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Exciting time for machine learning

Language Processing
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M e d i Ci n e biasing collective force

Materials Science / Chemistry



Progress in neural networks and deep learning

neural network diagram



Convolutional neural network

"MERA" tensor network
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Are tensor networks useful for
machine learning? AAAAAA

This Talk

Tensor networks fit naturally into kernel learning

(Also very strong connections to graphical models)

Many benetits for learning
 Linear scaling
» Adaptive

* Feature sharing
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What are Tensor Networks?



How do tensor networks arise in physics?

Quantum systems governed by
Schrodinger equation:

A — —

HY = BV

It is just an eigenvalue problem.



The problem is that H is a 2N x 2N matrix

— wavefunction I has 2N components
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Natural to view wavefunction as order-N tensor
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Natural to view wavefunction as order-N tensor
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Tensor components related to probabilities of
e.g. Ising model spin configurations
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Tensor components related to probabilities of
e.g. Ising model spin configurations
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Must find an approximation to this exponential problem
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Simplest approximation (mean field / rank-1)
Let spins "do their own thing"

\I;818233848586 ~ wSl wSQ wsg ¢84 2p85 wsG

S1 So S3 S4 Sy  Sg
\/ Expected values of individual spins ok

X No correlations



Restore correlations locally

\Ij818283848586 ~ wsl wSZ ws:g ¢84 w85 wSG



Restore correlations locally

\Ij818283848586 ~ wsl wSZ ws:g ¢84 w85 wSG
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Restore correlations locally

\Ij818283848586 ~ wsl wSZ

matrix product state (MPS)

V' Local expected values accurate

' Correlations decay with spatial distance
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"Matrix product state" because

retrieving an element = product of matrices
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"Matrix product state" because

retrieving an element = product of matrices



Tensor diagrams have rigorous meaning



Joining lines implies contraction, can omit names




MPS = matrix product state
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MPS approximation controlled by
bond dimension "m" (like SVD rank)

Compress 2V parameters into
N-2.m? parameters

N
m ~ 22 can represent any tensor



Friendly neighborhood of "quantum state space”




MPS = matrix product state

MPS lead to powerful optimization techniques
(DMRG algorithm)
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Besides MPS, other successful tensor are

PEPS and MERA

LS
T

PEPS
(2D systems)

Il 2 13 4 I5s g 17 I8 B9 10 111 112 113 14 115 116

MERA

(critical systems)

Evenbly, Vidal, PRB 79, 144108 (2009)
Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)



Supervised Kernel Learning



Supervised Learning

Very common task:
Labeled training data (= supervised)

Find decision function f(x)

f(x) >0 x €A

f(x) <0 x € B

Input vector x e.g. image pixels



ML Overview

Use training data to build model
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ML Overview

Use training data to build model
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ML Overview

Use training data to build model
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Generalize to unseen test data



ML Overview

Popular approaches

Neural Networks
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f(x) = s ( M@y (Myx) )

Non-Linear Kernel Learning

F(x) = W - &(x)




Non-linear kernel learning

Want f(x) to separate classes

Linear classifier f(x) =W -x
often insufficient




Non-linear kernel learning

Apply non-linear "feature map" x — ®(x)
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Non-linear kernel learning

Apply non-linear "feature map" x — ®(x)

Decision function




Non-linear kernel learning

JEZ

Decision function f(x) =W - ®(x)

Linear classifier in feature space



Non-linear kernel learning

Example of feature map

X = (xlv L2, 373)

(I)(X) — (1, L1, L2, X3, L1, X1X3, 372333)

x is "lifted" to feature space



Proposal for Learning



Grayscale image data
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Map pixels to "spins”




Map pixels to "spins”




Map pixels to "spins”




X = input

Local feature map, dimension d=2

d(x;) = {COS (ng),sin (gaz]ﬂ z; € (0,1]

Crucially, grayscale values not orthogonal



X = input

@ = local feature map

Total feature map @(x)

BN (x) = 671 (01) © 6 (12) @ -+ © 6™ ()

 Tensor product of local feature maps / vectors
 Just like product state wavefunction of spins

* Vector in 2" dimensional space



X = input

@ = local feature map
Total feature map ®(x)
More detailed notation
X = |x1, X2, T3, ... , IN] raw inputs
B(x) — -le(fl?l)-@ [p1 () ] ; [ p1(x9 ] I [p1 (@) ] foature
o) | | p2(@d)| | P2(xa) P (xN) vector




Total feature map ®(x)

Tensor diagram notation

X = input

@ = local feature map

raw inputs

feature
vector



Construct decision function f(x) =W . ®(x)

OO0 0000 ax



Construct decision function

F(x) = W - &(x)




Construct decision function

F(x) = W - &(x)




Construct decision function

F(x) = W - &(x)




Main approximation

W — ﬁ) order-N tensor

matrix

?_?_CP_CP_Q_Q product

state (MPS)

X



MPS form of decision function



Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension

M= 0888
®(x)

Could improve with stochastic gradient



Multi-class extension of model
Decision function f‘(x) = W* - ®(x)

Index ¢ runs over possible labels

f(x)

| |
& E ORI
DN

Predicted label is argmax,|f*(x)]|



MNIST Experiment

MNIST is a benchmark data set of grayscale

handwritten digits (labels ¢=0,1,2,...,9)

60,000 labeled training images
10,000 labeled test images
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MNIST Experiment

One-dimensional mapping

W —
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MNIST Experiment

Results

Bond dimension
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Test Set Error

m= 10
m = 20
m = 120

~5%
~2%

0.97%

(500/10,000 incorrect)
(200/10,000 incorrect)

(97/10,000 incorrect)

State of the artis < 1% test set error
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MNIST Experiment

» Demo

http://itensor.org/miles/digit/index.html

Link



Understanding Tensor Network Models



Again assume W is an MPS

Many interesting benefits

Two are:

1. Adaptive

2. Feature sharing



1. Tensor networks are adaptive
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2. Feature sharing

f(x)

e Different central tensors
* "Wings" shared between models

* Regularizes models



2. Feature sharing

14

Progressively learn shared features

333



2. Feature sharing

14

Progressively learn shared features
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2. Feature sharing

14

Progressively learn shared features
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2. Feature sharing

14

Progressively learn shared features

O_

Deliver to central tensor
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Nature of Weight Tensor

Representer theorem says exact W = Z Oéjq)(xj)

J

Density plots of trained W* for each label ¢ =0,1,...,9



Nature of Weight Tensor

Representer theorem says exact W = Z ozj<I>(xj)

J

Tensor network approx. can violate this condition

Waips 7 Z@jq’(%‘) forany {a;}
J

» Tensor network learning not interpolation

* Interesting consequences for generalization?



Some Future Directions

* Apply to 1D data sets (audio, time series)

e Other tensor networks: TTN, PEPS, MERA

» Useful to interpret |W - ®(x)|* as probability?
Could import even more physics insights.

* Features extracted by elements of tensor network?



What functions realized for arbitrary W ?

Instead of "spin" local feature map, use*

¢($) — (17 37)

Recall total feature map is

[ p1 ()
| P2(x1)

P(x) =

X

[ ¢1(22)
| P2(x2)

&

[ ¢1 (29
| P2(x3)

@1 (@N)
P2 (@N)

*Novikov, et al., arxiv:1605.03795



N=2 case o(x)

(W11, War1, Wi, Wao)

F(x) = W - d(x)

) (17 L1, L2, 1’1332)

= Wi+ Waor a1 +Wisxo + Waos z129



N=3 case o(x)

d(x) = ® ®
L1 L9 xrs

(17 X1, o9, 3, 19, 13, o3, 51312132333)

Fx) = W - 0(x)
= Wi11 + Wat1 21 + Wig1 29 + Wiia 3

+ Woor 129 + Woio 123 + Wioo 2123

-+ WQQQ L1Xo2X3



General N case x ¢ RY

Fx) =W - @ (x
= Wi11..4 constant
+ Woi11..0x1 + Wia1...i 20 + Wiio...1 23 + ... singles
+ Woo1...1. 2129 + Woto...1 1223 + . .. doubles
+ Woso...1 x1x023 + . .. triples
+ Woso...ox1x0x3 - TN N-tuple

Model has exponentially many formal parameters

Novikov, Trofimov, Oseledets, arxiv:1605.03795 (2016)



Related Work

Novikov, Trofimov, Oseledets (1605.03795)

» matrix product states + kernel learning

» stochastic gradient descent

Cohen, Sharir, Shashua (1410.0781, 1506.03059, 1603.00162, 1610.04167)

* tree tensor networks
 expressivity of tensor network models

« correlations of data (analogue of entanglement entropy)

* generative proposal



Other MPS related work ( = "tensor trains")

Markov random field models
Novikov et al., Proceedings of 31st ICML (2014)

Large scale PCA
Lee, Cichocki, arxiv: 1410.6895 (2014)

Feature extraction of tensor data
Bengua et al., IEEE Congress on Big Data (2015)

Compressing weights of neural nets

Novikov et al., Advances in Neural Information Processing (2015)



