More efficient representations of compounds for machine learning models

Bing Huang and Anatole von Lilienfeld

Institute of Physical Chemistry and National Centre for Computational Design and Discovery of Novel Materials (MARVEL) Department of Chemistry University of Basel Switzerland

Breaking the hex!

 $\hat{H}\Psi = E\Psi$

Machine Learning - basics

N parameters to be regressed for *N* molecules + 2 global parameters

M. Rupp, *et al.*, *PRL*, 2012

Machine Learning - basics

 More training data, better results for proper X (refer to M hereafter)

at large N $\log(\text{Error}) = a - b \log(N)$

representation (M) central to ML

OAvL et al, IJQC (2013)

Learning a "complicated 1-D function

target: Y = (x-1)(x-2)(x+3)

General guidelines for designing M

- □ in case you know *f* well (exact form unknown) use it as M
- otherwise you'd better know how *f* behaves use one monotonic part of *f*, refer it as *g*

best g minimizes $||g - f||_2$

e.g., Morse potential $V(x) = -100^{*}(2^{*}exp(-(x-1.4)) - exp(-2(x-1.4)))$ Performance $V(x) > 1/x > exp(-(x-1.4)) > x > 1/x^{6} >> -(x-1.4)^{2}$

Representing molecules

J-L. Reymond et al, ACS Chem. Neuro. (2012)

Representing molecules

Learning an 1-D functional

fingerprint representations

V. Botu, et al., IJQC (2015)

11/34

Representing molecules

why are fingerprint rpsts bad for molecules, but good for Al_n like systems?

 $\Psi/\rho/V$ -based

 $||g - f||_2$ large for molecules, small for Al_n

Representing molecules

$\Psi/\rho/V$ -based

BH, OAvL, JCP comm., 2016

Coulomb matrix (CM)

$$C_{ij} = \begin{cases} 0.5 \ Z_i^{2.4} & \forall i = j \\ \frac{Z_i Z_j}{|\mathbf{R}_i - \mathbf{R}_j|} & \forall i \neq j. \end{cases}$$

"CM", M. Rupp, et al., PRL, 2012

Bag of Bonds (BoB)

much better than CM, why??

K. Hansen, et al., JPCL, 2015

non-uniqueness issue

non-uniqueness issue

non-uniqueness issue

bags of Universal force field (UFF) contributions

BH, OAvL, JCP comm., 2016

r(C-N)

 θ (C-C-N)

V(Φ)

database: 6k isomers $(C_7H_{10}O_2)$

BH, OAvL, JCP comm., 2016

BH, OAvL, JCP comm., 2016

Comparison QM7b database (size: 7211)

MAE (5k out-of-sample)

	BAML	BoB	SOAPa	CM ^b	accuracy ^b
E (PBE0)/eV	0.05	0.08	0.04	0.16	0.15, 0.23, 0.09-0.22
α (PBE0)/ Å ³	0.07	0.09	0.05	0.11	0.05-0.27, 0.04-0.14
HOMO (GW)/eV	0.10	0.15	0.12	0.16	-
LUMO (GW)/eV	0.11	0.16	0.12	0.16	-
IP (ZINDO)/eV	0.15	0.20	0.19	0.17	0.20, 0.15
EA (ZINDO)/eV	0.07	0.17	0.13	0.11	0.16, 0.11
E _{1st} * (ZINDO)/eV	0.13	0.21	0.18	0.13	0.18, 0.21

^a S. De, *et al.*, *PCCP*, 2016 ^b G. Montavon, *et al.*, *NJP*, 2013 BH, OAvL, *JCP comm.*, 2016

<u>HDAD</u>

V(r) = r $V(\theta) = \theta$ $V(\Phi) = \Phi$

shortcoming: force prediction

F. Faber, et al., 2017, <u>arxiv.org/abs/1702.05532</u> r(C-N)

Histogram of Distance

r(C-C)

16

12

Histogram of Angles

Histogram of Dihedral angles

BoQ

HDAD

F. Faber, et al., 2017, arxiv.org/abs/1702.05532

Why is BAML worse than HDAD?

- * empirical force field terms fails to describe reality in many cases
- * uniqueness might also be an issue
 * e.g., a slighted deviated Morse potential may cause uniqueness issue

Bear in mind once again:

* be cautious to use the target function as representations!

Improving the physics

QM7b dataset (size:7211) property: enthalpy (*H*) $H^{\text{est}}(\text{CM}^{(n)}) = \sum \alpha_i k(\text{CM}^{(n)}, \text{CM}_i^{(n)})$

 $E(2) = Z_j Z_j / R^n$

Coulomb force: good as a rpst for bonding, bad for dispersion

London force: good for dispersion, decent for bond

as a comprise, London wins!!

Improving the physics

Atoms + London + Axilrod-Teller-Muto (LATM)

HB, OAvL, to be submitted (2017)

extending E-based approach

Go Atomic

$$\varepsilon_{i} = \varepsilon(\mathbf{d}_{i}, \mathbf{w}) = \sum_{h} w_{h} \phi_{h}(\mathbf{d}_{i}),$$

$$\langle \varepsilon_{i} \varepsilon_{j} \rangle = \left\langle \sum_{hh'} w_{h} w_{h'} \phi_{h}(\mathbf{d}_{i}) \phi_{h'}(\mathbf{d}_{j}) \right\rangle = \sum_{hh'} \langle w_{h} w_{h'} \rangle \phi_{h}(\mathbf{d}_{i}) \phi_{h'}(\mathbf{d}_{j})$$

$$= \sigma_{w}^{2} \sum_{h} \phi_{h}(\mathbf{d}_{i}) \phi_{h}(\mathbf{d}_{j})$$

covariance

$$\langle E_{N}E_{M} \rangle = \left\langle \sum_{i \in N} \varepsilon(\mathbf{d}_{i}) \sum_{j \in M} \varepsilon(\mathbf{d}_{j}) \right\rangle = \left\langle \sum_{i \in N} \sum_{j \in M} \sum_{hh'} w_{h}w_{h'}\phi_{h}(\mathbf{d}_{i})\phi_{h'}(\mathbf{d}_{j}) \right\rangle$$

$$= \sum_{i \in N} \sum_{j \in M} \sum_{hh'} \langle w_{h}w_{h'} \rangle \phi_{h}(\mathbf{d}_{i})\phi_{h'}(\mathbf{d}_{j}) = \sigma_{w}^{2} \sum_{i \in N} \sum_{j \in M} \sum_{h} \phi_{h}(\mathbf{d}_{i})\phi_{h}(\mathbf{d}_{j})$$

$$= \sigma_{w}^{2} \sum_{i \in N} \sum_{j \in M} C(\mathbf{d}_{i}, \mathbf{d}_{j})$$

$$Y_{i}^{\text{est}}(\mathbf{X}_{i}) = \sum_{j} \alpha_{j} \left[\exp\left(-\frac{d(\mathbf{X}_{j}, \mathbf{X}_{i})}{\sigma}\right) + b \right]$$

P. R. Bartok et al, IJQC (2015)

Smooth Overlap of Atomic Positions (SOAP)

A serious problem of SOAP: for large r_cutoff, how to distinguish two very different atoms around centre?

application: simple crystals so far

 $\rho_{i}(\mathbf{r}) \equiv \sum_{j}^{\text{neign.}} \exp\left(-\frac{|\mathbf{r} - \mathbf{r}_{ij}|^{2}}{2\sigma_{\text{atom}}^{2}}\right)$ projection to basis set

$$\rho_i(\mathbf{r}) = \sum_{nlm} c_{nlm}^{(i)} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

$$p_{nn'l}^{(i)} \equiv \frac{1}{\sqrt{2l+1}} \sum_{m} c_{nlm}^{(i)} (c_{n'lm}^{(i)})^*$$

 $C'(\rho_i, \rho_j) = \sum_{n,n',l} p_{nn'l}^{(i)} p_{nn'l}^{(j)}$

Fix SOAP for molecules by RE-Match, glory lost as an atomic rpst works best with a small r_cutoff !!

P. R. Bartok et al, PRB (2013) S. De, et al., PCCP, 2016

<u>aLATM</u>

MBE-based approach: more natural to define atomic rpst1. includes 2-, 3-body interactions2. both decay with r

why aLATM is bad at larger N?

N. J. Browning, et al., JPCL (2017)

Categorizing M

molecules & crystals

Go Electronic

overall 2M Elpasolite ABC₂D₆ Crystals

F. Faber, et al, PRL (2016)

34/34

Conclusions and Outlook

- 1. Almost all rpsts in literature were categorised
- 2. Two general approaches for rational design of rpst a. Schrödinger equation: ρ/Ψ/V_ext b. many-body expansion
- 3. Two general principles for rational design of rpst
 a. uniqueness (necessary for convergence)
 b. similarity to target reduces off-set of LC
- 4. MBE based rpst (e.g., BAML, LATM, HDAD) offer
 - a. Meaning
 - b. Simplicity
 - c. Accuracy
- 5. and is generally better than $\rho/\Psi/V$ _ext based approach
- 6. There is great potential for electronic rpst to beat everything else

Acknowledgements:

Prof. Dr. O. Anatole von Lilienfeld

