neural networks have for some time been iden-
tified as the key ingredient of powerful pattern recognition
and machine learning algorithms [17, 18]. Very recently,
neural networks and other machine learning algorithms have
been brought to the realm of quantum and classical statis-
tical physics [19–29]. On a conceptual level, parallels be-
tween deep learning and renormalization group techniques
have been explored [30, 31], while on a more practical level
machine learning algorithms have been applied to model po-
tential energy surfaces [32], relaxation in glassy liquids [33]
or the identification of phase transitions in classical many-
body systems [14, 15]. Boltzmann machines, as well as their
quantum extensions [34], have been applied to statistical me-
chanics models [35] and quantum systems [36]. In addi-
tion, new supervised learning algorithms inspired by tensor-
network representations of quantum states have been recently
proposed [37].

In machine learning, the goal of artificial neural networks
is to learn to recognize patterns in a (typically high dimen-
sional) data set. CNNs, in particular, are nonlinear functions
which are optimized (in an initial “training” step) such that
the resulting function F allows for the extraction of patterns
(or “features”) present in the data. Here we take this approach
to construct a function F , represented as a deep CNN, that al-
lows the classification of many-fermion phases as outlined in
the previous section. Our choice of employing a deep CNN
is rooted in the above observation that the configurations gen-
erated from a quantum Monte Carlo algorithm can be often
interpreted as “images”. As we explain below in more detail,
our analysis can be regarded as an image classification prob-
lem – an extremely successful application of CNNs.

The architecture of the CNN we use is depicted schemati-
cally in Fig. 1 with a more detailed technical discussion of the
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3D HUBBARD MODEL AT HALF FILLING: NEEL TRANSITION 
2

the training process of the neural network. Here, using
quantum Monte Carlo simulations of the Hubbard model
of strongly-correlated fermions on cubic lattices and
convolutional neural networks (CNNs), we show that
one can successfully classify finite-temperature phases of
quantum systems and estimate transition temperatures
with a reasonable degree of accuracy on relatively small
lattice sizes.

II. MODEL

The Fermi-Hubbard Hamiltonian [13, 14] in the
particle-hole invariant form is expressed as

H = −t ��ij�� c†i�cj� +U�i (ni↑− 1
2
)(ni↓− 1

2
)−µ�

i�

ni�, (1)

where ci� (c†i�) annihilates (creates) a fermion with spin

� on site i, ni� = c†i�ci� is the number operator, U
is the onsite Coulomb interaction, �..� denotes nearest
neighbors, t is the corresponding hopping integral, and
µ is the chemical potential. µ = 0 corresponds to the
half-filled model (average density of one fermion per site,
n = 1). We set t = 1 as the unit of energy, and consider
the model on three-dimensional (3D) cubic lattices.

The 3D model at half filling realizes a finite-
temperature transition to the antiferromagnetic Néel
phase for any U > 0, analogous to the magnetic
ordering in the 2D classical Ising model. The transition
temperature, TN , which is relatively well known from
the analysis of the staggered spin structure factor, or
the staggered susceptibility [15–21], is a non-monotonic
function of the interaction strength; it increases rapidly
with increasing U in the weak-coupling regime (U � 8),
a result that can be captured using the random phase
approximation [15], and decreases at large U . In the
strong-coupling regime (U � 12), the half-filled model can
be e↵ectively described by the antiferromagnetic (AFM)
Heisenberg model, whose exchange constant, and hence,
Néel temperature, is proportional to 1�U [22].

III. METHOD

Our goal here is to train a CNN to identify finite-
temperature phase boundaries of the Hubbard model.
We utilize the determinantal quantum Monte Carlo
(DQMC) [23], which reduces the numerical evaluation
of the observables of the Fermi-Hubbard model to a
stochastic averaging over a set of discrete auxiliary
fields extending in space and along an imaginary time

dimension. The spin correlations of the model can
be written directly in terms of the correlations in
our particularly chosen auxiliary field (see Appendix
A), rendering it an obvious choice to be used in the
identification of magnetic phases through machine
learning, although a previous attempt including two of

FIG. 2. Prediction of the Néel transition temperature by the
neural network. Using the auxiliary spin configurations, the
network is trained separately at U = 5 and U = 16 for N = 43,
and simultaneously at U = 5 and 16 for N = 43 and N =
83. The errorbars are s.e.m. of six di↵erent classifications
using CNNs that were trained starting from di↵erent random
weights and biases. The critical temperatures used for the
training of the network with N = 43 are shown as stars (see
text). Grey filled symbols are the estimates for TN in the
thermodynamic limit from DQMC and NLCE simulations.
Grey pentagons, hexagons and circles for weak-, intermediate-
, and strong-coupling regimes are taken from Refs. [19], [18],
and [21], respectively. The solid line is a guide to the eye.

the authors has not been successful [24]. The training
is done using the field configurations generated during
DQMC simulations in a range of temperatures around
one or two critical points. The objective is to use the
trained network to map out the entire phase boundary
associated with the same critical phenomenon by varying
the parameters driving the transition and generating
test data sets of the field configurations. In this work, we
focus on the magnetic properties of the Hubbard model.

We use a 3D CNN, originally developed for human
action recognition in videos [25], implemented in
Tensorflow [26]. Convolutions are designed to return
information about spatial dimension and locality to the
simpler idea of a fully-connected feed-forward neural
network. In our case, the three spatial dimensions of
the cubic lattice are treated with the convolution, while
slices in the fourth imaginary time axis are used as
di↵erent filter channels [1]. The network architecture for
N = 43 is shown in Fig. 1. We use 3 or 4 hidden layers,
depending on the spatial size of the system, for feature
extraction followed by a fully connected layer before the
output layer. The optimal number of neurons in each
layer (resulting in the largest accuracy) for N = 83 is
found using a Monte Carlo optimization procedure (see
Appendix B).

Machine Learning Phases of Strongly Correlated Fermions
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Machine learning o↵ers an unprecedented perspective for the problem of classifying phases in
condensed matter physics. We employ neural network machine learning techniques to distinguish
finite-temperature phases of the strongly-correlated fermions on cubic lattices. We show that a three-
dimensional convolutional network trained on auxiliary field configurations produced by quantum
Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram
of the model at the average density of one (half filling). We then use the network, trained at half
filling, to explore the trend in the transition temperature as the system is doped away from half
filling. This transfer learning approach predicts that the instability to the magnetic phase extends to
at least 5% doping in this region. Our results pave the way for other machine learning applications
in correlated quantum many-body systems.

I. INTRODUCTION

The various modern architectures of neural networks
consisting of multiple layers and neuron types (see
Fig. 1 for an example) can be trained to classify, with
a high degree of accuracy, intricate sets of labeled
data [1]. The data, e.g, a series of handwritten
digits, are fed to the network input layer and the
outcome, read at the output layer, are neuron activations
corresponding to the di↵erent digits. Common to most
algorithms involving neural networks is the training
procedure, which is an optimization problem where the
free parameters associated with connections between
neurons in adjacent layers and their biases (additive
constants) are slowly adjusted until a high classification
accuracy is attained. Embodied in the study of quantum
and classical statistical mechanics are the many-body
states, which can be understood as immense data sets
associated with the equilibrium state of the system, and
over which machine learning techniques can be naturally
applied. Early applications of machine learning ideas in
condensed matter physics focused on their connection to
renormalization group methods [2], obtaining the Green’s
function of the Anderson impurity model [3], categorizing
real materials [4–7], or learning ground states and
thermodynamics of many-body systems [8, 9]. Tensor-
network representations of quantum states have also
been recently proposed as a powerful tool for supervised
learning [10].

Recently, neural network machine learning algorithms
have been successfully adopted to distinguish phases of
matter in classical Ising-type models, e↵ectively locating
critical temperatures at which transitions between
phases take place [11, 12]. Two of the authors found
that using a simple network consisting of only one
hidden layer, one can predict the transition temperature
with up to 99% accuracy for two-dimensional (2D) Ising
models, solely based on spin configurations generated
by a Monte Carlo simulations and in the absence of any
information about the underlying lattice or the order

parameter.

The extension of the technique to quantum mechanical
systems is less straightforward, as the quantum Monte
Carlo simulations of interacting particles involve an
additional dimension associated with imaginary time in
the path integral formalism at finite temperatures, or
the projection parameter for ground state calculations;
quantum fluctuations can distort the easily recognizable
picture of spin configurations in the ordered phase of
the classical system, and therefore, significantly a↵ect

FIG. 1. Architecture of the 3D convolution neural network
used to obtain TN for the 3D Hubbard model. The input
are the auxiliary field configurations in a four-dimensional
grid; three spatial dimensions of size 4 (total of N = 43 sites),
and one imaginary time dimension of size L = 200. Numbers
of volumetric feature maps in the hidden feature extraction
layers are, n(2) = 32, n(3) = 16, and n(4) = 8. n(5) = 8 in the
fully-connected layer. During training, dropout regularization
with a rate of 0.5 was used to mitigate overtraining. To
classify the input system as ordered or unordered, each of
the 8 fully-connected neurons is connected to each of the two
readout neurons using softmax function as a neural activation
function. The output neuron with the highest probability
represents the activated neuron.
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QUANTUM STATE TOMOGRAPHY WITH RBM
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Figure 2. Reconstruction of few-body observables. Comparison between different few-body observables computed by
sampling the RBM↵ (markers) with quantum Monte Carlo simulations (dashed line). Each data point is obtained with a RBM
from a network trained on separate datasets. a) Diagonal (red circles) and non-diagonal (blue diamonds) magnetization as
a function of the transverse field h for the 1d-TFIM with N = 100 spins. b) Diagonal and non-diagonal magnetization as
a function of the transverse field h for the 2d-TFIM on a square lattice with linear size L = 12. c) Two-point correlation
function (diagonal and non-diagonal)between neighboring spins along the diagonal of the square lattice (linear size L = 12) for
the 2d-XXZ model. RBM tomography allows here to accurately reconstruct both diagonal and off-diagonal observables of the
target state.
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Figure 3. Spin-spin correlation function. Reconstruction of the diagonal spin correlation function h�z
i �

z
j i for the 1d-TFIM

with N = 100 sites at the critical point h = 1. a) Direct calculation on the spin configuration in the training dataset, i.e. exact
result. b) Reconstruction of the correlations by sampling the trained RBM1/2.

of the many-body phase. Once the training is complete,
we can test the representational power of the neural net-
works by computing various observables using the RBMs
and comparing with the values obtained through QMC
simulations.18

We begin by considering few-body observables, such
as magnetization and spin correlations. For the TFIM
we first look at the longitudinal �z magnetization. Be-
cause this observable is diagonal in the basis adopted for
training, the problem reduces to a purely classical one18

and we can easily compute the expectation value from
the configurations of the visible layer, sampled from the
trained RBM. As shown in Fig. 2 (a-b) for one and two
dimensions, the RBMs can reproduce the average val-

ues with high accuracy. We then consider the case of
the transverse �x magnetization, which is off-diagonal
in the training basis. One can obtain the expectation
value by computing the local estimate of the observable
as in variational Monte Carlo simulations (see Suppl.).
Even though reproducing this off-diagonal observable is
non-trivial, the RBM can nonetheless generate values in
agreement with QMC calculations. For the XXZ model,
we show in Fig. 2 (c) the expectation values of the diago-
nal �z

a

�z

b

and off-diagonal �x

a

�x

b

spin correlations, with a
and b being neighbors along the lattice diagonal. Finally,
we consider the full spin-spin �z

i

�z

j

correlation function
for the 1d-TFIM, which involves non-local correlations.
In Fig. 3 we show the reconstruction of the correlation
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Figure 4. Entanglement entropy. Comparison of the sec-
ond Renyi entropy as a function of the subsystem size ` be-
tween the RBMs (markers) and results obtained via exact
diagonalization (dashed lines). a) 1d-TFIM at three different
values of the transverse field, h = 0.8 (red squares), h = 1.0
(blue circles) and h = 1.2 (green diamonds) with N = 20
spins. b) 1d Heisenberg model (� = 1.0) with N = 20 spins
(blue circles).

function using the RBM (a) closely matching the ex-
act result obtained by direct computation from the spin
states making up the training dataset (b).

To further assess the capabilities of our approach, we fi-
nally turn to the entanglement entropy, which is a highly
non-local quantity particularly challenging for direct ex-
perimental observations. It provides important informa-
tion on the universal behavior of interacting many-body
systems and it is of central interest in condensed matter
physics and quantum information theory. The entangle-
ment entropy has been computed numerically for various
physical systems,29 however its highly non-local nature
makes it very challenging to measure in experiments.13
Following the method proposed here, we can obtain an
estimate of this quantity given only simple measurements
of the density, which are more accessible with current ex-

perimental advances30. Given a bipartition of the phys-
ical system, we consider in particular the second Renyi
entropy defined as S

2

(⇢
A

) = � log(Tr(⇢2

A

)), with the sub-
system ⇢

A

of varying size. We estimate S
2

by employ-
ing an improved ratio trick sampling29 using the wave-
function generated by the RBM. In Fig. 4 we show the
entanglement entropy for the 1d-TFIM (a) for three val-
ues of the transverse field, and for the critical (� = 1)
1d-XXZ model (b). In both instances we took a chain
with N = 20 spins and plot the entanglement entropy as
a function of the subsystem size ` 2 [1, N/2]. The values
obtained with the RBM (markers) are compared with re-
sults from exact diagonalization (dashed lines), with an
overall good agreement.

To conclude, we have demonstrated that ML tools
can be efficiently used to reconstruct complex many-
body quantum states from a limited number of exper-
imental measurements. Our scheme is general enough
to be efficiently applied to a variety of quantum de-
vices for which current approaches demand exponentially
large resources. These include QST of highly-entangled
quantum circuits, adiabatic quantum simulators,31 ex-
periments with ultra-cold atoms and ions traps in higher
dimensions. Our approach can be used to directly vali-
date quantum computers and simulators, as well as to in-
directly reconstruct quantities which are experimentally
challenging for a direct observation. For example, we an-
ticipate that the current generation of quantum micro-
scopes could substantially benefit from neural-quantum
states QST. In particular, we predict that the use of our
approach for bosonic ultra-cold atoms experiments would
allow for the determination of the entanglement entropy
on systems substantially larger than those currently ac-
cessible with quantum interference techniques.13
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obtained with the RBM (markers) are compared with re-
sults from exact diagonalization (dashed lines), with an
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To conclude, we have demonstrated that ML tools
can be efficiently used to reconstruct complex many-
body quantum states from a limited number of exper-
imental measurements. Our scheme is general enough
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vices for which current approaches demand exponentially
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E. Miles Stoudenmire1, 2 and David J. Schwab3

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada
2Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA

3Dept. of Physics, Northwestern University, Evanston, IL
(Dated: May 20, 2016)

Tensor networks are e�cient representations of high-dimensional tensors which have been very
successful for physics and mathematics applications. We demonstrate how algorithms for optimizing
such networks can be adapted to supervised learning tasks by using matrix product states (tensor
trains) to parameterize models for classifying images. For the MNIST data set we obtain less than
1% test set classification error. We discuss how the tensor network form imparts additional structure
to the learned model and suggest a possible generative interpretation.

I. INTRODUCTION

The connection between machine learning and statis-
tical physics has long been appreciated [1–9], but deeper
relationships continue to be uncovered. For example,
techniques used to pre-train neural networks [8] have
more recently been interpreted in terms of the renor-
malization group [10]. In the other direction there has
been a sharp increase in applications of machine learn-
ing to chemistry, material science, and condensed matter
physics [11–18], which are sources of highly-structured
data and could be a good testing ground for machine
learning techniques.

A recent trend in both physics and machine learn-
ing is an appreciation for the power of tensor meth-
ods. In machine learning, tensor decompositions can be
used to solve non-convex optimization tasks [19, 20] and
make progress on many other important problems [21–
23], while in physics, great strides have been made in ma-
nipulating large vectors arising in quantum mechanics by
decomposing them as tensor networks [24, 25]. The most
successful types of tensor networks avoid the curse of di-
mensionality by incorporating only low-order tensors, yet
accurately reproduce very high-order tensors through a
particular geometry of tensor contractions [26].

Another context where very large vectors arise is in
non-linear kernel learning, where input vectors x are
mapped into a higher dimensional space via a feature
map �(x) before being classified by a decision function

f(x) = W · �(x) . (1)

The feature vector �(x) and weight vector W can be
exponentially large or even infinite. One approach to deal
with such vectors is the well-known kernel trick, which
only requires scalar products of feature vectors [27].

�

FIG. 1. The matrix product state (MPS) decomposition, also
known as a tensor train. Lines represent tensor indices and
connecting two lines implies summation. For an introduction
to this graphical tensor notation see Appendix A.

In what follows we propose a rather di↵erent approach.
For certain learning tasks and a specific class of feature
map �, we find the optimal weight vector W can be ap-
proximated as a tensor network, that is, as a contracted
sequence of low-order tensors. Representing W as a ten-
sor network presents opportunities to extract information
hidden within the trained model and to exploit the struc-
ture of W in developing optimization algorithms.

One of the best understood types of tensor networks
is the matrix product state [25, 28], also known as the
tensor train decomposition [29]. Matrix product states
(MPS) have been very useful for studying quantum sys-
tems, and have recently been proposed for machine learn-
ing applications such as learning features of images [22]
and compressing the weight layers of neural networks
[23]. Though MPS are best suited for describing one-
dimensional systems, they are powerful enough to be ap-
plied to higher-dimensional systems as well.

There has been intense research into generalizations of
MPS better suited for higher dimensions and critical sys-
tems [30–32]. Though our proposed approach could gen-
eralize to these other types of tensor networks, as a proof
of principle we will only consider the MPS decomposition
in what follows. The MPS decomposition approximates
an order-N tensor by a contracted chain of N lower-order
tensors shown in Fig. 1. (Throughout we will use tensor
diagram notation; for a brief review see Appendix A.)

Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[25, 33]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [34].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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CONCLUSION

➤We encode and discriminate phases and phase transitions, both conventional and 
topological, using neural network technology.  

➤We have an understanding of what the neural nets do in those cases through controlled 
analytical models. 

➤We have explored a somewhat new way to look at condensed matter systems. Hopefully this 

FUTURE PROJECTS
➤ Variational interpretation of CNNs and their optimization for ground state 

➤ Tomography with experimental data  
2

tem, which can be generically written in terms of a classi-
cal statistical mechanics problem defined on a phase space
with configurations C in d + 1 dimensions. The partition
function of the quantum system can thereby be expressed
as a sum of statistical weights over classical configurations,
i.e. Z =

P
C WC . Unlike classical systems, for quantum

Hamiltonians the weights WC can be both positive and neg-
ative (or even complex), which invalidates the usual Monte
Carlo interpretation of WC/Z as a probability distribution. In
principle, a stochastic interpretation can be salvaged by con-
sidering a modified statistical ensemble with probability dis-
tribution PC / |WC | and concomitantly moving the sign of
WC to the observable

hOi =

P
C O(C) · WCP

C WC
=

P
C O(C) · sign(WC) · |WC |P

C sign(WC) · |WC |

=

hsign · Oi|W |

hsigni|W |
. (1)

This procedure, although formally exact, introduces the QMC
sign problem as a manifestation of the “small numbers prob-
lem”, where the numerator and denominator in the last expres-
sion both approach zero exponentially in system size N and
inverse temperature � [1, 2], e.g. we have

hsigni|W | = exp(��N�f) , (2)

where �f is the difference in the free energy densities of the
original fermionic system and the one with absolute weights.
Thus resolving the ratio in Eq. (1) within the statistical noise
inherent to all Monte Carlo simulations becomes exponen-
tially hard. The advantage of importance sampling, which
often translates into polynomial scaling, is lost.

In this work, instead of attempting to obtain exact expec-
tation values of physical observables, or attempting to find a
basis C where WC is always non-negative or that ameliorates
the calculation of hsigni|W |, we introduce a basis-dependent
“state function” F (C) whose goal is to associate configura-
tions C with the most likely phase of matter they belong to
for a given Hamiltonian. More precisely, we assume that there
exists a function F (C) such that its expectation value in the
modified ensemble of absolute weights

hF i|W | =

P
C F (C) · |WC |P

C |WC |
(3)

is 1 when the system is deep in phase A and 0 when the
system is deep in the neighboring phase B. Around the
critical point separating phase A from B, hF i|W | crosses
over from one to zero. The value hF i|W | = 1/2 indicates
that the function can not make a distinction between phases A
and B, and therefore assigns equal probability to both phases.
We therefore interpret this value as locating the position of
the transition separating the two phases in parameter space
[16]. In practice, we use a deep CNN to approximate the
state function F , which is trained on configurations sampled
from the modified ensemble |WC |/

P
C |WC | in the two

conv pool conv pool full dropout full

Figure 1. (Color online) Schematic illustration of the neural network
used in this work. A combination of convolutional (conv) and max
pooling layers (pool) is first used to study the image, before the data
is further analyzed by two fully connected neural networks separated
by a dropout layer. The convolutional and the first fully connected
layer are activated using rectified linear functions, while the final
layer is activated by a softmax function.

different phases A and B. If such a function F can indeed be
crafted, then the above procedure leads to a sign-problem free
discrimination of the two phases and their phase transitions
through the evaluation of hF i|W |.

Convolutional Neural Networks

Artificial neural networks have long been identified to be the
key ingredient of powerful pattern recognition and machine
learning algorithms [17, 18]. More recently, neural networks
and other machine learning algorithms have been brought to
the realm of statistical physics. On a conceptual level, par-
allels between deep learning and renormalization group tech-
niques have been explored [19, 20], while on a more practical
level machine learning algorithms have been applied to model
potential energy surfaces [21], relaxation in glassy liquids [22]
or the identification of phase transitions in classical many-
body systems [14, 15]. Boltzmann machines, as well as their
quantum extensions [23], have been applied to statistical me-
chanics models [24] and quantum systems [25]. On the other
hand, new supervised learning algorithms inspired by tensor-
network representations of quantum states have been recently
proposed [26]. In machine learning, the goal of artificial neu-
ral networks is to learn to recognize patterns in a (typically
high dimensional) data set. CNNs, in particular, are nonlinear
functions which are optimized (in an initial “training” step)
such that the resulting function F allows for the extraction
of patterns present in the data under consideration. Here we
take this approach to construct a function F , represented as
a deep CNN, that allows the classification of many-fermion
phases as outlined in the previous section. Our choice of em-
ploying a deep CNN layout is rooted in the observation that
the configurations generated from the quantum Monte Carlo
algorithms can be often interpreted as “images” as we explain
below in more detail, and our analysis can be regarded as an
image classification problem – an extremely successful appli-
cation of CNNs.

The architecture of the CNN we use is depicted schemati-
cally in Fig. 1 with a more detailed technical discussion of the
individual components presented in the Methods section. We
feed the CNN with Monte Carlo configurations (illustrated
on the left), which, processed through the network, provide a
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DO THE RESULTS EXTEND TO OTHER INTERESTING CASES?
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FIG. 3: Detecting the critical temperature of the triangular Ising model through the crossing of

the average of the output layer neurons over the test sets as a function of temperature. The neural

net has been trained on states and critical temperature of the square lattice model. The vertical

orange lines signal the critical temperature of the Ising model T
c

= 4/ ln 3, while the blue dashed

line represents our estimate T
c

= 3.63581.

Figure 3. Greater interest would lie in the application of such techniques to problems of

modern interest in condensed matter, such as disordered or topological phases, where no

conventional order parameter exists and thus defying Landau’s symmetry-breaking classi-

fication of matter. Coulomb phases, in particular, are states of frustrated lattice models

in which local energetic constraints lead to highly degenerate classical spin liquid ground

states with distinctive power-law decaying correlation functions and a peculiar signature in

the spin structure factor in the form of pinch points.[17] We consider a 2d square ice Ising

model that exhibits a Coulomb phase at zero temperature whose Hamiltonian is given by

H = J
X

v

Q2
v

(1)

where the charge at vertex v is Q
v

=
P

i2v �z

i

, and �z

i

= ±1 are classical spin variables

located in the bonds of the square lattice as shown in Figure (A). The ground state manifold

Tc within <1%!

Yes. We can obtain Tc in the triangular lattice from 
numerically trained model on the square lattice! 

6

FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish
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ANALYTICAL UNDERSTANDING
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Artificial neural networks

f : Rn ! Rm

Artificial neural networks are a family of models 
used to approximate functions that can take values on very 

high dimensional inputs. They are represented as 
interconnected "neurons" which are non-linear functions that 

exchange messages between each other
Connections= sets of adaptive 

weights, i.e. numerical parameters 
that are tuned by a learning 

algorithm
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WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ It detects the local constraints induced by the Hamiltonian
13

CA B

FIG. 7: Investigating the source of discriminative power of the convolutional neural net. New

test sets with sublattice rotations where the local constrains are such that 1/2 spins per plaquette

(A) and 1/8 spins per plaquette (B) are flipped. The red crossess symbolize the flipped spins.

(C) Cuts/stitches (yellow dashed lines) performed on the ground state configurations in order to

produce a new test set from mixing the 4 resulting pieces among di↵erent ground states.

and (B), we consider transformations where a spin is flipped every m = 2 (A) (m = 8 (B))

plaquettes. The positions of the flipped spins are marked with red crosses. After optimizing

the CNN using the original training set, the neural net classifies most of the transformed

T = 0 states as high-temperature ones, resulting in an overall test accuracy of 50% and 55%

for m = 2 and m = 8, respectively. This reveals that the neural net relies on the presence of

satisfied local constraints of the original Ising lattice gauge theory, and not on the topological

order of the state, in deciding whether a state is considered low or high temperature. Second,

we consider a new test set where the T = 0 states retain most local constraints but disrupt

non-local features like the extended closed-loop structure. We consider dividing the original

states into 4 pieces as shown in Figure 7(C) and then reshu✏ing those 4 pieces among

di↵erent states, subsequently stitching them to form new “low” temperature configurations.

The new configurations will contain defects along the dashed lines in Figure 7(C), thus

disrupting the extended closed-loop picture, but preserving the local constraints everywhere

else in the configuration. We find that the trained CNN recognizes such states as ground

states with high confidence, suggesting that the CNN does not use the extended closed-loop

structure and indicating that local constraints are the only features that the CNN relies on

for classification of the ground state.



ARTIFICIAL SQUARE ICE 

➤ Wang and collaborators have used lithographic techniques to 
create a periodic two-dimensional array of single-domain sub 
micron ferromagnetic islands Nature 439, 303 (2006) 
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Artificial square ice and related dipolar nanoarrays

G. Möller1 and R. Moessner2
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We study a frustrated dipolar array recently manufactured lithographically by Wang et al. [Nature
439, 303 (2006)] in order to realize the square ice model in an artificial structure. We discuss models
for thermodynamics and dynamics of this system. We show that an ice regime can be stabilized
by small changes in the array geometry; a different magnetic state, kagome ice, can similarly be
constructed. At low temperatures, the square ice regime is terminated by a thermodynamic ordering
transition, which can be chosen to be ferro- or antiferromagnetic. We show that the arrays do not
fully equilibrate experimentally, and identify a likely dynamical bottleneck.

Introduction: The ability to manipulate constituent
degrees of freedom of condensed matter systems and their
interactions is fundamental to attempts to advance our
understanding of the variety of phenomena presented to
us by nature. For a long time this has been achieved by
utilizing the combinatorial richness of the periodic table
of elements to construct different chemical compounds.

A more recent option is to use the tools of nanotechnol-
ogy to custom-tailor degrees of freedom which can be as-
sembled in a highly controlled manner; e.g. this has been
proposed for realizing a topologically protected quantum
computer using Josephson Junction arrays [2]. Submi-
cron superconducting rings have also been used to pro-
vide effective spin-1/2 degrees of freedom [3].

Very recently, Wang and collaborators have used litho-
graphic techniques to create a periodic two-dimensional
array of single-domain submicron ferromagnetic islands
[1], depicted in Fig. 1. This design approach takes advan-
tage of well-established lithographic techniques and en-
ables reading of the state of the system with local probes,
such as magnetic force microscopes, to image the state
of single constituent magnetic islands [4].

The first aim of this study is to assemble a system that
realizes the square ice model. This is an attractive target
model because of its long and distinguished history dur-
ing which algebraic correlations and a finite entropy at
zero temperature have been established, as well as con-
nections to exact solutions, quantum magnetism, unusual
dynamics and gauge theories [5].

The pioneering study by Wang et al. raises a num-
ber of important questions which we try to address here.
Firstly, what are appropriate models for the arrays’ ther-
modynamics and dynamics? Secondly, what other sys-
tems can one hope to build with these techniques? And
thirdly, what are interesting directions in which further
developments would be desirable?

In particular, the question of whether a dipolar sys-
tem with long-range interactions can be modelled by the
short-range ice model is rather similar to the one posed
in the case of (three-dimensional) dipolar spin ice, where
it was found that a nearest-neighbor description was sur-
prisingly accurate for a range of properties, such as the
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FIG. 1: (color online) Left: Atomic force microscope image of
an array studied in Ref. 1. The islands have length l = 220nm,
width 80nm and thickness 25nm. Right: Map of the ratio
J2/J1 of the second to the first nearest neighbor interactions
(highlighted in the left part) for different values of lattice
constant, a, and sublattice height offset, h. In the white zone,
|J2/J1 − 1| < 5%. In the left (blue) region, the ordered state
is antiferromagnetic, whereas it is ferromagnetic in the right
(yellow-red) area.

low-temperature (Pauling) entropy [6, 7, 8, 9, 10].
In this paper we show that an analogous equiva-

lence between ice states and the ground states of two-
dimensional dipoles on the links of the square lattice is
more delicate. However, it can be established via a route
quite different from the three-dimensional case, namely
by (a) placing the dipoles pointing in different directions
onto slightly different heights and (b) manufacturing the
dipoles as elongated as possible. It turns out to be easier
to realize kagome ice in a dipolar array, as the requisite
symmetry is compatible with embedding in a plane.

As a byproduct, the low-temperature antiferromag-
netic (in ice language: antiferroelectric) instability of the
original model can be designed to be replaced by a ferro-
magnetic one. However, the experiments observe no or-
dering transition, implying that the array does not fully
equilibrate. We are thus led to study a phenomenologi-
cal model for its dynamics: zero-temperature (‘greedy’)
stochastic dynamics subject to an energy barrier for spin
flips. This reproduces the experimental measurements
semi-quantitatively. Such dynamics are insufficient to an-
neal out isolated defects violating the ice rules even for
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Figure 2(c)). The ground state is again a degenerate manifold8, 21 with exponentially-decaying spin-

spin correlations. As in the square ice model, we attempt to use the neural network in Figure 1(a) to

classify the high- and low- temperature states, but find that the training fails to classify the test sets

to an accuracy of over 50% – equivalent to simply guessing. Instead, we employ a convolutional

neural network (CNN)3, 22 which readily takes advantage of the two-dimensional structure as well

as the translational invariance of the model. We optimize the CNN in Figure 2(d) using Monte

Carlo configurations from the Ising gauge theory at T = 0 and T = 1. The CNN discriminates

high-temperature from ground states with an accuracy of 100% in spite of the lack of an order

parameter or qualitative differences in the spin-spin correlations. We find that the discriminative

power of the CNN relies on the detection of satisfied local energetic constraints of the theory,

namely whether
Q

i2p �z
i is either +1 (satisfied) or -1 (unsatisfied) on each plaquette of the system

(see the supplementary Figures S5). We construct an analytical model to explicitly exploit the

presence of local constraints in the classification task, which discriminates our test sets with an

accuracy of 100% (see supplementary Figure S6).

Notice that, because there is no finite-temperature phase transition in the Ising gauge theory,

we have restricted our analysis to temperatures T = 0 and T = 1, only. However, in finite

systems, violations of the local constraints are strongly suppressed, and the system is expected to

slowly cross over to the high-temperature phase. The cross-over temperature T ⇤ happens as the

number of thermally excited defects ⇠ N exp(�2J�) is of the order of one, implying T ⇤/J ⇠

1/ ln
p

N .23 As the presence of local defects is the mechanism through which the CNN decides

whether a system is in its ground state or not, we expect that it will be able to detect the crossover

temperature in a test set at small but finite temperatures. In Fig.3 we present the results of the

output neurons of our analytical model for different system sizes averaged over test sets at different

temperatures. We estimate the inverse crossover temperature �⇤J based on the crossing point of

the low- and high-temperature output neurons. As expected theoretically, this depends on the

7

system size, and as shown in the inset in Fig.3, a clear logarithmic crossover is apparent. This

result showcases the ability of the CNN to detect not only phase transitions, but also nontrivial

crossovers between topological phases and their high-temperature counterparts.

A final implementation of our approach to a system of noninteracting spinless fermions sub-

ject to a quasi-periodic potential 24 demonstrates that neural networks can distinguish metallic from

Anderson localized phases, and can be used to study the localization transition between them (see

the supplementary Figure S3 and S4).
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Figure 3 Detecting the logarithmic crossover temperatures in the Ising gauge theory.

Output neurons for different system sizes averaged over test sets vs �J . Linear sys-

tem sizes L = 4, 8, 12, 16, 20, 24, and 28 are represented by crosses, up triangles, circles,

diamonds, squares, stars, and hexagons. The inset displays �⇤J (octagons) vs L in a

semilog scale. The error bars represent the one standard deviation statistical uncertainty.

8



FOR A REAL NN THIS REMAINS TRUE

input states are mostly polarized up or down, while the other two classes activate if the states are

polarized up (down) or unpolarized. When compared to our toy model, the training of the 100-

unit model is such that the neural network behaves more symmetrically as it constructs neurons

that detect both polarized up/down or unpolarized in the classification process, while in the con-

struction of our toy model we only use a neuron that activates when the states are polarized up or

unpolarized.

�1.0 �0.5 0.0 0.5 1.0
m(x)

�10

�5

0

5

10
W

tx
+

b t

Figure S2 Investigating the numerically trained model. Hidden layer arguments as a

function of the magnetization of the Ising state m(x) (colored circles) for the numerically

trained model with 100 units. All the curves lie on top of only 4 different straight lines but

to ease their visualization all curves are artificially spaced vertically.

2 Aubry-Andr

´

e model of spinless fermions

In this section we explore whether our supervised learning approach has the potential to be ex-

tended to quantum systems. To do this we consider a simple fermionic, i.e., the Aubry-André

model of spinless fermions2 at half-filling. Its Hamiltonian is given by H = �J
P

i

⇣
c†ici+1 + h.c

⌘
+

5


