Self-learning Monte Carlo Method

Zi Yang Meng

(孟子杨)

Institute of Physics, Chinese Academy of Sciences

http://ziyangmeng.iphy.ac.cn/

Know thyself

"Know thyself" (Greek: γνῶθι σεαυτόν, gnothi seauton)

one of the Delphic maxims and was inscribed in the pronaos (forecourt) of the Temple of Apollo at Delphi

Delphic Maxims

"Know thyself" (Greek: γνῶθι σεαυτόν, gnothi seauton). Thales of Miletus (c. 624 - c. 546 BC)

"nothing in excess" (Greek: μηδέν άγαν). Solon of Athens (c. 638 – 558 BC)

"make a pledge and mischief is nigh" (Greek: Ἑγγύα πάρα δ'ἄτη).

Collaborators and References

- Xiao Yan Xu, IOP, CAS
- Huitao Shen, Massachusetts Institute of Technology
- Jiuwei Liu, Massachusetts Institute of Technology
- Yang Qi, Massachusetts Institute of Technology & Fudan University, Shanghai
- Liang Fu, Massachusetts Institute of Technology

Trilogy of SLMC

- Self-Learning Monte Carlo Method, arXiv:1610.08376
- Self-Learning Monte Carlo Method in Fermion Systems, arXiv:1611.09364
- Self-Learning Determinantal Quantum Monte Carlo Method, arXiv:1612.03804

Quantum Monte Carlo simulation

Determinantal QMC for fermions

World-line QMC for bosons

Hubbard-like models:

- Metal-Insulator transition
- Interaction effects on topological state of matter

Fermions coupled to critical bosonic mode:

- Itinerant quantum critical point
- Non-Fermi-liquid
- Gauge field couples to fermion

Heisenberg-like models:

- Quantum magnetism
- Phase transition and critical phenomena
- Quantum spin liquids

Duality between DQCP and bosonic SPT:

- Deconfined quantum critical point
- Bosonic SPT and its critical point

Basic problem

 $\begin{aligned} \text{Partition function:} \quad & Z = \mathrm{Tr} \big[e^{-\beta(\hat{H} - \mu \hat{N})} \big] = \sum_{n} \langle n | e^{-\beta(\hat{H} - \mu \hat{N})} | n \rangle \\ \text{Observables:} \quad & \langle \hat{A} \rangle = \frac{\mathrm{Tr} \big[\hat{A} e^{-\beta(\hat{H} - \mu \hat{N})} \big]}{\mathrm{Tr} \big[e^{-\beta(\hat{H} - \mu \hat{N})} \big]} = \frac{\sum_{n} \langle n | \hat{A} e^{-\beta(\hat{H} - \mu \hat{N})} | n \rangle}{\sum_{n} \langle n | e^{-\beta(\hat{H} - \mu \hat{N})} | n \rangle} \\ \text{Fock space:} \quad & \{ | n \rangle \} \sim 2^{N_e} \, \left(e^{N_e \ln(2)} \right) \qquad 4^{N_e} \, \left(e^{N_e \ln(4)} \right) \end{aligned}$

Monte Carlo simulation

- Widely used in statistical and quantum many-body physics
- Unbiased: statistical error $1/\sqrt{N}$
- Universal: applies to any model without sign problem

$$Z = \sum_{\mathcal{C}} e^{-\beta H[\mathcal{C}]} = \sum_{\mathcal{C}} W(\mathcal{C})$$

• Markov chain Monte Carlo is a way to do important sampling

$$\cdots \rightarrow \mathcal{C}_{i-1} \rightarrow \mathcal{C}_i \rightarrow \mathcal{C}_{i+1} \rightarrow \cdots$$

• Distribution of ${\mathcal C}$ converges to the Boltzmann distribution $W({\mathcal C})$

• Observable can be measured from a Markov chain

$$\langle O \rangle = \frac{\sum_{\mathcal{C}} O(\mathcal{C}) W(\mathcal{C})}{\sum_{\mathcal{C}} W(\mathcal{C})} = \frac{1}{\mathcal{N}} \sum_{i} O(\mathcal{C}_i)$$

Autocorrelation time

Markov process, Monte Carlo time sequence

$$\cdots \to O(t-1) \to O(t) \to O(t+1) \to \cdots$$

 $O(t) = O[\mathcal{C}(t)]$

Autocorrelation function

$$A_O(\Delta t) = \langle O(t)O(t + \Delta t) \rangle - \langle O(t) \rangle^2 \propto e^{-\Delta t/\tau}$$

Monte Carlo simulation

$$\cdots \rightarrow \mathcal{C}_{i-1} \rightarrow \mathcal{C}_i \rightarrow \mathcal{C}_{i+1} \rightarrow \cdots$$

Detailed balance guarantees the Markov process converges to desired distribution

$$\frac{p(\mathcal{C} \to \mathcal{D})}{p(\mathcal{D} \to \mathcal{C})} = \frac{W(\mathcal{D})}{W(\mathcal{C})}$$

• Metropolis-Hastings algorithm: proposal – acceptance/rejection

$$p(\mathcal{C} \to \mathcal{D}) = q(\mathcal{C} \to \mathcal{D})\alpha(\mathcal{C} \to \mathcal{D})$$
$$\alpha(\mathcal{C} \to \mathcal{D}) = \min\{1, \frac{W(\mathcal{D})q(\mathcal{D} \to \mathcal{C})}{W(\mathcal{C})q(\mathcal{C} \to \mathcal{D})}\}$$

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953)
W. H. Hastings, Biometrika 57, 97 (1970)

Metropolis algorithm: local update

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953)

Critical slowing down

- Dynamical relaxation time diverges at the critical point: critical system is slow to equilibrate.
- \bullet For 2D Ising model $~~\tau \propto L^z, z=2.125$

Metropolis Simulation on a 100x100 Grid

Wolff algorithm: cluster update

• A cluster is built from bonds

• Probability of activating a bond is cleverly designed

$$q(i \to j) = 1 - e^{\min\{0, -2\beta S_i S_j\}}$$

$$\frac{q(\mathcal{A} \to \mathcal{B})}{q(\mathcal{B} \to \mathcal{A})} = \prod_{\langle i,j \rangle, i \in c, j \notin c} \frac{1 - q(i \to j)_{\mathcal{A}}}{1 - q(i \to j)_{\mathcal{B}}} = \prod_{\langle i,j \rangle, i \in c, j \notin c} e^{-2\beta(S_i^{\mathcal{A}} S_j^{\mathcal{A}} - S_i^{\mathcal{B}} S_j^{\mathcal{B}})} = \frac{W(\mathcal{B})}{W(\mathcal{A})}$$

 \bullet an ideal acceptance ratio $\alpha(\mathcal{A} \rightarrow \mathcal{B}) = 1$

U. Wolff, Phys. Rev. Lett. 62, 361 (1989)

Reduce critical slowing down

Simulations on a 100x100 Grid at T=2.0

Swendsen and Wang, Phys. Rev. Lett. 58, 86 (1987)

Learn thyself

• Step too small: small difference, high acceptance

• Step too large: big difference, low acceptance

• Global update: explore the low-energy configurations

SLMC: Learning+Simulating

$$\begin{split} H &= -J \sum_{\langle ij \rangle} S_i S_j - K \sum_{ijkl \in \Box} S_i S_j S_k S_l \qquad K/J = 0.2 \\ &\text{Ising transition with } T_c = 2.493 \\ H_{\text{eff}} &= E_0 - \tilde{J}_1 \sum S_i S_j - \tilde{J}_2 \sum S_i S_j - \dots \end{split}$$

 $\langle ij \rangle_2$

• The self-learning update: cluster is constructed using the effective model

 $\langle ij \rangle_1$

$$\frac{q(\mathcal{C} \to \mathcal{D})}{q(\mathcal{D} \to \mathcal{C})} = \frac{W_{\text{eff}}(\mathcal{D})}{W_{\text{eff}}(\mathcal{C})}$$

• The acceptance ratio:

$$\alpha(\mathcal{C} \to \mathcal{D}) = \min\{1, \frac{W(\mathcal{D})W_{\text{eff}}(\mathcal{D})}{W(\mathcal{C})W_{\text{eff}}(\mathcal{C})}\} = \min\{1, e^{-\beta[(E(\mathcal{D}) - E_{\text{eff}}(\mathcal{D})) - (E(\mathcal{C}) - E_{\text{eff}}(\mathcal{C}))]}\}$$

- The acceptance ratio can be very high, autocorrelation time can be very short
- effective model capture the low-energy physics

• Generate configurations with local update, at T=5 > Tc.

- Perform linear regression
- Generate configurations with reinforced learning at Tc

System size 40x40 at Tc

Speedup of 10~20 times

• Double exchange model

$$\hat{H} = -t \sum_{\langle ij \rangle, \alpha} (\hat{c}_{i\alpha}^{\dagger} \hat{c}_{j\alpha} + \text{h.c.}) - \frac{J}{2} \sum_{i,\alpha,\beta} \vec{S}_{i} \cdot \hat{c}_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \hat{c}_{i\beta}$$
$$Z = \sum_{\phi} \det \left[\mathbf{I} + e^{-\beta H_{f}[\phi]} \right] \equiv \sum_{\phi} W[\phi]$$

Computational complexity

$$O(\tau_0 \times L^{3d} \times L^d) = O(\tau_0 \times L^{4d})$$

• Fit effective model

$$W[\phi] \simeq e^{-\beta H_{\rm eff}[\phi]}$$

$$H_{\text{eff}} = E_0 - J_1 \sum_{\langle ij \rangle_1} \vec{S}_i \cdot \vec{S}_j - J_2 \sum_{\langle ij \rangle_2} \vec{S}_i \cdot \vec{S}_j - \cdots$$

• effective model captures the low-energy physics, RKKY interaction.

only need to learn from small system sizes

Computation complexity at most

$$O(l_c) + O(\tau_0 \times L^{3d}) = O(\tau_0 \times L^{3d})$$

• Speedup of $O(L^z L^d) = O(L^{d+z})$

Institute of Physics, Chinese Academy of Sciences

Fermions coupled to critical bosonic mode

- Itinerant quantum critical point
- Non-Fermi-liquid

➤ arXiv:1602.07150

➤ arXiv:1612.06075

Complexity for getting an independent configuration: $\beta N^3 \tau_L$

Complexity for obtaining an independent configuration: $\beta N^3 \tau_L$

Complexity for SLMC

- Cumulative update: $\gamma \beta N \tau_L$
- Detail balance: $N^3 \quad \omega_{\mathcal{C}} = \phi(\mathcal{C}) \det (\mathbf{1} + \mathbf{B}(\beta, \tau) \mathbf{B}(\tau, 0))$ = $\phi(\mathcal{C}) \det (\mathbf{G}(0, 0))^{-1}$
- Sweep Green's function: βN^2

Complexity speed up
$$\ \mathcal{S} = \min(rac{N^2}{\gamma}, eta au_L, N au_L)$$

Institute of Physics, Chinese Academy of Sciences

Advertisement

S KI	TS Ka	versity of Chinese	for Theor	etical Sci	ences	Search	Site Map Login		
home	About	Facilities	Research	News	Events	People	Links		
/ Home / Events /	Workshops / Mach	ine Learning and Many-E	3ody Physics (Jun. 28	th - Jul. 7th, 2017)					
Calendar Conferences Programs		Site: Site: Search News Events People Machine Learning and Many-Body Physics (Jun. 28th - Jul. 7th, 2017) Machine Learning and Many-Body Physics (Jun. 28th - Jul. 2017) Machine Learning and Many-Body Physics (Jun. 28th - Jul. 2017) © Published: 2017-02-20 Local Coordinators Lei Wang (Institute of Physics, CAS), wanglei@iphy.ac.cn Zi Yang Meng (Institute of Physics, CAS), zymeng@iphy.ac.cn Zhi-Yuan Xie (Renmin University of China), qingtaoxie@ruc.edu.cn International Steering Committee Mathias Troyer (ETH Zurich and Microsoft Research) International Steering Committee Mathias Troyer (ETH Zurich and Microsoft Research)		- Jul. 7th,					
Schools		O Published: 2017-02-20							
Talks		Local Coordin Lei Wang	nators (Institute of Phys	sics, CAS), wang	lei@iphy.ac.cn				
		Zi Yang Meng (Institute of Physics, CAS), zymeng@iphy.ac.cn Zhi-Yuan Xie (Renmin University of China), qingtaoxie@ruc.edu.cn							
		International	Steering Comm	ittee					
		Matthias Troyer (ETH Zurich and Microsoft Research)							
		Roger Melko	(Perimeter Ins	titute)					
		Hong Guo Xi Dai	(McGill) (Institute of Ph	ysics, CAS)					
		Tao Xiang	(Institute of Ph	ysics, CAS),					

Scope of the Workshop

- Conceptual connections of machine learning and many-body physics
- Machine learning techniques for solving many-body physics/chemistry problems
- Quantum algorithms and quantum hardwares for machine learni

Advertisement

Site Ma									
Res IVI	Uni	versity of Chinese	e Academy of Sci	Search					
home	About	Facilities	Research	News	Events	People	Links		
/ Home / Events	/ Conferences / Top	ological States and Pha	ase Transitions in Strong	gly Correlated System	s (3-14 Jul., 2017)				
Calendar		_							
Conferences		Topological States and Phase Transitions in Strongly Correlated Systems (3-14 Jul 2017)							
Programs				bystems (o	14 001., 201				
Schools		O Published: 2017-01-25							
Workshops				a and	Li sath oosa				
Talks		Jul. 3 rd – Jul. 14 rd , 2017 Beijing, China							
					5,				
			Local coordina	ators: Ch	en Fang, Zi Yang	g Meng and Fa Wa	ang		
			International of	coordinators: Lia	ang Fu, Kai Sun a	and Yi-Zhuang You	u		

Scope of the Workshop

- Topological classification of strongly correlated systems
- Topological phase transitions
- Realizations of topological orders

中科院物理所 | 微信ID: cas-iop

长按二维码→自动识别→快速关注

推荐文章或反馈意见可直接在公众号内留言 投稿或法律相关事宜请通过邮件联系我们 邮箱:zhc@iphy.ac.cn

"认识你自己"——自学习蒙特卡洛三部曲

在这篇文章中,笔者只希望讲述我们最近发展的自学习蒙特卡洛方法三 部曲,讲述我们如何通过自我观照、自我学习蒙特卡洛构型,设计出自 学习蒙特卡洛方法,解决了凝聚态量子多体系统蒙特卡洛模拟中一些诸 如临界慢化和接收概率低等瓶颈性的问题,推动领域的发展。

2016-12-22