International workshop on numerical methods and simulations for materials design and strongly correlated quantum matters @ RIKEN

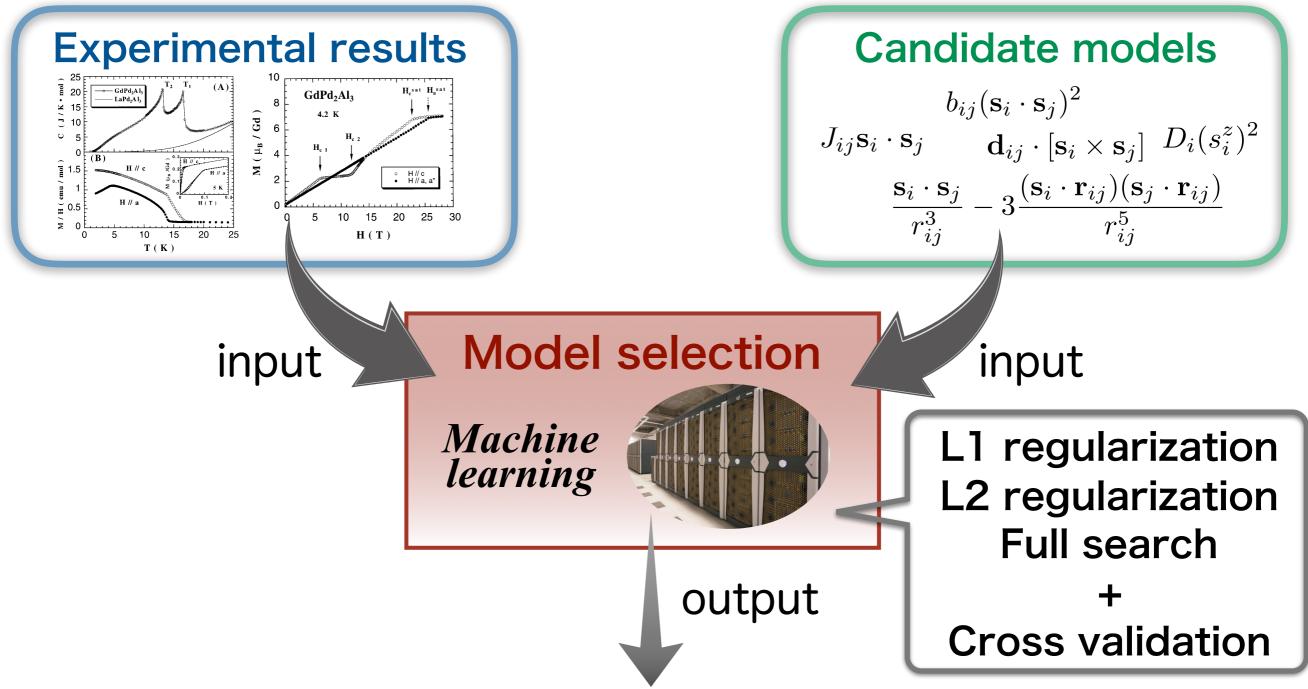
Estimation of effective models by machine learning NIMS Ryo Tamura

Collaborator: U. Tokyo NIMS Koji Hukushima

25/Mar/2017

for the Future

Motivation



Plausible effective model for experimental results (selection of model parameters in candidate model)

As the first stage

To estimate the spin Hamiltonian from data of magnetic materials by machine learning

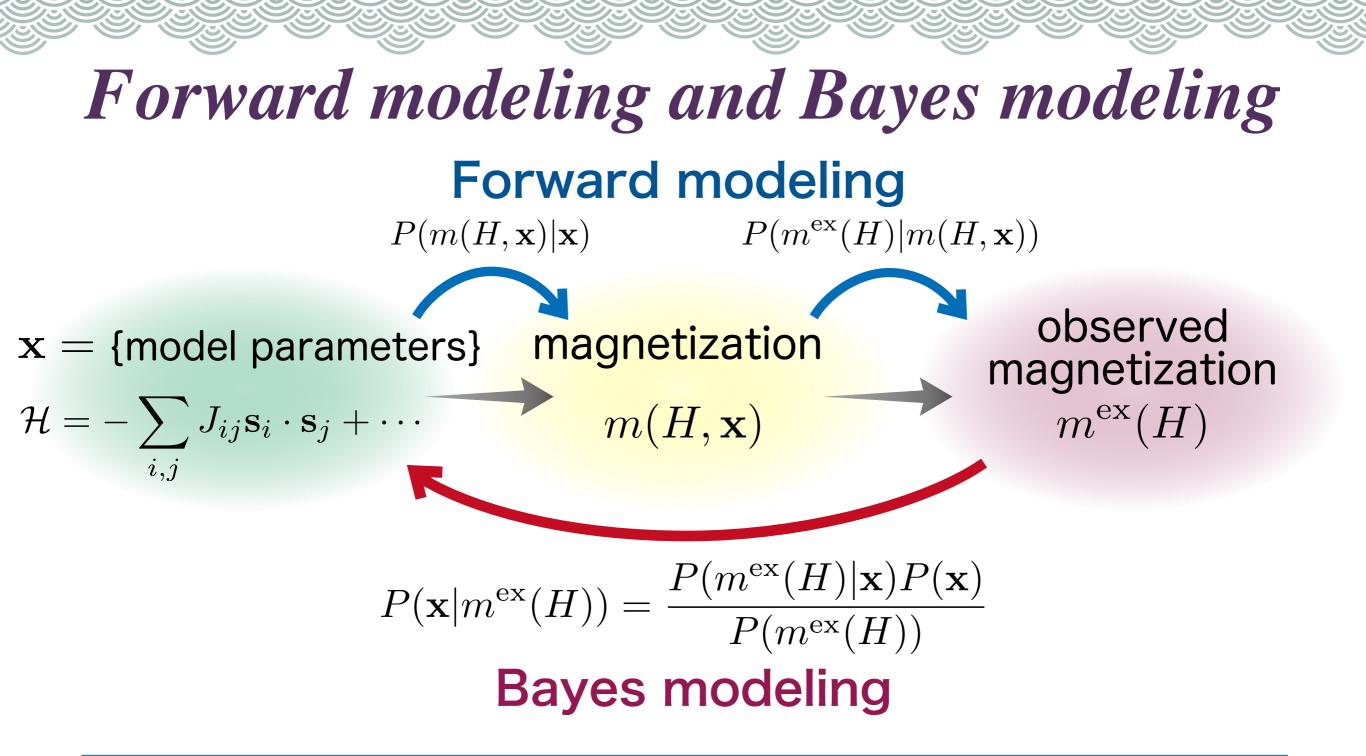
If we can estimate spin Hamiltonian ..

- Expect the spin snapshot, magnetic structure, and structure factor.
- Expect the properties which cannot be observed directly such as magnetic specific heat and magnetic entropy.
- Expect the properties in extreme environments such as super high magnetic field and super low temperature.

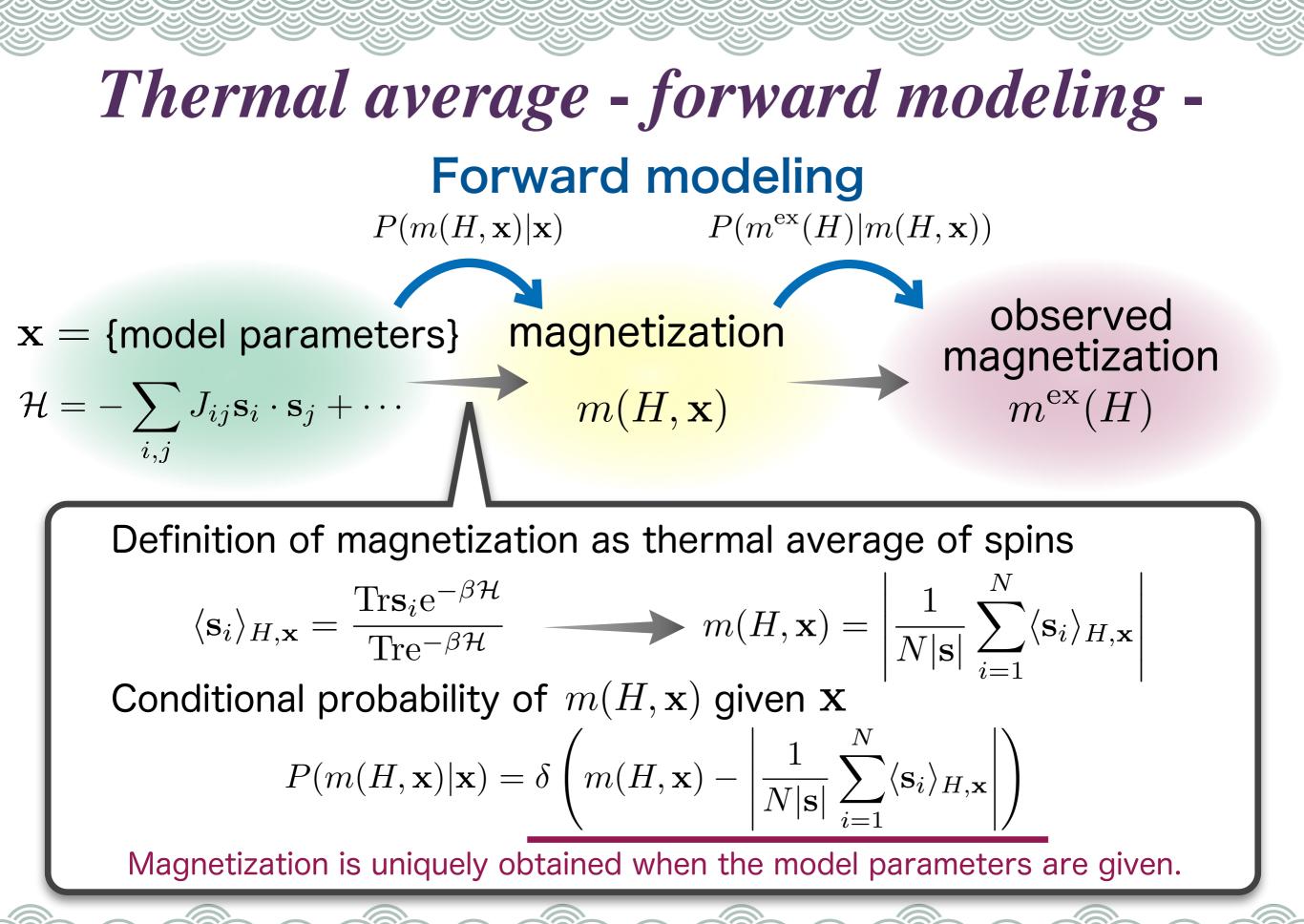
As the first stage

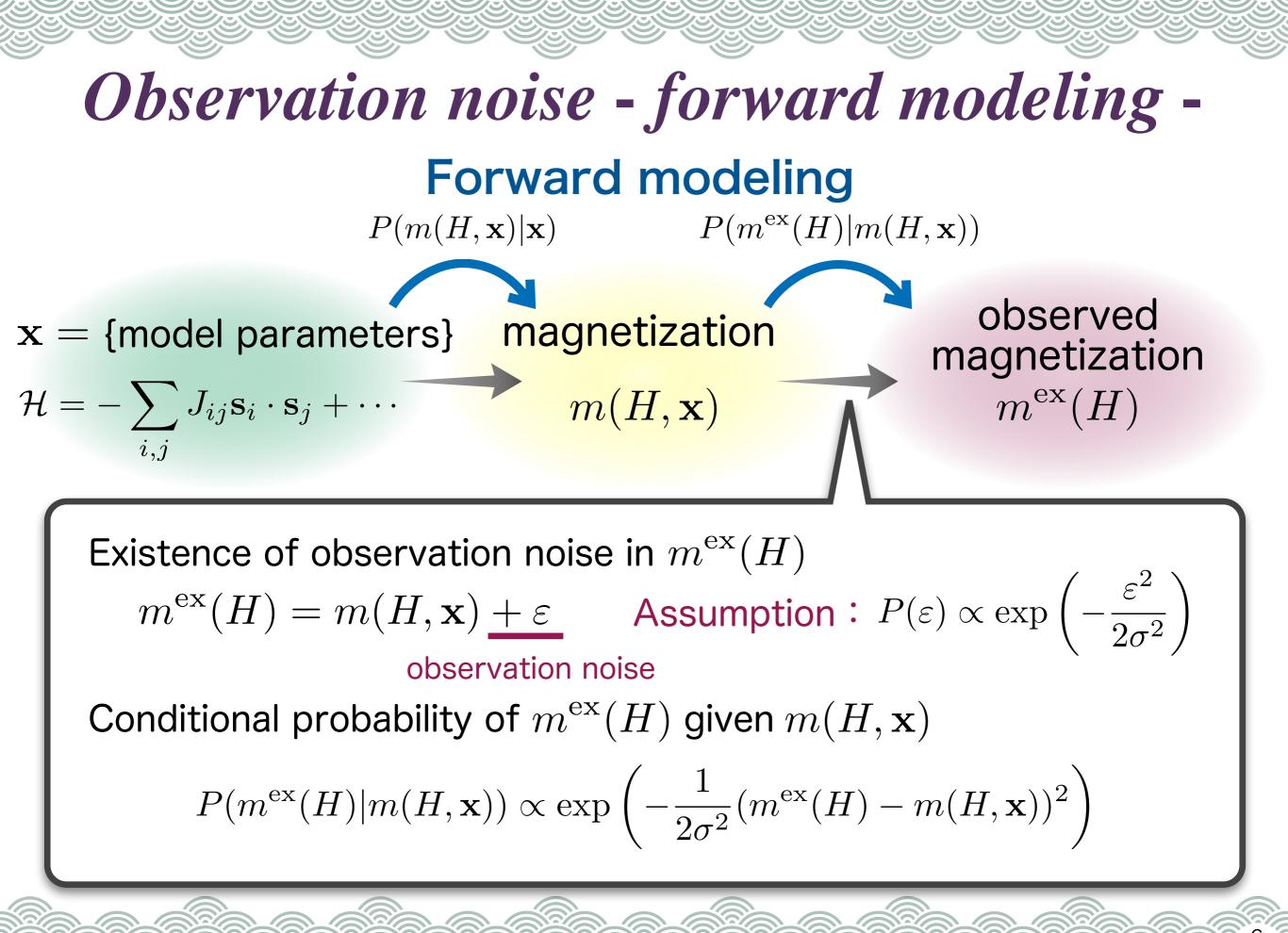
To estimate the spin Hamiltonian from data of magnetic materials by machine learning

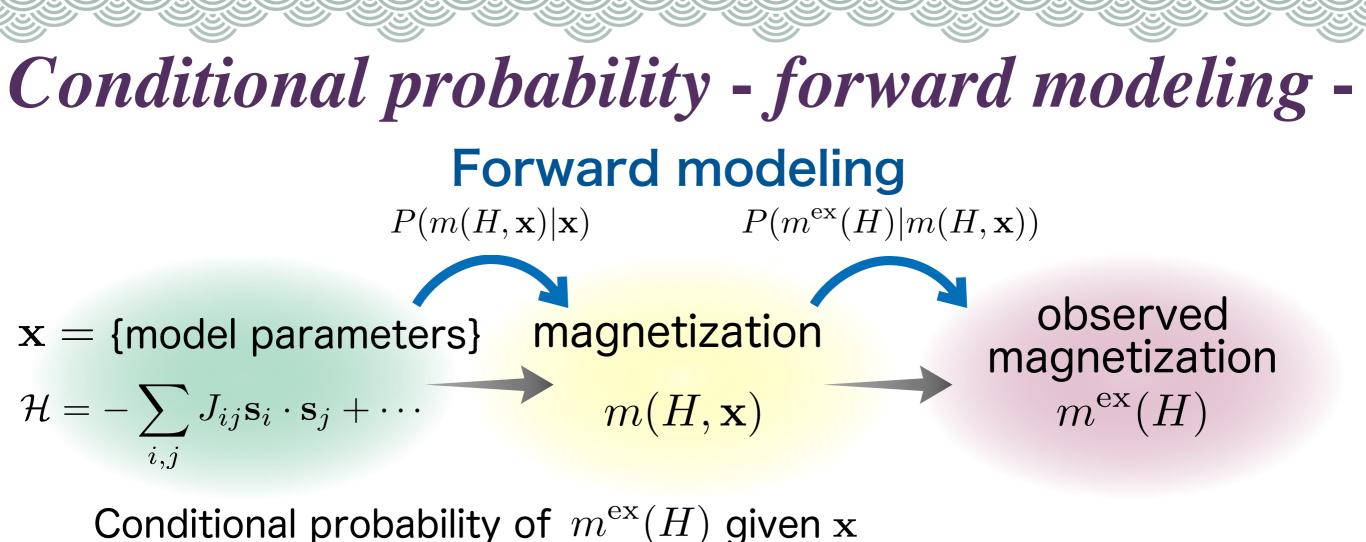
To estimate the spin Hamiltonian from magnetization curve by machine learning. 1.2 Magnetization Machine \mathcal{H} 1 learning curve 0.8 $m^{\mathrm{ex}}(H)$ 0.6 $b_{ij}(\mathbf{s}_i \cdot \mathbf{s}_j)^2$ $J_{ij}\mathbf{s}_{i} \cdot \mathbf{s}_{j} \qquad \mathbf{d}_{ij} \cdot [\mathbf{s}_{i} \times \mathbf{s}_{j}] \quad D_{i}(s_{i}^{z})^{2}$ $- \frac{\mathbf{s}_{i} \cdot \mathbf{s}_{j}}{r_{ij}^{3}} - 3 \frac{(\mathbf{s}_{i} \cdot \mathbf{r}_{ij})(\mathbf{s}_{j} \cdot \mathbf{r}_{ij})}{r_{ij}^{5}}$ 0.4 0.2 r_{ij}^{3} 0 2 6 10 12 14 0 4 8 16 H



P(B|A): Conditional probability of event *B* given event *A* (Posterior distribution : 事後分布)



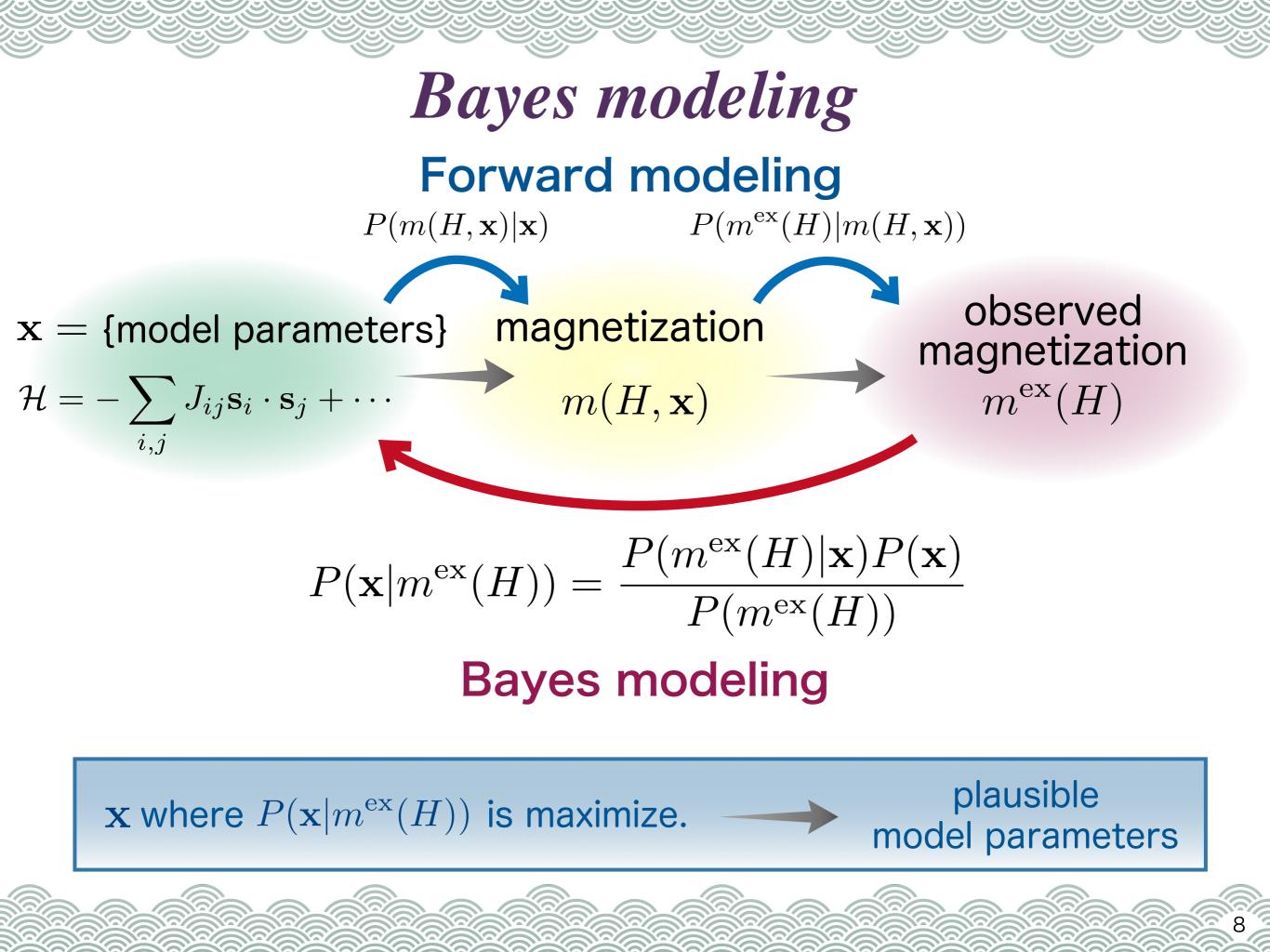


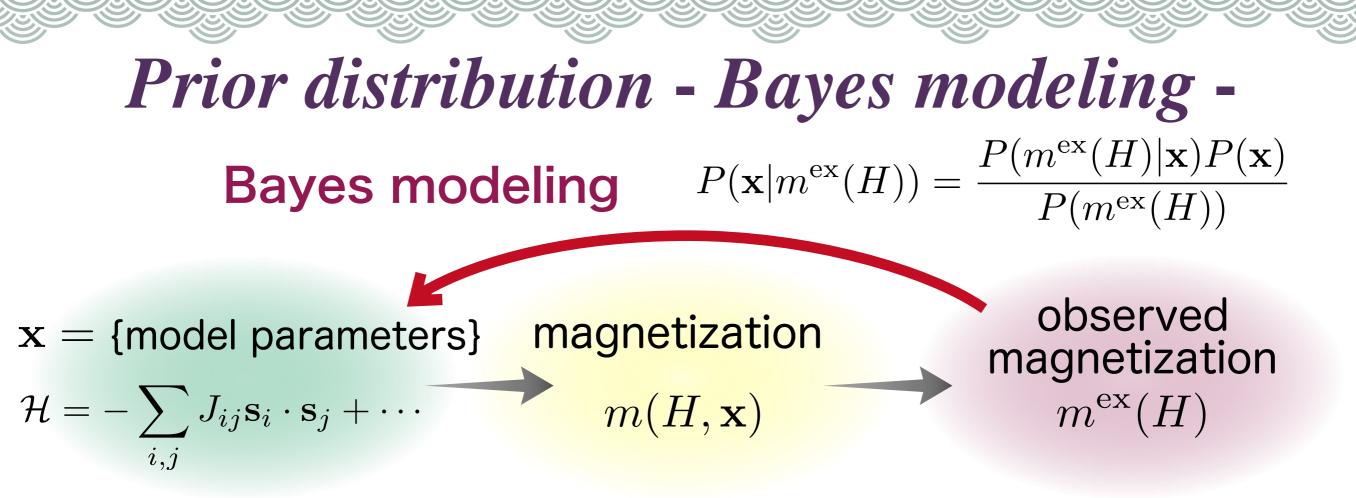


$$P(m^{\text{ex}}(H)|\mathbf{x}) \propto \int dm(H, \mathbf{x}) P(m^{\text{ex}}(H)|m(H, \mathbf{x})) P(m(H, \mathbf{x})|\mathbf{x})$$
$$\propto \exp\left[-\frac{1}{2\sigma^2} \left(m^{\text{ex}}(H) - \left|\frac{1}{N|\mathbf{s}|}\sum_{i=1}^N \langle \mathbf{s}_i \rangle_{H, \mathbf{x}}\right|\right)^2\right]$$

 $m^{\text{ex}}(H)$ where $P(m^{\text{ex}}(H)|\mathbf{x})$ is maximize.

observed magnetization



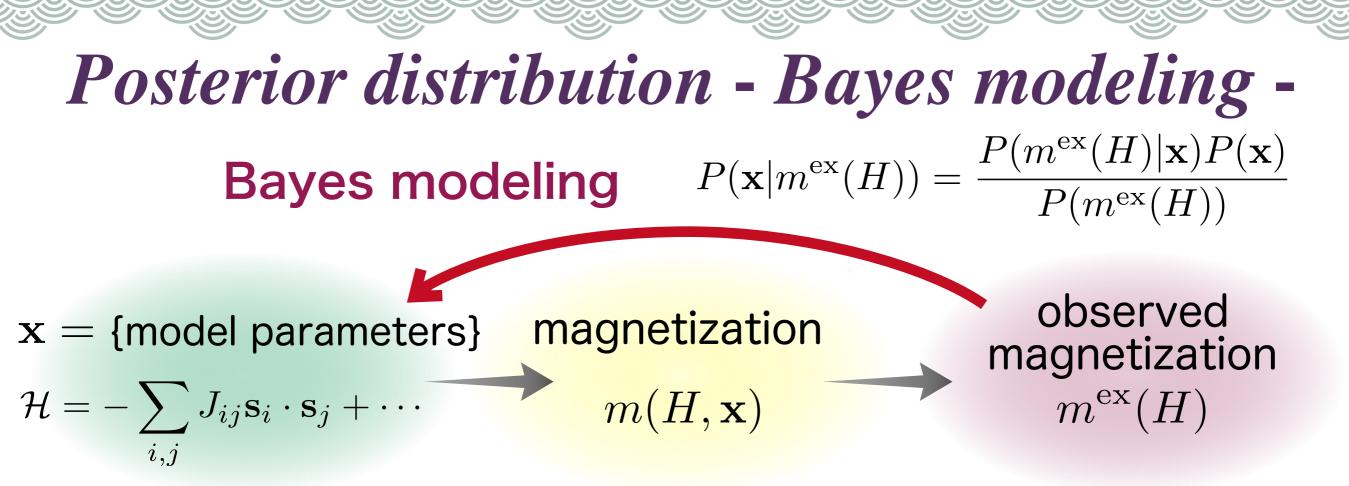


 $P(\mathbf{x})$: Prior distribution (prior knowledge about model parameters) (事前分布)

- If prior knowledge does not exist, $P(\mathbf{x}) \propto \text{const.}$
- If x is sparse (number of model parameters is small),

$$P(\mathbf{x}) \propto \exp\left(-\lambda \sum_{k=1}^{K} |x_k|\right)$$

- λ : amplitude of regularization (hyperparameter)
- K: number of model parameters



We assume that each magnetization is independently obtained in magnetization curve.

Assumption:
$$P(\mathbf{x}|\{m^{\mathrm{ex}}(H_l)\}_{l=1,\dots,L}) = \prod_{l=1}^{L} P(\mathbf{x}|m^{\mathrm{ex}}(H_l))$$

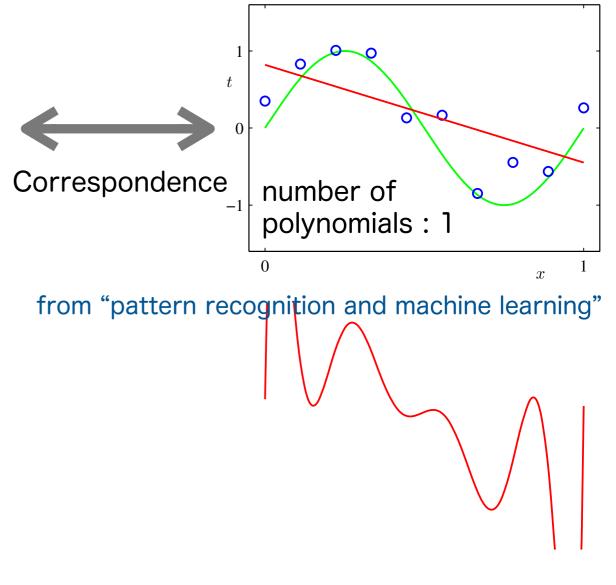
 $\begin{array}{c} \textbf{Posterior distribution} \\ P(\mathbf{x}|\{m^{\text{ex}}(H_l)\}_{l=1,\cdots,L}) \propto \exp \\ \textbf{observed magnetization} \\ \textbf{curve} \end{array} \begin{bmatrix} -\frac{1}{2\sigma^2} \sum_{l=1}^{L} \left(m^{\text{ex}}(H_l) - \left| \frac{1}{N|\mathbf{s}|} \sum_{i=1}^{N} \langle \mathbf{s}_i \rangle_{H_l,\mathbf{x}} \right| \right)^2 - \lambda \sum_{k=1}^{K} |x_k| \end{bmatrix}$

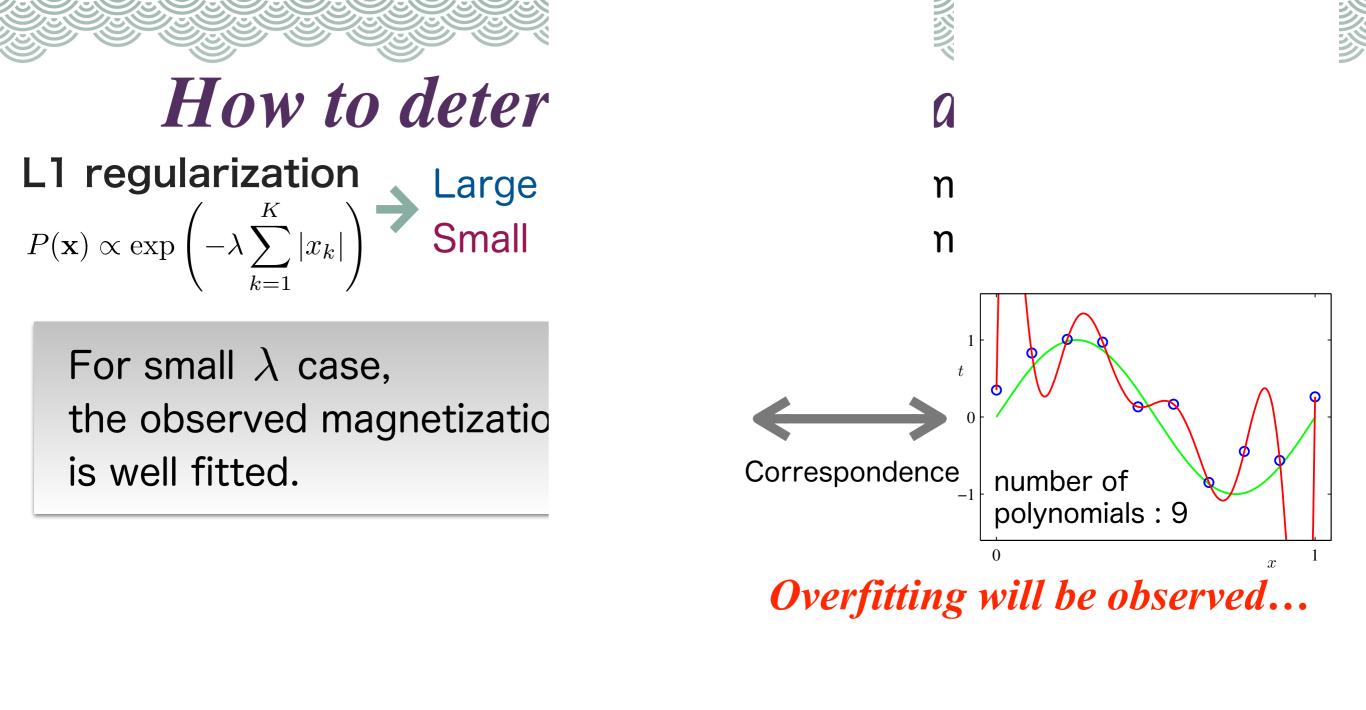
10

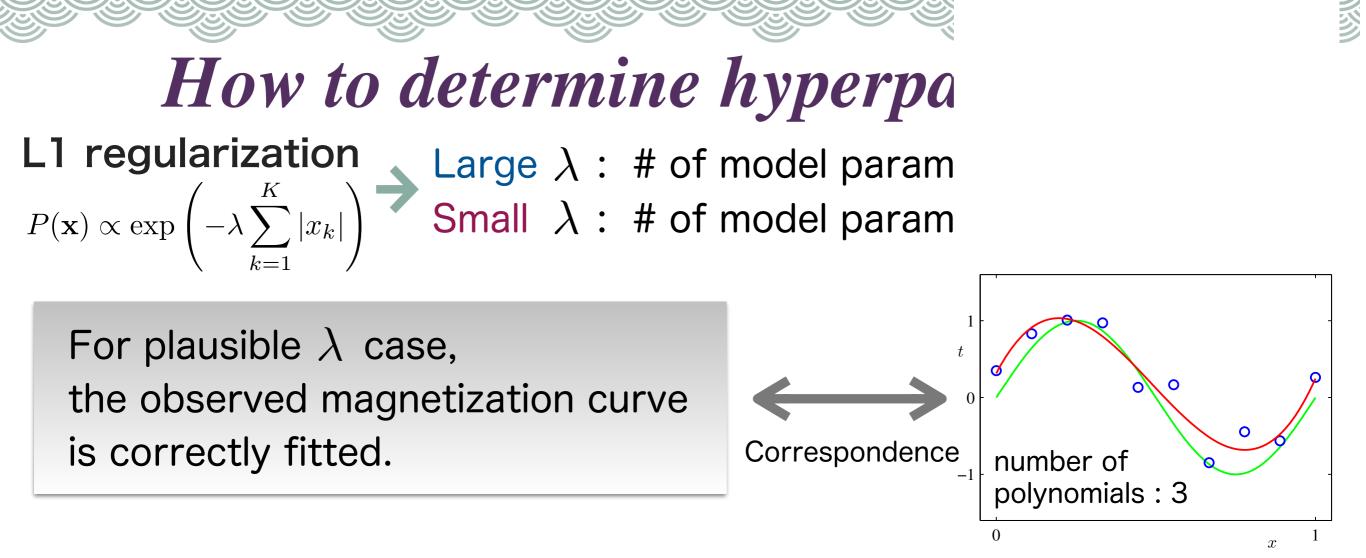
How to determine hyperparameter

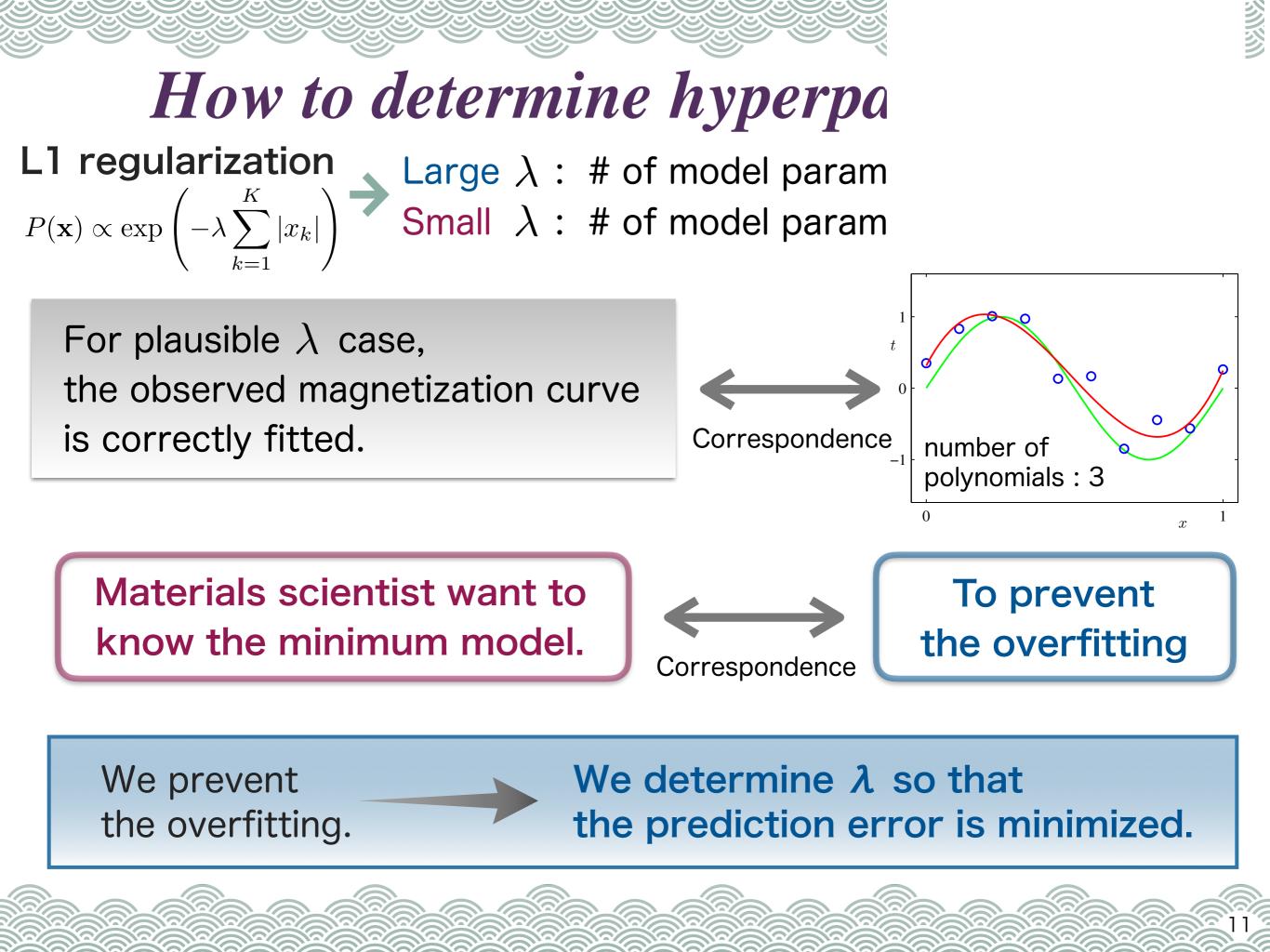
L1 regularization $P(\mathbf{x}) \propto \exp\left(-\lambda \sum_{k=1}^{K} |x_k|\right) \rightarrow \frac{\text{Large } \lambda : \# \text{ of model parameters becomes small.}}{\text{Small } \lambda : \# \text{ of model parameters becomes large.}}$

For large λ case, the observed magnetization curve will not be fitted.





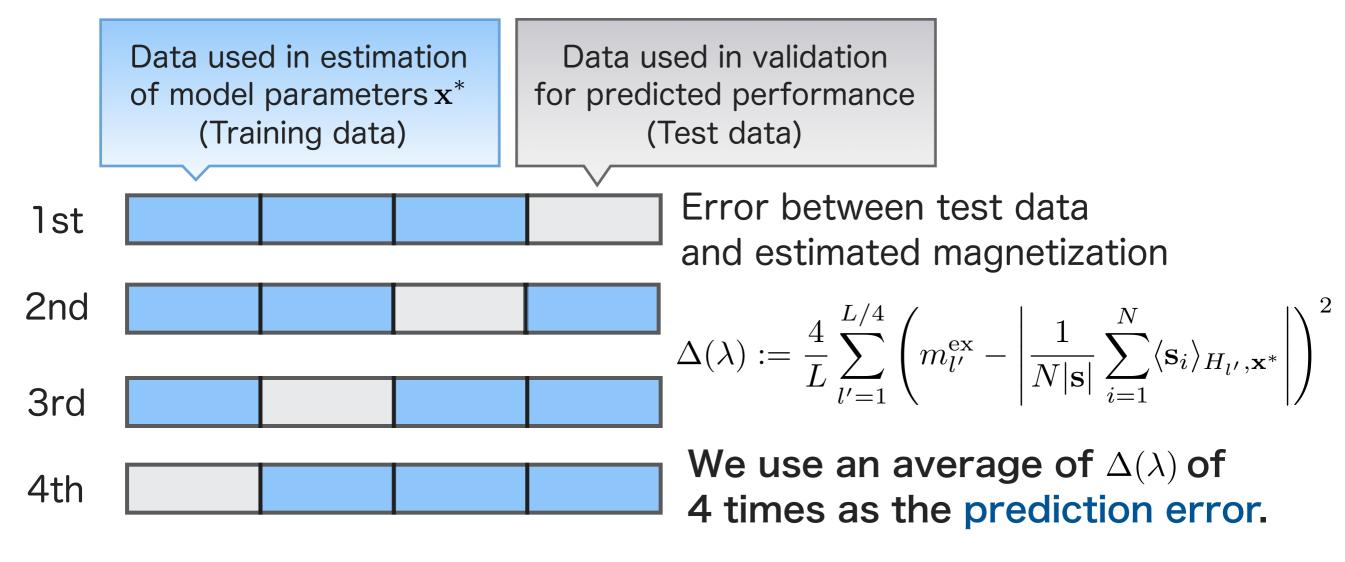




To calculate the prediction error

We divide data into training data and test data.

e.g. We divide the data into 4 groups.



Validation by theoretical model

Classical Heisenberg model with biquadratic interactions (magnetization plateau is appeared)

$$\mathcal{H} = \sum_{\langle i,j \rangle} J_{ij} \left[\mathbf{s}_i \cdot \mathbf{s}_j - b_{ij} (\mathbf{s}_i \cdot \mathbf{s}_j)^2 \right] - H \sum_i s_i^z \qquad b_{ij} = b J_{ij}$$

$$\mathbf{s}_i : \text{Classical Heisenberg spin (S=1/2)} \qquad \text{Type of}$$

interactions

 $J_1: n_1 = 2$ $r_1 = 1$

 $J_2: n_2 = 2$ $r_2 = 1$

 $J_3: n_3 = 1$ $r_3 = 1$

 $J_4: n_4 = 1$ $r_4 = 1$

 $J_6: n_6 = 1$ $r_6 = 2$

distance

 $r_5 = \sqrt{3}$

 $r_7 = 2$

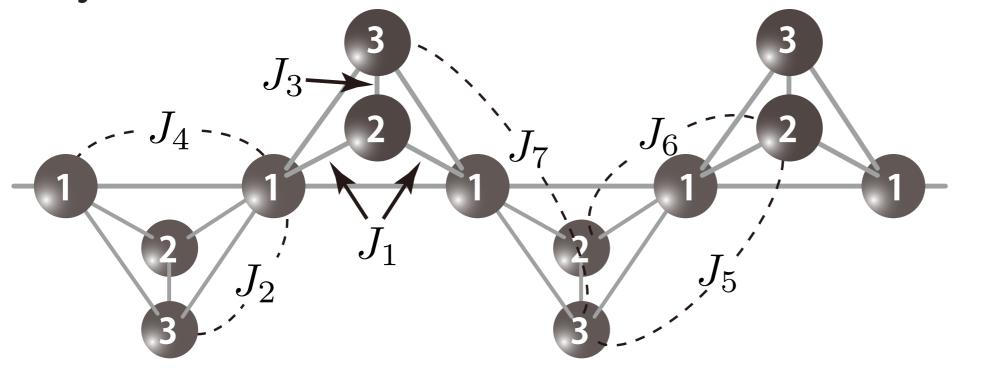
3

number

 $J_5: n_5 = 2$

 $J_7: n_7 = 1$

Crystal structure

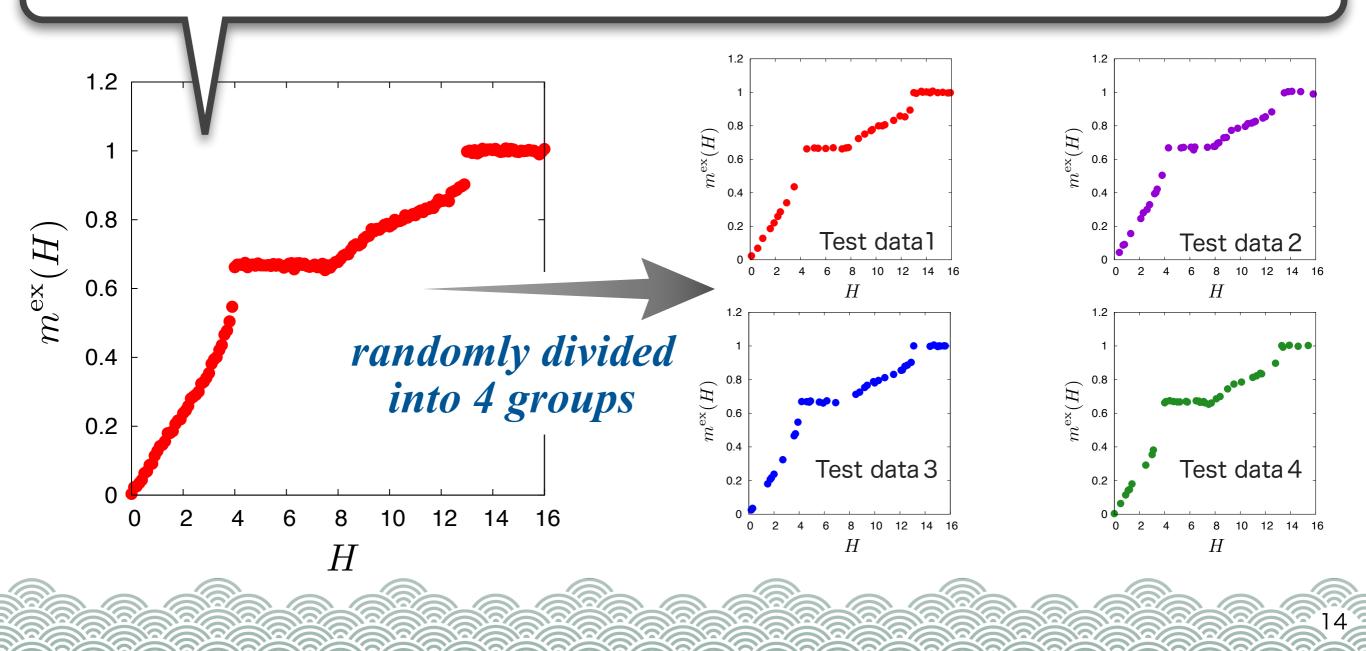


model parameters : $\mathbf{x} = \{J_1, J_2, J_3, J_4, J_5, J_6, J_7, b\}$

Inputted observed magnetization

Zero temperature $J_1 = 1, J_2 = 4, J_3 = 5, J_4 = 6, b = 0.1$ + Gaussian magnetization curve for $J_5 = J_6 = J_7 = 0$

Magnetization is calculated by the steepest descent method.



Simulation methods

We search the maximizer of the posterior distribution by Markov chain Monte Carlo method and exchange method. Energy function for MCMC

$$E(\mathbf{x}|\lambda,\sigma,K) = \frac{1}{2\sigma^2} \sum_{l=1}^{L} \left(m^{\mathrm{ex}}(H_l) - \left| \frac{1}{N|\mathbf{s}|} \sum_{i=1}^{N} \langle \mathbf{s}_i \rangle_{H_l,\mathbf{x}} \right| \right)^2 + \lambda \sum_{k=1}^{K} |x_k|$$

 $P(\mathbf{x}|\{m^{\mathrm{ex}}(H_l)\}_{l=1,\cdots,L}) \propto \exp\left[-E(\mathbf{x}|\lambda,\sigma,K)\right]$

Boltzmann distribution !

15

Transition probability for Markov chain $(\mathbf{x} \to \mathbf{x}')$ min $\{1, \exp[-(E(\mathbf{x}'|\lambda, \sigma, K) - E(\mathbf{x}|\lambda, \sigma, K))]\}$

Dynamical variables in this MC simulation are the model parameters.

Simulation methods

We search the maximizer of the posterior distribution by Markov chain Monte Carlo method and exchange method.

Introduction of virtual temperature

$$P(\mathbf{x}|\{m^{\mathrm{ex}}(H_l)\}_{l=1,\cdots,L}) \propto \exp\left[-\frac{1}{T}E(\mathbf{x}|\lambda,\sigma,K)\right]$$

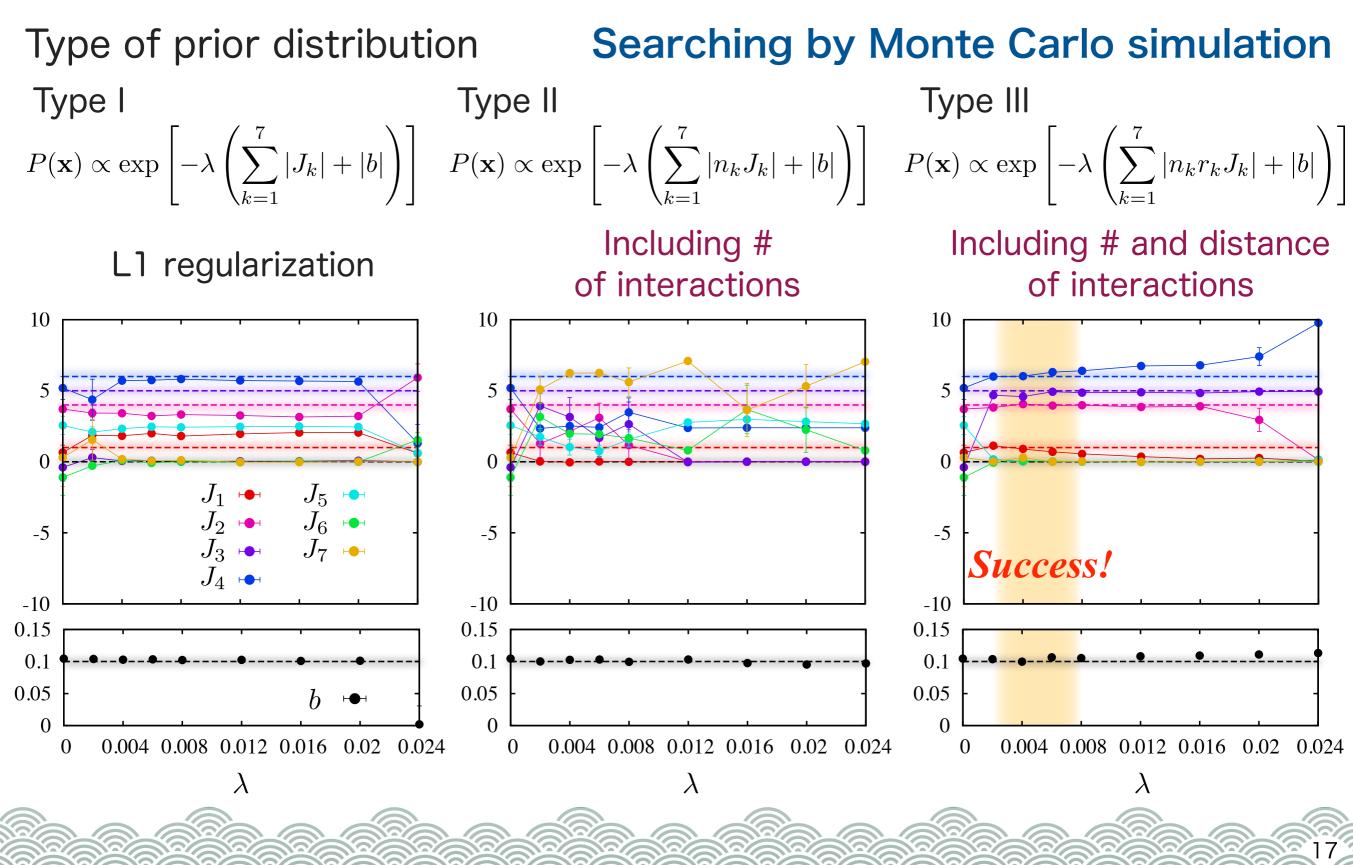
Exchange probability between replicas $\min\left\{1, \exp\left[\left(E(\mathbf{x}_i|\lambda, 1, K) - E(\mathbf{x}_j|\lambda, 1, K)\right)\left(\frac{1}{T_i} - \frac{1}{T_j}\right)\right]\right\}$

Monte Carlo steps to update the model parameters was 10⁴.

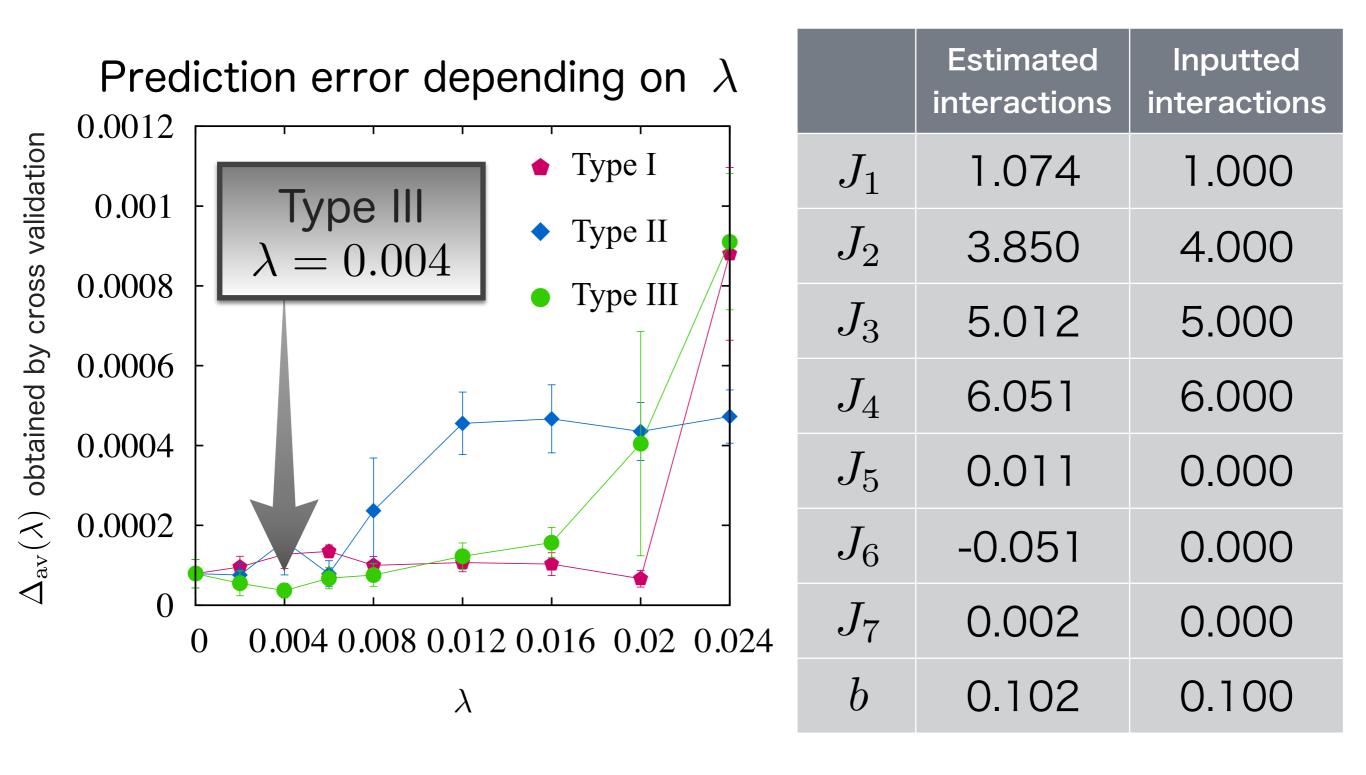
6

20 replicas with virtual temperatures were prepared between 0.001 and 10.

Estimated model parameters

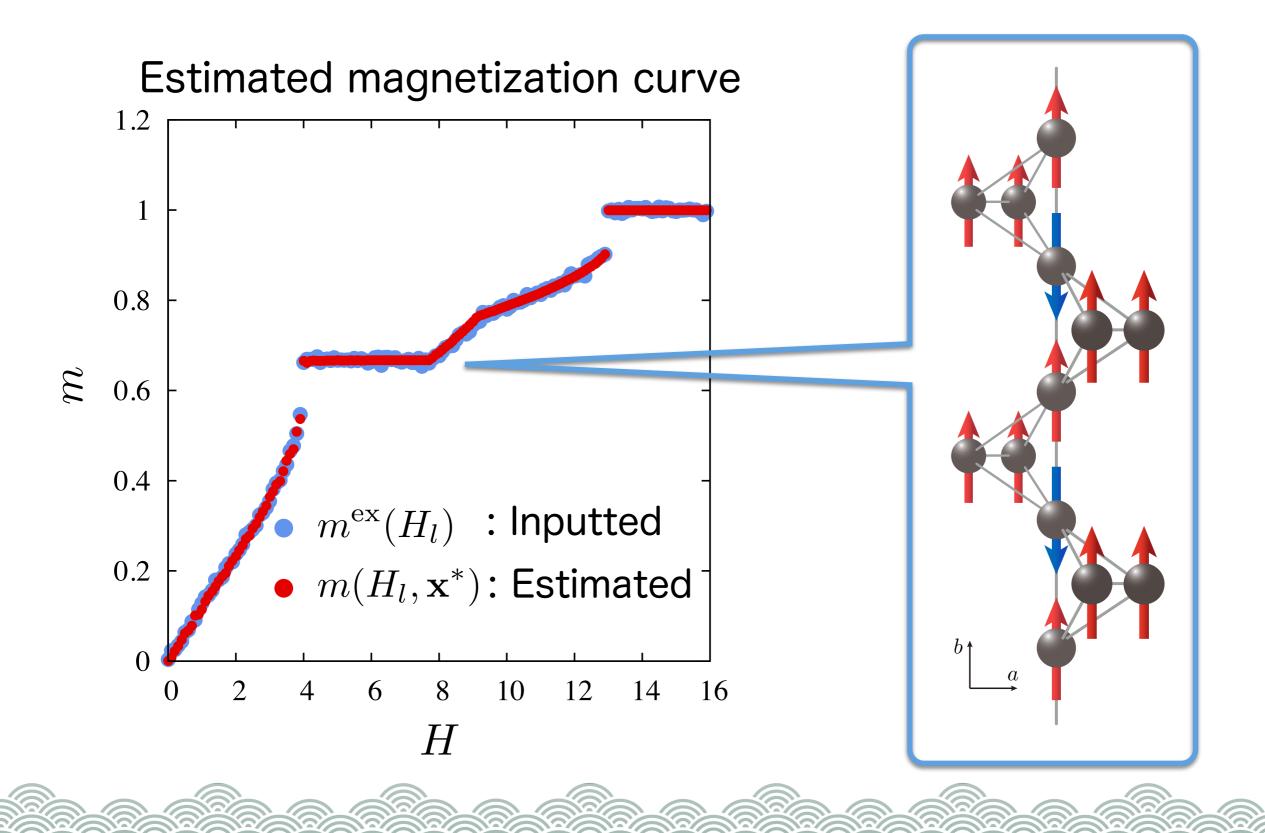


Prediction errors



18

Prediction errors



18

Effective model estimation method

Posterior distribution by Bayesian statistics

$$P(\mathbf{x}|\{m^{\mathrm{ex}}(H_l)\}_{l=1,\cdots,L}) \propto \exp\left[-\frac{1}{2\sigma^2} \sum_{l=1}^{L} \left(m^{\mathrm{ex}}(H_l) - \left|\frac{1}{N|\mathbf{s}|} \sum_{i=1}^{N} \langle \mathbf{s}_i \rangle_{H_l,\mathbf{x}}\right|\right)^2 - \lambda \sum_{k=1}^{K} |x_k|\right]$$

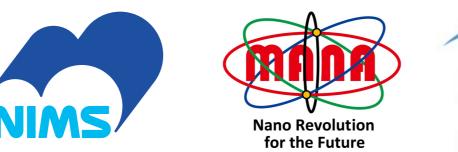
Least square mean between calculated data and inputted data

Regularization & Prediction error by cross validation

We get plausible effective model for experimental results. (selection of important model parameters)

R. Tamura and K. Hukushima, Phys. Rev. B 95, 064407 (2017).

Thank you !!



20

R. Tamura and K. Hukushima, Phys. Rev. B 95, 064407 (2017).