Ab initio molecular tier model for vibrational quantum dynamics

Hiroshi Fujisaki

(Nippon Medical School, Institute of Statistical Mathematics)

On 3/24-25/2017 @ RIKEN AICS (Kobe) "International workshop on numerical methods and simulations for materials design and strongly correlated quantum matters"

Collaborators

- Gerhard Stock (Freiburg Univ.)
 - Tier model
 - Dynamic effect on perturbation

- Kiyoshi Yagi (RIKEN)
 - Anharmonic coefficient
 - calculations
 - VSCF/VCI calculations

- John E. Straub (Boston Univ.)
 - Time-dependent perturbation
 - Applications to biomolecules

- Hiroto Kikuchi (Nippon Medical School)
 - Enzymatic reactions
- Toshiya Takami (Oita Univ.)
 - Controlling quantum dynamics
- Motoyuki Shiga (JAEA)
 - Quantum string method

Alexander von Humboldt Stiftung/Foundation FUNDED by KAKENHI (Japan Society of the Promotion of Science) and Alexander von Humboldt Foundation

Contents

- Motivation: Why quantum dynamics in (bio)molecules?
 - Recent spectroscopic studies
 - Recent theoretical development
 - Our previous work
- Molecular tier model
 - "Economical" quantum modeling
 - Implementation
 - Applications: Three isomers of acetylbenzonitrile
- Summary
- Controlling quantum mechanical systems

Why quantum dynamics in (bio)molecules?

- Harmonic approximation is sometimes enough
 - Classical and quantum completely agree each other
- There are residual anharmonic effects
 - Frequency shift
 - Energy flow (transfer)
- Bond vibrations (should) have quantum character

 $- k_B T \approx 200 \text{ cm} - 1$

Recent advance in spectroscopy

>>> Vibrational energy flow experiment <<<

Isotopically labelled pump-probe experiment

Dual-frequency 2D-IR experiment

Botan, Backus, Pfister, Moretto, Crisma, Toniolo, Nguyen, Stock, Hamm, PNAS **104**, 12749 (2007).

Rubtsov, Acc. Chem. Res. 42, 1385 (2009).

Further experiment on energy flow

Henrike M. Müller-Werkmeister, Yun-Liang Li, Eliza-Beth W. Lerch, Damien Bigourd, <u>Jens Bredenbeck</u> *Angew. Chem. Int. Ed.* **52**, 6214–6217 (2013)

Brandt C. Pein and Dana D. Dlott* J. Phys. Chem. A, 2014, 118 (6), pp 965–973

Energy flow in molecular wire

D. Segal and B. K. Agarwalla Vibrational Heat Transport in Molecular Junctions Annu. Rev. Phys. Chem. 2016. 67, 185-209.

Vibration affects electron transfer

Phys. Chem. Chem. Phys. 17 (2015) 30854-30866

Energy flow in a protein

Cytochrome c

N. Fujii, M. Mizuno, Y. Mizutani, J. Phys. Chem. B **115**, 13057 (2011).

Recent theoretical development

Notice!

- I only consider quantum dynamics of molecular vibrations
 - Not electrons
 - Dynamics on an electronically ground state
 - No nonadiabatic dynamics
 - No reaction (bond breaking or bond forming)
 - No conformational change
 - Vibrations around a single stable point (basin)
- But it is still difficult!

Basic strategy for quantum dynamics

- Represent a Hamiltonian and a wavefunction using some "basis" functions
- Solve the linear simultaneous equation (Schrodinger eq.) as an initial value problem
- If the basis function is good, the convergence is obtained for large number of basis functions
- Exponential wall for the degree of freedom!

VSCF/VCI method

- Clever way to select the basis functions
- Borrowing the concept from quantum chemistry calculation
 - Hartree method
- Integral for the mean potential is time-consuming
 - There are approximate ways to deal with it
 - N-mode representation
- Configuration interaction (CI) is applied for vibration
 - So called VCI

$$\Psi_{\mathbf{n}}^{\mathrm{VSCF}} = \prod_{i=1}^{f} \phi_{\mathbf{n}_{i}}^{(i)}(Q_{i}),$$

K. Yagi: Sindo code

$$\left[-\frac{1}{2}\frac{\partial^2}{\partial Q_i^2} + \left\langle \prod_{j \neq i} \phi_{n_j}^{(j)} |V| \prod_{j \neq i} \phi_{n_j}^{(j)} \right\rangle \right] \phi_{n_i}^{(i)} = \epsilon_{n_i}^{(i)} \phi_{n_i}^{(i)}.$$

Configuration Interaction

$$\Psi_{\mathbf{n}}^{\mathrm{VCI}} = \sum_{\mathbf{m}} C_{\mathbf{mn}} \Psi_{\mathbf{m}}^{\mathrm{VSCF}}.$$

$$|\Psi(t)\rangle = \sum_{\mathbf{n}} \langle \Psi_{\mathbf{n}}^{\mathrm{VCI}} | \Psi(0) \rangle \mathrm{e}^{-\mathrm{i}E_{\mathbf{n}}t/\hbar} | \Psi_{\mathbf{n}}^{\mathrm{VCI}} \rangle.$$

H. Fujisaki, K. Yagi, K. Hirao, J.E. Straub, Chem. Phys. Lett. 443 (2007) 6

Methods based on Path integral

"Isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids"

$$Z = \int d\mathbf{q} d\mathbf{p} \cdot \exp[-\beta H_{eff}]$$

$$H_{eff} = \left(\sum_{i=1}^{P} \frac{p_i^2}{2m_i}\right) + V_{eff}$$

$$V_{eff} = \sum_{i=1}^{P} \left[\frac{mP}{2\beta^2 \hbar^2} (q_i - q_{i+1})^2 + \frac{1}{P} V(q_i) \right]$$

David Chandler and Peter G. Wolynes J. Chem. Phys. 74, 4078 (1981)

Quantum mechanical free energy

Centroid density: Probability for finding the state around $(\mathbf{c}_1, \cdots, \mathbf{c}_N)$

$$\rho\left(\mathbf{c}_{1},\cdots,\mathbf{c}_{N}\right) = \left\langle \prod_{i=1}^{N} \delta\left(\frac{1}{P} \sum_{s=1}^{P} \mathbf{r}_{i,s} - \mathbf{c}_{i}\right) \right\rangle_{PI}$$
$$= Z^{-1} \lim_{P \to \infty} \left[\prod_{i=1}^{N} \left(\frac{m_{i}P}{2\pi\beta\hbar^{2}}\right)^{\frac{3P}{2}} \int d\mathbf{r}_{i,1} \int d\mathbf{r}_{i,2} \cdots \int d\mathbf{r}_{i,P} \right] \exp\left(-\beta V_{eff}\left[\mathbf{r}\right]\right) \left[\prod_{i=1}^{N} \delta\left(\frac{1}{P} \sum_{s=1}^{P} \mathbf{r}_{i,s} - \mathbf{c}_{i}\right) \right]$$

Definition: Free energy for centroid variables

$$A(\mathbf{c}_1,\cdots,\mathbf{c}_N) \equiv \beta^{-1} \log \rho(\mathbf{c}_1,\cdots,\mathbf{c}_N)$$

Free energy gradient ~ effective force (potential of mean force)

$$\frac{\partial A}{\partial \mathbf{c}_{i}} = \frac{\left\langle \left[\frac{1}{P}\sum_{s=1}^{P}\frac{\partial V(\mathbf{r}_{i,s})}{\partial \mathbf{r}_{i,s}}\right]\prod_{i=1}^{N}\delta\left(\frac{1}{P}\sum_{s=1}^{P}\mathbf{r}_{i,s}-\mathbf{c}_{i}\right)\right\rangle_{PI}}{\left\langle \prod_{i=1}^{N}\delta\left(\frac{1}{P}\sum_{s=1}^{P}\mathbf{r}_{i,s}-\mathbf{c}_{i}\right)\right\rangle_{PI}} = \left\langle \left[\frac{1}{P}\sum_{s=1}^{P}\frac{\partial V(\mathbf{r}_{i,s})}{\partial \mathbf{r}_{i,s}}\right]\right\rangle_{\mathbf{c}_{j}=\frac{1}{P}\sum_{s=1}^{P}\mathbf{r}_{j,s} \text{ for all } j}$$

Computational conditions

System: N₂H₅⁻ion, RIMP2/SV(P)*

- Bead #: P = 1, 4, 8, 16, 32
- Polymer #: *L* = 41
- Step #: N_{step} = 500
- Cycle #: *M*_{cycle} = 40

cf. # of ab initio calculation: 32*41*500*40 = 26,240,000

For ab initio calculations, we used Turbomole	
[R. Ahlrichs, M. Baer, M. Haeser, H. Horn and Ch. Koelmel, Chem. Phys. Lett. 162, 165 (1989)]

Quantum string method (centroid intrinsic reaction coordinate)

"Centroid variables" are used as coarse-grained variables

Quantum

Small & solid atoms : classical coordinates Large & transparent: quantum centroids

deprotonated ammonia dimer, N₂H₅⁻ M. Shiga and H. Fujisaki, J. Chem. Phys. 136, 184103 (2012)

Still difficult to treat quantum dynamics within path integral formalism

- Simplification of the model
 - System bilinearly coupled to a harmonic bath
- Perturbative expansion
- Semiclassical approaches
 - Use of bunches of classical trajectories with complex weight
 - Negative sign problem
 - Convergence is very slow
- Quasi-classical method
 - Neglect of phase information

Our previous attempts (2005~2010)

- Chemical detail in vibrational energy relaxation
 - Calculate anharmonicity of force fields or ab initio potential and regard them as perturbation
 - We used simply timedependent perturbation theory
 - Short-time approximation
 - Some dynamic extension is possible
 - H. Fujisaki, G. Stock, J.
 Chem. Phys. 129, 134110 (2008)

$$H = H_{S} + H_{B} + V$$

$$H_{S} = \frac{p_{S}^{2}}{2} + \frac{\omega_{S}^{2}}{2}q_{S}^{2}$$

$$H_{B} = \sum_{k} \left(\frac{p_{k}^{2}}{2} + \frac{\omega_{k}^{2}}{2}q_{k}^{2}\right)$$
Normal mode approx.
$$In the exp[-s(t)]$$

$$s(t) = \frac{\hbar}{2} \sum_{k,l} \frac{(C_{skl})^{2}}{\omega_{S}\omega_{k}\omega_{l}} \frac{1 - \cos(\omega_{S} - \omega_{k} - \omega_{l})t}{(\omega_{S} - \omega_{k} - \omega_{l})^{2}}$$

Fujisaki, Zhang, Straub, J.Chem.Phys.**124** (2006) 144910 Fujisaki, Straub, J. Phys. Chem. B **111** (2007) 12017.

Applications: porphyrin + imizadole

What is lacking in previous studies?

- Just truncated ("model") molecule
 - Not "real" system!
 - We first should try QM/MM potential construction
- Perturbation theory ~ shorttime approximation
 - Longer timescale is not captured
 - Power law decay
 - Energy flow into lower frequency modes
 - Functionally important motions
 - Quantum-classical correpondence?

Tier model for quantum systems

- "Graph theory" of quantum mechanics
 - Node: state (e.g. normal mode basis set)
 - Link (edge): interaction (e.g. due to anharmonic coupling)
- History
 - Seminal work
 - Sibert, Reinhardt, Hynes (1984)
 - Multi-photon excitation
 - Tietz, Chu (1981)
 - Chang, Wyatt (1985)
 - Energy flow problem for highly excited states
 - Logan, Wolynes (1990)
 - Stuchebrukhov, Marcus (1993)
 - Gruebele (1995~)
 - Leitner, Wolynes (1998~)

Implementation (1)

Bowman @ Emory Kiyoshi Yagi @ RIKEN

- Hamiltonian
 - Normal mode representation + anharmonic corrections

$\left(\right)$	$H = H_0 + V,$	\mathcal{A}
	$H_{0} = \sum_{k} \left(\frac{p_{k}^{2}}{2} + \frac{\omega_{k}^{2}}{2} q_{k}^{2} \right),$	
	$V = \frac{1}{3!} \sum_{ijk} C_{ijk} q_i q_j q_k$	
	+ $\frac{1}{4!} \sum_{ijkl} C_{ijkl} q_i q_j q_k q_l$	

- We decide the mode space (lowest ~ highest modes)
- Lowest modes are dangerous!

• 3 mode representation

$$\begin{split} V &= V^{2\text{MR}} + V^{3\text{MR}}, \\ V^{2\text{MR}} &= \frac{1}{2} \sum_{i \neq j} \left(C_{ijj} q_i q_j^2 + \frac{1}{3} C_{ijjj} q_i q_j^3 \right) \\ &+ \frac{1}{4} \sum_{i < j} C_{iijj} q_i^2 q_j^2, \\ V^{3\text{MR}} &= \sum_{i < j < k} C_{ijk} q_i q_j q_k + \frac{1}{2} \sum_{i \neq j < k} C_{iijk} q_i^2 q_j q_k \end{split}$$

- Potential energy surface is calculated by quantum chemisty software (Gaussian)
- We obtain the anharmonic coefficient using numerical differentiation of the potential or hessian matrix

Implementation (2)

• State selection

Resonance condition

If
$$\left|E_{\alpha} - E_{\beta}\right| < E_{\text{th}}$$

 $\left(E_{\alpha} \simeq \sum_{k} \hbar \omega_{k} n_{k}\right)$

Then we accept the state $|\cdots, n_i + a, \cdots, n_j + b, \cdots \rangle_{\beta}$

- Matrix elements
 - For $q_i q_j^2$ term
 - $\langle n_i | q_i | n_i + a \rangle \langle n_j | q_j^2 | n_j + b \rangle$
 - Sum up over all terms if the Fermi resonance parameter

$$\left| \frac{\left| \left\langle \alpha \left| V \right| \beta \right\rangle \right|}{E_{\alpha} - E_{\beta}} \right| > f_{\rm th}$$

- is above a threshold!
- Quantum dynamics
 - Leap-frog method
 - Simple, stable and efficient

$$\phi(t + \Delta t) \rangle = \left| \phi(t - \Delta t) \right\rangle + \frac{2\Delta t}{i\hbar} H \left| \phi(t) \right\rangle$$

Leap-frog method

Classical leap-frog method

$$\begin{aligned} x(t + \Delta t) &= x(t) + \upsilon(t + \Delta t / 2) \Delta t, \\ \upsilon(t + 3\Delta t / 2) &= \upsilon(t + \Delta t / 2) + f(x(t + \Delta t)) \Delta t \end{aligned}$$

Quantum leap-frog method

$$\left|\phi(t+\Delta t)\right\rangle = \left|\phi(t-\Delta t)\right\rangle + \frac{2\Delta t}{i\hbar}H\left|\phi(t)\right\rangle$$

Energy transfer observed with pump-probe and 2D-IR spectroscopy

for Acetylbenzonitrile (AcPhCN)

Igor Rubtsov

Kasyanenko, Tesar, Rubtsov, Burin, Rubtsov, J. Phys. Chem. B 115, 11063 (2011).

What to monitor? Normal mode energy and kinetic energy

- Normal mode energy of a molecule
 - High frequency: localized
 - Low frequency: delocalized
- Kinetic energy of an atom
 - "Thermo-meter"
 - Conversion between normal mode and kinetic energy is needed

$$E_k(t) = \frac{1}{2} \langle \Psi(t) | (p_k^2 + \omega_k^2 q_k^2) | \Psi(t) \rangle$$

Normal mode energy x 2

$$E_{\rm CO}^{\rm kin}(t) = \frac{1}{2} \sum_{i,k} \mathscr{U}_{ik}^2 \, \hbar \omega_k n_k(t),$$

: orthogonal matrix for diagonalizing the hessian matrix

 $v_k(t)$: population on mode k at time t

Approximate calculation of quantum kinetic energy

Technical notes

- Calc. level: B3LYP(6-31G(d,p)) in implicit solvent (chroloform)
 - We can improve a bit more
 - No explicit solvent
- From 11th through 47th modes are included
 - Modes with less than 200 cm-1 or higher than CN vibrational frequency are excluded
 - Lowest modes are always dangerous for this type of calculations!
- Dimension of the resulting Hamiltonian matrix ~ 10000 (at most)
 - Convergence is checked

- CN harmonic frequency is scaled down according to higher level calculation and experiment
 - Stuchebrukhov, Marcus (1993)
 - Otherwise, oscillatory behavior
- For classical calculation
 - We just solve the Newton equation from an initial condition mimicking the CN mode excitation
 - Other modes initially have thermal energy with 300K
 - A small number of trajectories go out of the basin. Such a trajectory is excluded from the calculation
 - Normal mode energy and kinetic energy are defined to go along with quantum ones

Numerical result: Convergence check

 ^{2&}lt;sup>nd</sup> tier is not sufficient at all for describing relaxing behavior

H. Fujisaki, K. Yagi, H. Kikuchi, T. Takami, G. Stock, Chem. Phys. 482 (2017) 86.

Comparison between quantum and classical dynamics

H. Fujisaki, K. Yagi, H. Kikuchi, T. Takami, G. Stock, Chem. Phys. 482 (2017) 86.

Energy transfer between CN and CO bonds

H. Fujisaki, K. Yagi, H. Kikuchi, T. Takami, G. Stock, Chem. Phys. 482 (2017) 86.

Mode selectivity of quantum energy flow

Red: Quantum energy exchange Green: Classical energy exchange

AcPhCN + chroloform system should be considered

- Generate trajectories using MD code (amber)
- Take snapshots from them
- (Partially?) Optimize the cluster system
- Calculate the frequencies and anharmonic coefficients
- Construct the tier model
- Quantum dynamics calculation
 - Solute-solvent quantum energy transfer
 - Not yet done!

N-methylacetamide + water cluster

Y. Zhang, H. Fujisaki and J.E. Straub, J. Phys. Chem. A 113, 3051-3060 (2009).

Summary I

- Quantum dynamics simulations are needed to understand and interpret recent time-resolved spectroscopic experiments
- To go beyond the previous study using perturbation theory, we developed a molecular tier model with chemical detail
 - Applications to acetylbenzonitrile
 - Second and third as well as first tiers are important!
 - Simple perturbation approach is not enough for this system
 - Partly agrees with Rubtsov's experiment
- Further analysis and refinement is needed
 - To include the solvent effects, we need a cluster model
 - Multiresolution idea to construct a "cheap" potential for a large molecular system
 - Better ways to construct state space
 - Matrix product state (MPS)?

Relation to (quantum) chaos

P(S)

- Highly excited molecules (or nuclei) are "quantum chaotic"
 - Classically corresponding dynamics is chaotic
 - Scattered phase space portrait
 - Energy-level statistics well described by <u>Wigner distribution</u>
 - Similar to Random matrix system

Phase space structure of a kicked rotor (classicalchaos system)

https:// sieste.wordpress.com/ 2012/04/21/phase-spaceplot-of-the-kicked-rotor/

H. Fujisaki and K. Takatsuka, Phys. Rev. E 63, 066221 (2001)

"Chaos" in atoms and molecules

H. Fujisaki, Phys. Rev. A 70, 012313 (2004)

Controlling quantum dynamics

- Laser shaping technology has been developing in experiment
 - Femtochemistry (Zewail)
 - Modulation of time and frequency component of a laser pulse
- Population inversion
 - Basic concept: π-pulse
 - Rabi oscillation between two quantum states
- General methods for control
 - Genetic algorithm (machine learning)
 - Optimal control theory

System and problem to be studied

T. Takami

The Hamiltonian with an external (Laser) field $\mathcal{E}(t)$:

 $H[\varepsilon(t)] = H_0 + \varepsilon(t)V$

 H_0 : unperturbed Hamiltonian of a molecule

 $V\,$: dipole interaction between molecule and Laser

Boundary Conditions:

Optimal control theory (OCT)

T. Takami

In quantum mechanics, we can use the **OCT** to obtain an external field $\varepsilon(t)$ for controlling quantum states[2,5,6,7]. According to the method of Zhu-Botina-Rabitz[7], the external field $\varepsilon(t)$ is obtained by maximizing the functional

$$J(|\phi(t)\rangle, |\chi(t)\rangle, \varepsilon(t)) = |\langle \phi(T) | \varphi_f \rangle|^2 -\alpha \int_0^T dt \, |\varepsilon(t)|^2 - 2\operatorname{Re}\left[\langle \phi(T) | \varphi_f \rangle \int_0^T dt \, \langle \chi(T) | \frac{\partial}{\partial t} + iH[\varepsilon(t)] | \phi(t) \rangle\right]$$
(1)

 \circ T: final time, α : penalty factor, $\varepsilon(t)$: external field

- $\circ |\phi(t)
 angle, |\chi(t)
 angle$: quantum states
- Boundary conditions: $|\phi(0)\rangle = |\phi_i\rangle$, $|\chi(T)\rangle = |\phi_f\rangle$

and the expression is

$$\varepsilon(t) = \frac{1}{\alpha \hbar} \operatorname{Im} \left[\langle \phi(t) | \chi(t) \rangle \langle \chi(t) | \frac{\partial H(t)}{\partial \varepsilon(t)} | \phi(t) \rangle \right]$$
(2)

[6] J. Manz, K. Sundermann, R. de Vivie-Riedle, Chem. Phys. Lett. 290, 415 (1998).
[7] W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998).

T. Takami

Kicked rotor system is widely used in classical and quantum study of chaos. We construct a model of the kicked rotor system interacting with an external field, and show the results by our field.

A kicked rotor in an external field

Standard map[12]:

$$p' = p + \frac{K}{T} \sin q, \qquad q' = q + Tp' \qquad (13)$$

Hamiltonian of Kicked Rotor:

$$H_{\mathsf{KR}}(K;t) = \frac{1}{2}\hat{p}^2 + \frac{K}{\tau}\cos\hat{q}\sum_n\delta(t-n\tau) \qquad (14)$$

For simplicity, we chose $\hbar = 2\pi M/\tau N$ (rational). We introduce an **Interaction Hamiltonian** by

$$H_I(t) = \varepsilon(t) \cos(\hat{q} + \delta_{\varepsilon}) \tag{15}$$

and study dynamics of the system

$$H(t) \equiv H_{\mathsf{KR}}(K;t) + H_I(t).$$
(16)

[12] A.M. Ozorio de Almeida, Hamlitonian Systems: Chaos and Quantization, Cambridge (1988).

Optimal control of a kicked rotor

T. Takami

An analytic field applied to a kicked rotor

T. Takami

In the right figure, we show the final overlap by our analytic field, where the initial and final states, $|\Phi_0\rangle$, $|\Phi_T\rangle$, are minimum uncertainty packets.

For the strong chaos K > 5, the final overlaps tend to be almost 1 when the target time is long, while the field does not work for the weakly chaotic case K = 3.

This is because the interaction operator becomes a band matrix, which comes from the quantum localization of this system.

When we consider the steering between wave packets, it is expected that our field works if \hbar is small enough since the minimum uncertainty packets are confined within the banded structure.

$$\varepsilon(t) = \frac{\hbar\Omega}{|V|^2} \left[e^{-i\alpha} \langle \phi_0(t) | \hat{V} | \chi_0(t) \rangle + \text{c.c.} \right]$$

Fig.8 Final overlaps in quantum kicked rotor with $\hbar =$ 0.172 driven by the analytical optimal field.

References on this talk

- Vibrational quantum dynamics
 - H. Fujisaki, K. Yagi, H. Kikuchi, T. Takami, and G. Stock, Chem. Phys. 482 (2017) 86.
 - M. Shiga and H. Fujisaki, J. Chem. Phys. 136, 184103 (2012)
 - H. Fujisaki, Y. Zhang, and J.E. Straub, Adv. Chem. Phys. 145, 1-33 (2011).
 - Y. Zhang, H. Fujisaki, and J.E. Straub, J. Chem. Phys. 130, 025102 (2009).
 - T. Takami and H. Fujisaki, J. Mod. Opt. 56 (2009) 822-830.
 - T. Takami, H. Fujisaki, and T. Miyadera, Adv. Chem. Phys. 130A, 435 (2005)