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Research Areas:

Non-equilibrium realtime
quantum electronic dynamics.
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Begging for Breakthroughs

Electronic timescale
~ 4*1041s

1ps = 107 fock builds
114 days at 1 build/second

Dynamics is sequential
and parallelization in time
is weak.

Feynman's clock, a new variational principle,
and parallel-in-time quantum dynamics

Jarrod R. McClean®, John A. Parkhill®, and Alan Aspuru-Guzik®’
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3 Models

® (Orbital Free DFT
® Neural Networks + Many Body Expansion.
® A Diatomics in Molecules NN

Today
2000+ Atoms <100 Atoms <40 Atoms
Force-Fields Density Functional Ab-Initio
Soon
2000+ Atoms <100 Atoms <40 Atoms
Force-Fields Density Functional Ab-Initio
Neural Network



Orbital Free DFT

Hemoglobin : 16000 Daltons
~ 16000 orbitals vs LLimit of Most KS ~ 3000

With orbital free-DFT you only need 1
orbital, and get a 10x speedup.

But you must know a mysterious
‘functional’ which maps the density
to kinetic energy....
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PRL 108, 253002 (2012) PHYSICAL REVIEW LETTERS

Finding Density Functionals with Machine Learning
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Chemistry Starts in the 4th digit.

Taga = /TTF(n(T))F <|Vn(fr)f>

n(r)3/4

Accuracy ~ 1 %

No shell structure
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D Garcia-Aldea, JE Alvarellos Journal of chemical physics 127.14 (2007): 144109.




A Kohn-Sham Kinetic Energy Density

T = [ F(p(r),p(r1),p(ra), - Jtrrw)(p;r)dr

Local kinetic energy t . = 1 S8 [Voi(r)]?  tan = =2 2N, 65(r)V26i(r)

Thomas Fermi and Trrp = [Crep®Pdr  Tyw =1 [ JV—;"—dz
Von Weisacker

20
—F, sch-TF

— Fplus—TF

=== Fsch—VW

e Lour types of F
e They all display the shell

structure

Enhancement factor

¢ TF based F diverge at long Distance from nucleus (bohr)
distance, while VW based converge




CNN version 0.1

Pseudo 2-d input motivated by computational limitations

quadrature point

Density along
lines fed into
convolutional
neural network.

~1 million quadrature points per atom.
~2000 inputs per quadrature point.
~Barely tractable fE



Our Network

3 5/3
T{n(r)} = / F{n(r),r'yrp () T = 15(37%) " n(r)* dr
~4000 samples per grid point Future thoughts:
106 samples per atom 3D Convolutional Networks

Basis sets
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Finding a functional

Learn F as a function of n(r), given as a slice of the surface.

T{n(r)} = /F{n(r), 'y (r)dr!

Kohn-Sham Neural Network




The shape of the error

Enhancement Factor in C-C bonding plane

Accurate (KS)  Neural Net Error(NN-KS)

C2H4

C2Hs




Reproducing Potential Energy Surfaces

Kinetic: KS XC: B3LYP

Kinetic: CNN XC: B3LYP
Kinetic: KS XC: PBE
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Self-Consistent Densities.

0.012

0.008

0.004

Density Error (%)

0.7 0.8 0.9 1.0
H-H Bond length (A)

@ cuda-convnet

High-performance C++/CUDA implementation of convolutional neural networks

Project Home Wiki Issues Source

Summary People

Project Information Note July 18, 2014:

Starred by 360 users « I've released an update to cuda-convnet, called cuda-convnet2. The two main new features are fast
Project feeds and support for multi-GPU training.

Code license

S This is a fast C++/CUDA implementation of convolutional (or more generally, feed-forward) neural network
New BSD License

connectivity and network depth. Any directed acyclic graph of layers will do. Training is done using the bagd
Labels

. . Fermi-generation GPU (GTX 4xx, GTX 5xx, or Tesla equivalent) required.
Machinelearning,




Getting Serious.

Better Density inputs.

Gradients (which require tight integration between
electronic structure and the NN.
® Some architecture for training data

PYSCF TensorMol

Sample ——— Digest —  Train ——  Evaluate

jpearkhill / TensorMol @ Unwatch~v 7 Y Star | 9 YFork O

<> Code Issues O Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Tensorflow + Molecules = TensorMol http://blogs.nd.edu/parkhillgroup
Add topics

D 448 commits P 3 branches © O releases 42 4 contributors sfs GPL-3.0

Branch: master » New pull request Create new file  Upload files = Find file Clone or download ~

jeherr transformer clean up and cabbage Latest commit 55ce7a8 2 days ago




What is TensorMol

A set of chemical routines

(90% python 10% C++) on top of
py p

Capabilities:
® Behler-Parrinello, Many Body etc.
® Various network types (FC, Convolutional, 3d)

® A variety of digesters: (Coulomb, Symmetry
Functions, Radial*Spherical Harmonics)

® A variety of outputs (energy, force, probability)
® Some gradients.
® Integration with PYSCF for Ab-initio energies,

Coulomb integrals etc.




A Heretical Model

Take some crystal structures, define a Go6 type
potential. Sample its normal modes, and learn its
force. Then optimize other molecules

a=MSet("OptMols")
a.ReadXYZ("0OptMols")
c=a.DistortedClone(60)
b=a.DistortAlongNormals()
TreatedAtoms =b AtomTypes()

toms, name —”GauSH",OType_ ="Force")

£ e T 1 SeT Sc
tset = TensorData(b d)
tset.BuildTrain("OptMols_NEQ",TreatedAtoms) : nerates dataset numpy arrays for each atom.
tset2 = TensorData(c,d)
tset2.BuildTrain("OptMols_NEQ",TreatedAtoms,True) # generates dataset numpy arrays for each atom.
tset = TensorData(None,None,"OptMols_NEQ_ GauSH” None 6000)
manager=TFManage("",tset,True,"fc_sqdiff") # True indicates train al

test_mol = a.mols[0]

print "Orig Coords", test_mol.coords

test_mol.Distort()

print test_mol.coords

print test_mol.atoms
manager=TFManage("OptMols_NEQ_GauSH_fc_sqdiff",None, False)
optimizer = Optimizer(manager)

optimizer.Opt(test_mol)




A Heretical Model

Take some crystal structures, define a Go6 type
potential. Sample its normal modes, and learn its
force. Then optimize other molecules




Physical Inputs with Invariance

How to parameterize a molecule with invariances and retain invertibility?
How to express atomic number differences avoiding separate channels.

Depth Map Coulomb Matrix?

Sorted by distance or atomic number?

Symmetry Functions?

G(ri, r2, r3...)
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Physical Inputs with Invariance

fHZM('Qj? Y, Z) S Ranl,m
R — o= (r—r)*/(20%)
Embedded Space Real Space

'This embedding is reversible! can go between
geometry and embedded geometry reversibly.




Generative Adversarial models.

Depth of field map for an
MD trajectory of 3 methanols

A way to create a set of nonlinear
modes to sample chemical space.

-
/A




My personal favorite

Embedding for this atom

() — Z frlz,y, 2)YE (z,y, 2) * (Atm.Number)

atoms




Partitioning of the energy.

Behler-Parinnello  g,c propagates

atom networks for each
B = E Eatom element with only 1 energy
Atoms

Many Body Expansion

E = Z E.o + Z Eonic + ... Uses separate monomer

- dimer etc. training data
Molecules pairs

Diatomics-in-molecules NN

F = Z Frong Like Behler-Parinello but

Bonds bond energies vary less




Neural Network PESs
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Cluster accuracy
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Cluster accuracy

A Emp2-mBe = 5.6
A ENN—MBE = 58

A Emp2-mBe = 13.3
A ENN—MBE = 146




Cluster accuracy
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Cancellation of errors in large clusters

N
s
(qv)

T

o

i
X

—’
—
Q
-
V)]
B

—
O

ey
@)
—
@)
—
$—

Sa

100 150
Number of molecules




Polarizable FF’s on notice.

/ MP2-MBE

200 400 600 800 1000 1200 1400

Number of molecules




Forces

lmax ;‘ ?muz OE
Z , L. L9D,

We Coc

-164882- -
~16488.4- water geometry optimization
~ -16488.6
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Optimization Step




DIM-NN

Expresses the total molecular energy as a sum of bonds

-Only requires total energy training data

-Networks for each bond type




Accurate total energies.

Eprr : -939.6928 Ha
Epmvnn:  -939.6927 Ha

H

Similar errors for
vitamin B12, D3 etc...
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The Space of Carbon Carbon Bonds
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700,000 Carbon Carbon bond energies.




A Synthetic Chemist

Seth Brown

,‘ Chemical Thermodynamics, Chemical Kinetics, Catalysis M O I

Chemist Neural Network

>> 44.73

—40.50




Conclusions

Because of GPU dependencies and large datasets required, the most
powerful MLL PES methods are not in common use in chemistry

'They will be soon.

Over the next year TensorMol and several other packages will appear
where users can “Roll their own” ML-PES’s with minimal effort.

These will compete heavily with DF'T

'The domain of chemical space which can be explored in a weekend is
about to exponentially increase.

THANKS!



