Machine Learning with Quantum-Inspired Tensor Networks

E.M. Stoudenmire and David J. Schwab

Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017

Collaboration with David J. Schwab, Northwestern and CUNY Graduate Center

Quantum Machine Learning, Perimeter Institute, Aug 2016

Exciting time for machine learning

Medicine

Self-driving cars

Materials Science / Chemistry

Progress in neural networks and deep learning

neural network diagram

Convolutional neural network

"MERA" tensor network

Are tensor networks useful for machine learning?

This Talk

Tensor networks fit naturally into kernel learning (Also very strong connections to graphical models)

Many benefits for learning

- Linear scaling
- Adaptive
- Feature sharing

Machine Learning

Neural Nets

Kernel Learning

Supervised Learning

Boltzmann Machines

Quantum Monte Carlo

Tensor Networks

Machine Learning

Supervised Learning

Physics

What are Tensor Networks?

How do tensor networks arise in physics?

Quantum systems governed by
Schrödinger equation:

$$
\hat{H} \vec{\Psi}=E \vec{\Psi}
$$

It is just an eigenvalue problem.

The problem is that \hat{H} is a $2^{\mathrm{N}} \times 2^{\mathrm{N}}$ matrix
\Longrightarrow wavefunction $\vec{\Psi}$ has 2^{N} components

$$
=E \cdot \begin{array}{r}
\\
\\
\\
\exists \exists \\
\\
\\
\\
\\
\\
\exists \exists
\end{array}
$$

Natural to view wavefunction as order-N tensor

$$
|\Psi\rangle=\sum_{r} \Psi^{s_{1} s_{2} s_{3} \cdots s_{N}}\left|s_{1} s_{2} s_{3} \cdots s_{N}\right\rangle
$$

Natural to view wavefunction as order- N tensor

Tensor components related to probabilities of e.g. Ising model spin configurations

Tensor components related to probabilities of e.g. Ising model spin configurations

Must find an approximation to this exponential problem

Simplest approximation (mean field / rank-1)
Let spins "do their own thing"

$$
\Psi^{s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}} \simeq \psi^{s_{1}} \psi^{s_{2}} \psi^{s_{3}} \psi^{s_{4}} \psi^{s_{5}} \psi^{s_{6}}
$$

Expected values of individual spins ok
No correlations

Restore correlations locally

$$
\Psi^{s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}} \simeq \psi^{s_{1}} \psi^{s_{2}} \psi^{s_{3}} \psi^{s_{4}} \psi^{s_{5}} \psi^{s_{6}}
$$

Restore correlations locally

$$
\begin{aligned}
\Psi^{s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}} \simeq & \psi_{i_{1}}^{s_{1}} \psi_{i 1}^{s_{2}}
\end{aligned} \psi^{s_{3}} \psi^{s_{4}} \psi^{s_{5}} \psi^{s_{6}}
$$

Restore correlations locally

$$
\Psi^{s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}} \simeq \psi^{s_{1}} \psi_{i_{1} i_{2}}^{s_{2}} \psi_{i_{2} i_{3}}^{s_{3}} \psi_{i_{3} i_{4}}^{s_{4}} \psi^{s_{4}} i^{i_{5}} \psi_{i_{5}}^{s_{6}}
$$

matrix product state (MPS)
Local expected values accurate
Correlations decay with spatial distance

"Matrix product state" because
retrieving an element $=$ product of matrices

"Matrix product state" because
retrieving an element $=$ product of matrices

Tensor diagrams have rigorous meaning

Joining lines implies contraction, can omit names

\longleftrightarrow

$$
A_{i j} \underbrace{}_{j k}=A B
$$

MPS approximation controlled by bond dimension "m" (like SVD rank)

Compress 2^{N} parameters into $N \cdot 2 \cdot m^{2}$ parameters
$m \sim 2^{\frac{N}{2}}$ can represent any tensor

Friendly neighborhood of "quantum state space"

MPS lead to powerful optimization techniques (DMRG algorithm)

White, PRL 69, 2863 (1992)
Stoudenmire, White, PRB 87, 155137 (2013)

Besides MPS, other successful tensor are PEPS and MERA

PEPS
(2D systems)

MERA
(critical systems)

Evenbly, Vidal, PRB 79, 144108 (2009)
Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)

Supervised Kernel Learning

Supervised Learning

Very common task:

Labeled training data (= supervised)

Find decision function $f(\mathbf{x})$

$$
\begin{array}{ll}
f(\mathbf{x})>0 & \mathrm{x} \in A \\
f(\mathrm{x})<0 & \mathrm{x} \in B
\end{array}
$$

Input vector x e.g. image pixels

ML Overview

Use training data to build model

ML Overview

Use training data to build model

ML Overview

Use training data to build model

Generalize to unseen test data

ML Overview

Popular approaches

Neural Networks

$$
f(\mathbf{x})=\Phi_{2}\left(M_{2} \Phi_{1}\left(M_{1} \mathbf{x}\right)\right)
$$

Non-Linear Kernel Learning

$$
f(\mathbf{x})=W \cdot \Phi(\mathbf{x})
$$

Non-linear kernel learning

Want $f(\mathbf{x})$ to separate classes

Linear classifier

$$
f(\mathbf{x})=W \cdot \mathbf{x}
$$

often insufficient

Non-linear kernel learning

Apply non-linear "feature map" $\mathrm{x} \rightarrow \Phi(\mathrm{x})$

Non-linear kernel learning

Apply non-linear "feature map" $\mathrm{x} \rightarrow \Phi(\mathrm{x})$

Decision function

$$
f(\mathbf{x})=W \cdot \Phi(\mathbf{x})
$$

Non-linear kernel learning

> | Decision function | $f(\mathbf{x})=W \cdot \Phi(\mathbf{x})$ |
| :--- | :--- |

Linear classifier in feature space

Non-linear kernel learning

Example of feature map

$$
\begin{aligned}
\mathbf{x} & =\left(x_{1}, x_{2}, x_{3}\right) \\
\Phi(\mathbf{x}) & =\left(1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)
\end{aligned}
$$

x is "lifted" to feature space

Proposal for Learning

Grayscale image data

$$
\begin{aligned}
& 000000000000000 \\
& 11111111111111 \\
& 222222222222220 \\
& 333333333333333 \\
& 444444444444444 \\
& 555555555555555 \\
& 666666666666666 \\
& 777777777777771 \\
& 888888888888888 \\
& 999999999999999
\end{aligned}
$$

Map pixels to "spins"

Map pixels to "spins"

Map pixels to "spins"

Local feature map, dimension $\mathrm{d}=2$

$$
\phi\left(x_{j}\right)=\left[\cos \left(\frac{\pi}{2} x_{j}\right), \sin \left(\frac{\pi}{2} x_{j}\right)\right] \quad x_{j} \in[0,1]
$$

Crucially, grayscale values not orthogonal

$$
\begin{aligned}
& \mathbf{x}=\text { input } \\
& \phi=\text { local feature map }
\end{aligned}
$$

Total feature map $\Phi(\mathbf{x})$

$$
\Phi^{s_{1} s_{2} \cdots s_{N}}(\mathbf{x})=\phi^{s_{1}}\left(x_{1}\right) \otimes \phi^{s_{2}}\left(x_{2}\right) \otimes \cdots \otimes \phi^{s_{N}}\left(x_{N}\right)
$$

- Tensor product of local feature maps / vectors
- Just like product state wavefunction of spins
- Vector in 2^{N} dimensional space

$$
\begin{aligned}
& \mathbf{x}=\text { input } \\
& \phi=\text { local feature map }
\end{aligned}
$$

Total feature map $\Phi(\mathbf{x})$

More detailed notation

$$
\left.\begin{array}{cc}
\mathbf{x}=\left[\begin{array}{llll}
x_{1}, & x_{2}, & x_{3}, & \ldots
\end{array}, x_{N}\right.
\end{array}\right] \quad \text { raw input }, ~\left(\begin{array}{l}
\phi_{1}\left(x_{1}\right) \\
\phi_{2}\left(x_{1}\right)
\end{array}\right] \otimes\left[\begin{array}{l}
\phi_{1}\left(x_{2}\right) \\
\phi_{2}\left(x_{2}\right)
\end{array}\right] \otimes\left[\begin{array}{l}
\phi_{1}\left(x_{3}\right) \\
\phi_{2}\left(x_{3}\right)
\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{l}
\phi_{1}\left(x_{N}\right) \\
\phi_{2}\left(x_{N}\right)
\end{array}\right] \begin{aligned}
& \text { feature } \\
& \text { vector }
\end{aligned}
$$

```
x = input
\phi= local feature map
```


Total feature map $\Phi(\mathbf{x})$

Tensor diagram notation

$$
\mathbf{x}=\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & \ldots & x_{N}
\end{array}\right]
$$

raw inputs

$$
\because
$$

feature vector

Construct decision function

$$
f(\mathbf{x})=W \cdot \Phi(\mathbf{x})
$$

Construct decision function

$$
f(\mathbf{x})=W \cdot \Phi(\mathbf{x})
$$

Construct decision function

$$
f(\mathbf{x})=W \cdot \Phi(\mathbf{x})
$$

$$
f(\mathbf{x})=\overparen{\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc(x)}
$$

Construct decision function

$$
f(\mathbf{x})=W \cdot \Phi(\mathbf{x})
$$

$$
f(\mathbf{x})=\$ 1 \begin{aligned}
& W \\
& \Phi(\mathbf{x})
\end{aligned}
$$

$W=\$$

Main approximation

$$
W=\overparen{T 1,11}
$$

order- N tensor

matrix product state (MPS)

MPS form of decision function

$$
f(x)=
$$

Linear scaling

Can use algorithm similar to DMRG to optimize
$N=$ size of input
Scaling is $N \cdot N_{T} \cdot m^{3}$
$N_{T}=$ size of training set
$m=$ MPS bond dimension

Linear scaling

Can use algorithm similar to DMRG to optimize
$N=$ size of input
Scaling is $N \cdot N_{T} \cdot m^{3}$
$N_{T}=$ size of training set
$m=$ MPS bond dimension

Linear scaling

Can use algorithm similar to DMRG to optimize
$N=$ size of input
Scaling is $N \cdot N_{T} \cdot m^{3}$
$N_{T}=$ size of training set
$m=$ MPS bond dimension

Linear scaling

Can use algorithm similar to DMRG to optimize

$$
N=\text { size of input }
$$

Scaling is $N \cdot N_{T} \cdot m^{3}$

$N_{T}=$ size of training set
$m=$ MPS bond dimension

Linear scaling

Can use algorithm similar to DMRG to optimize

$$
\begin{aligned}
N & =\text { size of input } \\
N_{T} & =\text { size of training set } \\
m & =\text { MPS bond dimension }
\end{aligned}
$$

Scaling is $N \cdot N_{T} \cdot m^{3}$

Could improve with stochastic gradient

Multi-class extension of model

Decision function $f^{\ell}(\mathbf{x})=W^{\ell} \cdot \Phi(\mathbf{x})$

Index ℓ runs over possible labels

Predicted label is $\operatorname{argmax}_{\ell}\left|f^{\ell}(\mathbf{x})\right|$

MNIST Experiment

MNIST is a benchmark data set of grayscale handwritten digits (labels $\ell=0,1,2, \ldots, 9$)

60,000 labeled training images 10,000 labeled test images

$$
\begin{aligned}
& 000000000000000 \\
& 111111111111111 \\
& 222222222222220 \\
& 333333333333333 \\
& 444444444444444 \\
& 555555355555555 \\
& 666666666666666 \\
& 777777777777777 \\
& 888888888888888 \\
& 999999999999999
\end{aligned}
$$

MNIST Experiment

One-dimensional mapping

MNIST Experiment

Results

Bond dimension	Test Set Error	
$m=10$	$\sim 5 \%$	$(500 / 10,000$ incorrect $)$
$m=20$	$\sim 2 \%$	$(200 / 10,000$ incorrect)
$m=120$	0.97%	$(97 / 10,000$ incorrect $)$

State of the art is $<1 \%$ test set error

MNIST Experiment

\longrightarrow Demo

Link: http://itensor.org/miles/digit/index.html

Understanding Tensor Network Models

$$
f(x)=
$$

Again assume W is an MPS

$$
f(x)=
$$

Many interesting benefits
Two are:

1. Adaptive
2. Feature sharing
3. Tensor networks are adaptive

boundary pixels not useful for learning
$\underbrace{}_{\substack{\text { grayscale } \\ \text { training } \\ \text { data }}}$

$$
\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

2. Feature sharing

- Different central tensors
- "Wings" shared between models
- Regularizes models

2. Feature sharing

Progressively learn shared features

2. Feature sharing

Progressively learn shared features

2. Feature sharing

Progressively learn shared features
2. Feature sharing

Progressively learn shared features

Deliver to central tensor

Nature of Weight Tensor

Representer theorem says exact $W=\sum_{j} \alpha_{j} \Phi\left(x_{j}\right)$

Density plots of trained W^{ℓ} for each label $\ell=0,1, \ldots, 9$

Nature of Weight Tensor

Representer theorem says exact $W=\sum_{j} \alpha_{j} \Phi\left(x_{j}\right)$

Tensor network approx. can violate this condition

$$
W_{\mathrm{MPS}} \neq \sum_{j} \alpha_{j} \Phi\left(x_{j}\right) \quad \text { for any } \quad\left\{\alpha_{j}\right\}
$$

- Tensor network learning not interpolation
- Interesting consequences for generalization?

Some Future Directions

- Apply to 1D data sets (audio, time series)
- Other tensor networks: TTN, PEPS, MERA
- Useful to interpret $|W \cdot \Phi(\mathbf{x})|^{2}$ as probability? Could import even more physics insights.
- Features extracted by elements of tensor network?

What functions realized for arbitrary W ?

Instead of "spin" local feature map, use*

$$
\phi(x)=(1, x)
$$

Recall total feature map is

$$
\Phi(\mathbf{x})=\left[\begin{array}{l}
\phi_{1}\left(x_{1}\right) \\
\phi_{2}\left(x_{1}\right)
\end{array}\right] \otimes\left[\begin{array}{l}
\phi_{1}\left(x_{2}\right) \\
\phi_{2}\left(x_{2}\right)
\end{array}\right] \otimes\left[\begin{array}{l}
\phi_{1}\left(x_{3}\right) \\
\phi_{2}\left(x_{3}\right)
\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{l}
\phi_{1}\left(x_{N}\right) \\
\phi_{2}\left(x_{N}\right)
\end{array}\right]
$$

$N=2$ case

$$
\phi(x)=(1, x)
$$

$$
\begin{aligned}
\Phi(\mathbf{x}) & =\left[\begin{array}{c}
1 \\
x_{1}
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
x_{2}
\end{array}\right] \\
& =\left(1, x_{1}, x_{2}, x_{1} x_{2}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\left.f(\mathbf{x})=W \cdot \Phi(\mathbf{x})=\quad \cdot\left(1, \quad x_{11}, W_{21}, W_{12}, W_{22}\right), x_{1} x_{2}\right) \\
= \\
=W_{11}+W_{21} x_{1}+W_{12} x_{2}+W_{22} x_{1} x_{2}
\end{array}
$$

$\mathrm{N}=3$ case

$$
\phi(x)=(1, x)
$$

$$
\begin{aligned}
\Phi(\mathbf{x}) & =\left[\begin{array}{c}
1 \\
x_{1}
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
x_{2}
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
x_{3}
\end{array}\right] \\
& =\left(1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right) \\
f(\mathbf{x}) & =W \cdot \Phi(\mathbf{x}) \\
& =W_{111}+W_{211} x_{1}+W_{121} x_{2}+W_{112} x_{3} \\
& +W_{221} x_{1} x_{2}+W_{212} x_{1} x_{3}+W_{122} x_{1} x_{3} \\
& +W_{222} x_{1} x_{2} x_{3}
\end{aligned}
$$

General N case

$$
\begin{aligned}
f(\mathbf{x})= & W \cdot \Phi(\mathbf{x}) & & \\
= & W_{111 \cdots 1} & & \text { constan } \\
& +W_{211 \cdots 1} x_{1}+W_{121 \cdots 1} x_{2}+W_{112 \cdots 1} x_{3}+\ldots & & \text { singles } \\
& +W_{221 \cdots 1} x_{1} x_{2}+W_{212 \cdots 1} x_{1} x_{3}+\ldots & & \text { doubles } \\
& +W_{222 \cdots 1} x_{1} x_{2} x_{3}+\ldots & & \text { triples } \\
& +\ldots & & \\
& +W_{222 \cdots 2} x_{1} x_{2} x_{3} \cdots x_{N} & & N \text {-tuple }
\end{aligned}
$$

constant
singles
doubles
triples

N-tuple

Model has exponentially many formal parameters

Related Work

Novikov, Trofimov, Oseledets (1605.03795)

- matrix product states + kernel learning
- stochastic gradient descent

Cohen, Sharir, Shashua (1410.0781, 1506.03059, 1603.00162, 1610.04167)

- tree tensor networks
- expressivity of tensor network models
- correlations of data (analogue of entanglement entropy)
- generative proposal

Other MPS related work (= "tensor trains")

Markov random field models
Novikov et al., Proceedings of 31st ICML (2014)

Large scale PCA
Lee, Cichocki, arxiv: 1410.6895 (2014)

Feature extraction of tensor data
Bengua et al., IEEE Congress on Big Data (2015)

Compressing weights of neural nets
Novikov et al., Advances in Neural Information Processing (2015)

