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Exciting time for machine learning

Self-driving carsLanguage Processing

Medicine
Materials Science / Chemistry



Progress in neural networks and deep learning

neural network diagram



Convolutional neural network

"MERA" tensor network



Are tensor networks useful for 
machine learning?

This Talk

Tensor networks fit naturally into kernel learning

Many benefits for learning 
• Linear scaling  
• Adaptive 
• Feature sharing

(Also very strong connections to graphical models)
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What are Tensor Networks?



How do tensor networks arise in physics?

Quantum systems governed by 
Schrödinger equation:

It is just an eigenvalue problem.

Ĥ~ = E~ 



The problem is that      is a 2N x 2N matrixĤ

= E ·

=) wavefunction        has 2N components

Ĥ ~ ~ 

~ 



Natural to view wavefunction as order-N tensor

| i =
X

{s}

 s1s2s3···sN |s1s2s3 · · · sN i



Natural to view wavefunction as order-N tensor

s1 s2 s3 s4

 s1s2s3···sN =

sN



Tensor components related to probabilities of 
e.g. Ising model spin configurations
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Tensor components related to probabilities of 
e.g. Ising model spin configurations
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Must find an approximation to this exponential problem

s1 s2 s3 s4

 s1s2s3···sN =

sN



Simplest approximation (mean field / rank-1) 
Let spins "do their own thing"

s1 s2 s3 s4 s5 s6

Expected values of individual spins ok

No correlations

 s1s2s3s4s5s6 '  s1  s2  s3  s4  s5  s6



s1 s2 s3 s4 s5 s6

Restore correlations locally 

 s1s2s3s4s5s6 '  s1  s2  s3  s4  s5  s6



s1 s2 s3 s4 s5 s6

Restore correlations locally 

i1 i1
 s1s2s3s4s5s6 '  s1  s2  s3  s4  s5  s6



s1 s2 s3 s4 s5 s6

matrix product state (MPS)

Local expected values accurate

Correlations decay with spatial distance

Restore correlations locally 

i3 i3 i4 i4 i5 i5i2 i2i1 i1
 s1s2s3s4s5s6 '  s1  s2  s3  s4  s5  s6



"Matrix product state" because

" # # " " #

retrieving an element          product of matrices=



 " ""## #=

"Matrix product state" because

retrieving an element          product of matrices=



Tensor diagrams have rigorous meaning
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Joining lines implies contraction, can omit names

X

j

Mijvj
ji

AijBjk = AB

AijBji = Tr[AB]



⇡

MPS approximation controlled by 
bond dimension "m" (like SVD rank)

Compress       parameters into              
              parameters

2N

N ·2·m2

can represent any tensorm ⇠ 2
N
2

MPS = matrix product state



m=8
m=4

m=2

Friendly neighborhood of "quantum state space"

m=1

 



MPS lead to powerful optimization techniques 
(DMRG algorithm)

MPS = matrix product state

White, PRL 69, 2863 (1992)
Stoudenmire, White, PRB 87, 155137 (2013)



Evenbly, Vidal, PRB 79, 144108 (2009)

R. Orús / Annals of Physics 349 (2014) 117–158 121

Fig. 2. (Color online) Two examples of tensor network diagrams: (a)Matrix Product State (MPS) for 4 sites with open boundary
conditions; (b) Projected Entangled Pair State (PEPS) for a 3 ⇥ 3 lattice with open boundary conditions.

states is radically different from the usual approach, where one just gives the coefficients of a wave-
function in some given basis. When dealing with a TN state we will see that, instead of thinking
about complicated equations, we will be drawing tensor network diagrams, see Fig. 2. As such, it has
been recognized that this tensor description offers the natural language to describe quantum states
of matter, including those beyond the traditional Landau’s picture such as quantum spin liquids and
topologically-ordered states. This is a new language for condensed matter physics (and in fact, for all
quantum physics) that makes everything much more visual and which brings new intuitions, ideas
and results.

3.3. Entanglement induces geometry

Imagine that you are given a quantum many-body wave-function. Specifying its coefficients in
a given local basis does not give any intuition about the structure of the entanglement between its
constituents. It is expected that this structure is different depending on the dimensionality of the
system: this should be different for 1d systems, 2d systems, and so on. But it should also depend on
more subtle issues like the criticality of the state and its correlation length. Yet, naive representations
of quantum states do not possess any explicit information about these properties. It is desirable, thus,
to find a way of representing quantum states where this information is explicit and easily accessible.

As we shall see, a TN has this information directly available in its description in terms of a network
of quantum correlations. In a way, we can think of TN states as quantum states given in some
entanglement representation. Different representations are better suited for different types of states
(1d, 2d, critical, etc.), and the network of correlations makes explicit the effective lattice geometry in
which the state actually lives. We will be more precise with this in Section 4.2. At this level this is
just a nice property. But in fact, by pushing this idea to the limit and turning it around, a number
of works have proposed that geometry and curvature (and hence gravity) could emerge naturally
from the pattern of entanglement present in quantum states [51]. Here we will not discuss further
this fascinating idea, but let us simply mention that it becomes apparent that the language of TN is,
precisely, the correct one to pursue this kind of connection.

3.4. Hilbert space is far too large

This is, probably, the main reason why TNs are a key description of quantum many-body states of
Nature. For a systemof e.g.N spins 1/2, the dimension of theHilbert space is 2N , which is exponentially
large in the number of particles. Therefore, representing a quantum state of the many-body system
just by giving the coefficients of the wave function in some local basis is an inefficient representation.
TheHilbert space of a quantummany-body system is a really big placewith an incredibly large number
of quantum states. In order to give a quantitative idea, let us put some numbers: if N ⇠ 1023 (of the
order of the Avogadro number) then the number of basis states in the Hilbert space is ⇠O(101023),
which is much larger (in fact exponentially larger) than the number of atoms in the observable
universe, estimated to be around 1080! [52].

Luckily enough for us, not all quantum states in the Hilbert space of amany-body system are equal:
some are more relevant than others. To be specific, many important Hamiltonians in Nature are such
that the interactions between the different particles tend to be local (e.g. nearest or next-to-nearest

PEPS
(2D systems)

Besides MPS, other successful tensor are 
PEPS and MERA

Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)

tation of two-point correlators! and also leads to a much
more convenient generalization in two dimensions.

II. MERA

Let L denote a D-dimensional lattice made of N sites,
where each site is described by a Hilbert space V of finite
dimension d, so that VL"V!N. The MERA is an ansatz used
to describe certain pure states #!$!VL of the lattice or, more
generally, subspaces VU!VL.

There are two useful ways of thinking about the MERA
that can be used to motivate its specific structure as a tensor
network, and also help understand its properties and how the
algorithms ultimately work. One way is to regard the MERA
as a quantum circuit C whose output wires correspond to the
sites of the lattice L.5 Alternatively, we can think of the
MERA as defining a coarse-graining transformation that
maps L into a sequence of increasingly coarser lattices, thus
leading to a renormalization-group transformation.1 Next we
briefly review these two complementary interpretations.
Then we compare several MERA schemes and discuss how
to exploit space symmetries.

A. Quantum circuit

As a quantum circuit C, the MERA for a pure state #!$
!VL is made of N quantum wires, each one described by a
Hilbert space V, and unitary gates u that transform the unen-
tangled state #0$!N into #!$ %see Fig. 1!.

In a generic case, each unitary gate u in the circuit C
involves some small number p of wires,

u: V!p → V!p, u†u = uu† = I , %1!

where I is the identity operator in V!p. For some gates, how-
ever, one or several of the input wires are in a fixed state #0$.
In this case we can replace the unitary gate u with an iso-
metric gate w

w: Vin → Vout, w†w = IVin
, %2!

where Vin"V!pin is the space of the pin input wires that are
not in a fixed state #0$ and Vout"V!pout is the space of the
pout= p output wires. We refer to w as a %pin , pout! gate or
tensor.

Figure 2 shows an example of a MERA for a 1D lattice L
made of N=16 sites. Its tensors are of types %1,2! and %2,2!.
We call the %1,2! tensors isometries w and the %2,2! tensors
disentanglers u for reasons that will be explained shortly, and
refer to Fig. 2 as a binary 1D MERA, since it becomes a
binary tree when we remove the disentanglers. Most of the
previous work for 1D lattices1,5–7,16–18 has been done using
the binary 1D MERA. However, there are many other pos-

FIG. 1. %Color online! Quantum circuit C corresponding to a
specific realization of the MERA, namely, the binary 1D MERA of
Fig. 2. In this particular example, circuit C is made of gates involv-
ing two incoming wires and two outgoing wires, p= pin= pout=2.
Some of the unitary gates in this circuit have one incoming wire in
the fixed state #0$ and can be replaced with an isometry w of type
%1,2!. By making this replacement, we obtain the isometric circuit
of Fig. 2. FIG. 2. %Color online! %Top! Example of a binary 1D MERA for

a lattice L with N=16 sites. It contains two types of isometric
tensors, organized in T=4 layers. The input %output! wires of a
tensor are those that enter it from the top %leave it from the bottom!.
The top tensor is of type %1,2! and the rank "T of its upper index
determines the dimension of the subspace VU!VL represented by
the MERA. The isometries w are of type %1,2! and are used to
replace each block of two sites with a single effective site. Finally,
the disentanglers u are of type %2,2! and are used to disentangle the
blocks of sites before coarse-graining. %Bottom! Under the
renormalization-group transformation induced by the binary 1D
MERA, three-site operators are mapped into three-site operators.

G. EVENBLY AND G. VIDAL PHYSICAL REVIEW B 79, 144108 %2009!

144108-2

MERA
(critical systems)



Supervised Kernel Learning



Input vector      e.g. image pixels

Very common task: 
  
Labeled training data (= supervised)    
                     
Find decision function

Supervised Learning

f(x)

f(x) > 0

f(x) < 0

x

x 2 A

x 2 B



Use training data to build model

ML Overview
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Use training data to build model

ML Overview

Generalize to unseen test data



Popular approaches

ML Overview

Neural Networks

Non-Linear Kernel Learning

f(x) = W · �(x)

f(x) = �2

⇣
M2�1

�
M1x

�⌘



Non-linear kernel learning

Want          to separate classes

Linear classifier 
often insufficient

?

?

f(x) = W · x

f(x)



Non-linear kernel learning

Apply non-linear "feature map" 
x ! �(x)

�



Non-linear kernel learning

Apply non-linear "feature map" 
x ! �(x)

�

Decision function f(x) = W · �(x)



Non-linear kernel learning

�

Decision function f(x) = W · �(x)

Linear classifier in feature space



Non-linear kernel learning

�

Example of feature map

�(x) = (1, x1, x2, x3, x1x2, x1x3, x2x3)

x = (x1, x2, x3)

      is "lifted" to feature spacex



Proposal for Learning



Grayscale image data



Map pixels to "spins"



Map pixels to "spins"



Map pixels to "spins"



Local feature map, dimension d=2

�(xj) =

h
cos

⇣
⇡

2

xj

⌘
, sin

⇣
⇡

2

xj

⌘i

Crucially, grayscale values not orthogonal

xj 2 [0, 1]

x = input



Total feature map

�s1s2···sN (x) = �

s1(x1)⌦ �

s2(x2)⌦ · · ·⌦ �

sN (xN )

• Tensor product of local feature maps / vectors 

• Just like product state wavefunction of spins 

• Vector in        dimensional space

� = local feature map

x = input

2N

�(x)



Total feature map
� = local feature map

x = input

raw inputs

�(x) =

x = [x1, x2, x3, . . . , xN ]

�1( )

�2( )[ [⌦ �1( )

�2( )[ [⌦ �1( )

�2( )[ [⌦ �1( )

�2( )[ [x1

x1

x2

x2

x3 xN

x3 xN

⌦. . . feature 
vector 

More detailed notation

�(x)



Total feature map
� = local feature map

x = input

raw inputsx = [x1, x2, x3, . . . , xN ]

feature 
vector 

Tensor diagram notation

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

· · ·
sN

�sN

�(x)

�(x)



f(x) = W · �(x)Construct decision function

�(x)



f(x) = W · �(x)Construct decision function

�(x)

W



f(x) = W · �(x)Construct decision function

�(x)

W=f(x)



f(x) = W · �(x)Construct decision function

�(x)

W=f(x)

W =



Main approximation

W = order-N tensor

⇡
matrix 
product 
state (MPS)



MPS form of decision function    

=
�(x)

Wf(x)



Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension
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Linear scaling

=
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Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Could improve with stochastic gradient



`

Decision function    

=
�(x)

=
�(x)

Multi-class extension of model

f `(x) = W ` · �(x)

Index     runs over possible labels`

`

W `

W `

Predicted label is argmax`|f `
(x)|

f `(x)



MNIST is a benchmark data set of grayscale 
handwritten digits (labels     = 0,1,2,...,9)

MNIST Experiment

60,000 labeled training images  
10,000 labeled test images

`



MNIST Experiment

One-dimensional mapping



Results

MNIST Experiment

Bond dimension      Test Set Error

~5%     (500/10,000 incorrect)

~2%      (200/10,000 incorrect)

 0.97%   (97/10,000 incorrect)m = 120                 

m = 20                 

m = 10                 

State of the art is  < 1%  test set error



Demo

MNIST Experiment

http://itensor.org/miles/digit/index.htmlLink: 



Understanding Tensor Network Models

=
�(x)

Wf(x)



=
�(x)

Wf(x)

Again assume        is an MPSW

Many interesting benefits

1. Adaptive

2. Feature sharing

Two are:



1. Tensor networks are adaptive

grayscale 
training 
data

{
boundary pixels not 
useful for learning



=
�(x)

`

W `

• Different central tensors 
• "Wings" shared between models 
• Regularizes models

f `(x)

2. Feature sharing

`

=



=f `(x)

2. Feature sharing
`

Progressively learn shared features



=f `(x)

2. Feature sharing
`

Progressively learn shared features



=f `(x)

2. Feature sharing
`

Progressively learn shared features



=f `(x)

2. Feature sharing
`

Progressively learn shared features

Deliver to central tensor
`



Nature of Weight Tensor

Representer theorem says exact 

Density plots of trained        for each label W ` ` = 0, 1, . . . , 9

W =
X

j

↵j�(xj)



Nature of Weight Tensor

Representer theorem says exact 
W =

X

j

↵j�(xj)

Tensor network approx. can violate this condition

for any 

• Tensor network learning not interpolation 

• Interesting consequences for generalization?

{↵j}WMPS 6=
X

j

↵j�(xj)



Some Future Directions

• Apply to 1D data sets (audio, time series) 

• Other tensor networks: TTN, PEPS, MERA 

• Useful to interpret                     as probability?      
Could import even more physics insights. 

• Features extracted by elements of tensor network?

|W · �(x)|2



What functions realized for arbitrary      ?

Instead of "spin" local feature map, use*

�(x) = (1, x)

*Novikov, et al., arxiv:1605.03795

�(x) =
�1( )

�2( )[ [⌦ �1( )

�2( )[ [⌦ �1( )

�2( )[ [⌦ �1( )

�2( )[ [x1

x1

x2

x2

x3 xN

x3 xN

⌦. . .

Recall total feature map is

W



N=2 case �(x) = (1, x)

�(x) = [ [⌦1

x1 [ [1

x2

= (1, x1, x2, x1x2)

f(x) = W · �(x)

= W11 +W21 x1 +W12 x2 +W22 x1x2

( 1, x1, x2, x1x2)= ·

(W11,W21,W12, W22)



N=3 case �(x) = (1, x)

�(x) = [ [⌦1

x1 [ [1

x2

f(x) = W · �(x)

⌦ [ [1
x3

= W111 +W211 x1 +W121 x2 +W112 x3

+W221 x1x2 +W212 x1x3 +W122 x1x3

+W222 x1x2x3

= (1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3)



Novikov, Trofimov, Oseledets, arxiv:1605.03795 (2016)

f(x) = W · �(x)

+W211···1 x1 +W121···1 x2 +W112···1 x3 + . . .

+W221···1 x1x2 +W212···1 x1x3 + . . .

+W222···2 x1x2x3 · · ·xN

+ . . .

+W222···1 x1x2x3 + . . .

= W111···1

General N case

constant

singles

doubles

triples

N-tuple

x 2 RN

Model has exponentially many formal parameters



Related Work

(1410.0781, 1506.03059, 1603.00162, 1610.04167)Cohen, Sharir, Shashua
• tree tensor networks 
• expressivity of tensor network models 
• correlations of data (analogue of entanglement entropy) 
• generative proposal

(1605.03795)Novikov, Trofimov, Oseledets

• matrix product states + kernel learning 
• stochastic gradient descent



Other MPS related work ( = "tensor trains")

Novikov et al., Proceedings of 31st ICML (2014)

Markov random field models

Lee, Cichocki, arxiv: 1410.6895 (2014)

Large scale PCA

Bengua et al., IEEE Congress on Big Data (2015)

Feature extraction of tensor data

Novikov et al., Advances in Neural Information Processing (2015)

Compressing weights of neural nets


