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Fig. 1. Temperature dependences of (A) the specific heat at zero
field and (B) the susceptibility at 0.1 T with field cooled process
from 40 K for GdPd

!
Al

"
. The inset shows low-field magnetiz-

ation curves at 5 K.

Fig. 2. High-field magnetization curves for GdPd
!
Al

"
single

crystals at 4.2 K.

moment develops above very small fields along the c-
axis. M

!
/H(¹) along the a-axis abruptly increases below

¹
!
and shows a peak at 4.5 K. Below ¹

!
, M

!
(H) increases

with increasing field and bends with a weak ferromag-
netic moment at higher field than that along the c-axis.
When ferromagnetic components M(0) for each axes are
estimated by the extrapolation from higher fields to zero,
M

"
(0) and M

!
(0) at zero temperature yield ferromagnetic

moments of 0.0242!
#
/Gd and 0.0195!

#
/Gd, respectively.

¹
$

and ¹
!

might be attributed to the ordering of spin
component along the c-axis and normal to the c-axis,
respectively.

The isothermal high-field magnetization curves at
4.2 K are displayed in Fig. 2. M

"
increases linearly with

an increase of field up to H
"$

"6.2 T. A clear 1/3 plateau
of the full moment 7!

#
for Gd"# ions appears in the field

range of H
"$

"6.2 T to H
"!

"11.8 T along only the
c-axis. M

"
increases again above H

"!
and is saturated

with the full moment amplitude of Gd"# ions above
H!"#

"
"22.7 T. On the other hand, M

!
along the a-axis

and M*
!

along the a*-axis [2 1 0] increase linearly with
increasing fields and are saturated above H!"#

!
and

H
!*!"#"25.5 T with the same amplitude as that along

the c-axis. It is clear that the c-axis is magnetically fa-
vored by anisotropic exchange or dipole—dipole interac-
tions in the ordered state.

To our knowledge, only a few compounds, e.g. hexag-
onal layered compounds C

%
Eu [4], RbFe(Mo

!
O

&
)
!

and
CsFe(SO

&
)
!

[5] whose magnetic ions form a triangular
lattice, show a ferrimagnetic plateau with 1/3 of the full
moment in the magnetization process. To account for

uniaxial-type magnetic properties of GdPd
!
Al

"
, we have

introduced the 2D triangular lattice Heisenberg Hamil-
tonian with weak Ising-type anisotropy discussed by
Miyashita [6]. Because several observed features in
GdPd

!
Al

"
are qualitatively consistent with this model:

(1) the overall isothermal magnetization curve along the
c-axis at 4.2 K; (2) the H—¹ phase diagram along the
c-axis determined by tracing anomalies as a function of
temperatures and fields [7]; (3) existence of two success-
ive phase transitions and (4) non-collinear spin structure
with at least two different sites of Gd ions at zero field
and low temperatures derived from the $''Gd Möss-
bauer measurement [3]. To conclude, we propose that
GdPd

!
Al

"
is a new candidate of 2D triangular lattice

antiferromagnets. The X-ray magnetic scattering or neu-
tron experiments are desired to determine a real spin
structure in GdPd

!
Al

"
.

References

[1] A. Dönni, A. Furrer, H. Kitazawa, M. Zolliker, J. Phys.:
Condens. Matter. 9 (1997) 5921.

[2] H. Kitazawa, A. Mori, S. Takano, T. Yamadaya, A. Mat-
sushita, T. Matsumoto, Physica B 186—188 (1993) 661.

[3] E. Colineau, J.P. Sanchez, J. Rebizant, J.M. Winand, Solid
State Commun. 92 (1994) 915.

[4] S. Miyashita, J. Phys. Soc. Jpn. 55 (1986) 3605.
[5] T. Sakakibara, M. Date, J. Phys. Soc. Jpn. 53 (1984)

3599.
[6] T. Inami, Y. Ajiro, T. Goto, J. Phys. Soc. Jpn. 65 (1996) 2374.
[7] H. Kitazawa et al., in preparation.

H. Kitazawa et al. / Physica B 259—261 (1999) 890—891 891

Fig. 1. Temperature dependences of (A) the specific heat at zero
field and (B) the susceptibility at 0.1 T with field cooled process
from 40 K for GdPd

!
Al

"
. The inset shows low-field magnetiz-

ation curves at 5 K.

Fig. 2. High-field magnetization curves for GdPd
!
Al

"
single

crystals at 4.2 K.

moment develops above very small fields along the c-
axis. M

!
/H(¹) along the a-axis abruptly increases below

¹
!
and shows a peak at 4.5 K. Below ¹

!
, M

!
(H) increases

with increasing field and bends with a weak ferromag-
netic moment at higher field than that along the c-axis.
When ferromagnetic components M(0) for each axes are
estimated by the extrapolation from higher fields to zero,
M

"
(0) and M

!
(0) at zero temperature yield ferromagnetic

moments of 0.0242!
#
/Gd and 0.0195!

#
/Gd, respectively.

¹
$

and ¹
!

might be attributed to the ordering of spin
component along the c-axis and normal to the c-axis,
respectively.

The isothermal high-field magnetization curves at
4.2 K are displayed in Fig. 2. M

"
increases linearly with

an increase of field up to H
"$

"6.2 T. A clear 1/3 plateau
of the full moment 7!

#
for Gd"# ions appears in the field

range of H
"$

"6.2 T to H
"!

"11.8 T along only the
c-axis. M

"
increases again above H

"!
and is saturated

with the full moment amplitude of Gd"# ions above
H!"#

"
"22.7 T. On the other hand, M

!
along the a-axis

and M*
!

along the a*-axis [2 1 0] increase linearly with
increasing fields and are saturated above H!"#

!
and

H
!*!"#"25.5 T with the same amplitude as that along

the c-axis. It is clear that the c-axis is magnetically fa-
vored by anisotropic exchange or dipole—dipole interac-
tions in the ordered state.

To our knowledge, only a few compounds, e.g. hexag-
onal layered compounds C

%
Eu [4], RbFe(Mo

!
O

&
)
!

and
CsFe(SO

&
)
!

[5] whose magnetic ions form a triangular
lattice, show a ferrimagnetic plateau with 1/3 of the full
moment in the magnetization process. To account for

uniaxial-type magnetic properties of GdPd
!
Al

"
, we have

introduced the 2D triangular lattice Heisenberg Hamil-
tonian with weak Ising-type anisotropy discussed by
Miyashita [6]. Because several observed features in
GdPd

!
Al

"
are qualitatively consistent with this model:

(1) the overall isothermal magnetization curve along the
c-axis at 4.2 K; (2) the H—¹ phase diagram along the
c-axis determined by tracing anomalies as a function of
temperatures and fields [7]; (3) existence of two success-
ive phase transitions and (4) non-collinear spin structure
with at least two different sites of Gd ions at zero field
and low temperatures derived from the $''Gd Möss-
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Model selection
Machine 
learning

inputinput
L1 regularization 
L2 regularization 
Full search 

+ 
Cross validation

Motivation

Plausible effective model for experimental results 
(selection of model parameters in candidate model)

output
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As the first stage
To estimate the spin Hamiltonian 
from data of magnetic materials by machine learning

If we can estimate spin Hamiltonian ..
Expect the spin snapshot, magnetic structure, and  
structure factor. 
Expect the properties which cannot be observed directly  
such as magnetic specific heat and magnetic entropy. 

Expect the properties in extreme environments such as  
super high magnetic field and super low temperature. 
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{model parameters}
m(H,x) mex(H)

P (mex(H)|m(H,x))P (m(H,x)|x)

observed 
magnetizationmagnetizationx =

H = �
X

i,j

Jijsi · sj + · · ·

: Conditional probability of event B given event A 
（Posterior distribution : 事後分布）

P (x|mex(H)) =
P (mex(H)|x)P (x)

P (mex(H))

Forward modeling

Bayes modeling

P (B|A)

Forward modeling and Bayes modeling



5

Conditional probability of              given xm(H,x)

Definition of magnetization as thermal average of spins

P (m(H,x)|x) = �

 
m(H,x)�

�����
1

N |s|

NX

i=1

hsiiH,x

�����

!

hsiiH,x =
Trsie��H

Tre��H m(H,x) =

�����
1

N |s|

NX

i=1

hsiiH,x

�����

P (m(H,x)|x)

x =

H = �
X

i,j

Jijsi · sj + · · ·
{model parameters}

Forward modeling
Thermal average - forward modeling -

magnetization
m(H,x)

P (mex(H)|m(H,x))

observed 
magnetization

mex(H)

Magnetization is uniquely obtained when the model parameters are given.
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Existence of observation noise in

Conditional probability of              given
observation noise

mex(H) = m(H,x) + "

m(H,x)

P (mex

(H)|m(H,x)) / exp

✓
� 1

2�2

(mex

(H)�m(H,x))2
◆

mex(H)

P (") / exp

✓
� "2

2�2

◆
Assumption：
mex(H)

P (m(H,x)|x)

x =

H = �
X

i,j

Jijsi · sj + · · ·
{model parameters}

Forward modeling

magnetization
m(H,x)

P (mex(H)|m(H,x))

observed 
magnetization

mex(H)

Observation noise - forward modeling -
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Conditional probability of              givenmex(H)
x

P (mex(H)|x) /
Z

dm(H,x)P (mex(H)|m(H,x))P (m(H,x)|x)

/ exp

2

4� 1

2�2

 
mex

(H)�

�����
1

N |s|

NX

i=1

hsiiH,x

�����

!
2

3

5

where                     is maximize. observed 
magnetization

Conditional probability - forward modeling -

P (m(H,x)|x)

x =

H = �
X

i,j

Jijsi · sj + · · ·
{model parameters}

Forward modeling

magnetization
m(H,x)

P (mex(H)|m(H,x))

observed 
magnetization

mex(H)

P (mex(H)|x)mex(H)
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P (x|mex(H)) =
P (mex(H)|x)P (x)

P (mex(H))

Bayes modeling

{model parameters}
m(H,x) mex(H)

P (mex(H)|m(H,x))P (m(H,x)|x)

observed 
magnetizationmagnetizationx =

H = �
X

i,j

Jijsi · sj + · · ·

Forward modeling

Bayes modeling

where                     is maximize. plausible 
model parametersP (x|mex(H))

x
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P (x|mex(H)) =
P (mex(H)|x)P (x)

P (mex(H))

Prior distribution - Bayes modeling -

{model parameters}
m(H,x) mex(H)

observed 
magnetizationmagnetizationx =

H = �
X

i,j

Jijsi · sj + · · ·

Bayes modeling

P (x) : Prior distribution (prior knowledge about model parameters)

If prior knowledge does not exist,

If    is sparse (number of model parameters is small),x

P (x) / exp

 
��

KX

k=1

|xk|
!

P (x) / const.

：amplitude of regularization  
(hyperparameter)

：number of model parameters

�

K

(事前分布)
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P (x|{mex

(Hl)}l=1,··· ,L) / exp

2

4� 1

2�2

LX

l=1

 
mex

(Hl)�

�����
1

N |s|

NX

i=1

hsiiHl,x

�����

!
2

� �
KX

k=1

|xk|

3

5

P (x|{mex(Hl)}l=1,··· ,L) =
LY

l=1

P (x|mex(Hl))

Posterior distribution - Bayes modeling -
P (x|mex(H)) =

P (mex(H)|x)P (x)

P (mex(H))

{model parameters}
m(H,x) mex(H)

observed 
magnetizationmagnetizationx =

H = �
X

i,j

Jijsi · sj + · · ·

Bayes modeling

We assume that each magnetization is independently obtained 
in magnetization curve.

Assumption：

observed magnetization 
curve

Posterior distribution
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How to determine hyperparameter
:  # of model parameters becomes large.Small 
:  # of model parameters becomes small.Large 

�
�

1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

For large     case,  
the observed magnetization curve  
will not be fitted.

�

number of  
polynomials : 1

Correspondence

from “pattern recognition and machine learning”

L1 regularization
P (x) / exp

 
��

KX

k=1

|xk|
!
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How to determine hyperparameter
:  # of model parameters becomes large.Small 
:  # of model parameters becomes small.Large 

�
�

For small     case,  
the observed magnetization curve  
is well fitted.

1.1. Example: Polynomial Curve Fitting 7
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(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

number of  
polynomials : 9

�

Overfitting will be observed…

Correspondence

L1 regularization
P (x) / exp

 
��

KX

k=1

|xk|
!



11

How to determine hyperparameter
:  # of model parameters becomes large.Small 
:  # of model parameters becomes small.Large 

�
�

1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
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For plausible     case,  
the observed magnetization curve  
is correctly fitted.

�

number of  
polynomials : 3

Correspondence

L1 regularization
P (x) / exp

 
��

KX

k=1

|xk|
!
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give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
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For plausible     case,  
the observed magnetization curve  
is correctly fitted.

�

number of  
polynomials : 3

Correspondence

We determine λ so that 
the prediction error is minimized.

We prevent 
the overfitting.

Materials scientist want to  
know the minimum model.

To prevent  
the overfittingCorrespondence

L1 regularization
P (x) / exp

 
��

KX

k=1

|xk|
!
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�(�) :=
4

L

L/4X

l0=1

 
mex

l0 �

�����
1

N |s|

NX

i=1

hsiiHl0 ,x
⇤

�����

!
2

We divide data into  
training data and test data.

e.g. We divide the data into 4 groups.
Data used in estimation 
of model parameters  
       (Training data)

x

⇤
Data used in validation 
for predicted performance 

(Test data)

1st

2nd

3rd

4th We use an average of        of  
4 times as the prediction error.

Error between test data  
and estimated magnetization

�(�)

Cross validation
To calculate  
the prediction error
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Validation by theoretical model
Classical Heisenberg model with biquadratic interactions

si : Classical Heisenberg spin (S=1/2)

Crystal structure
Type of  

interactions
number distance

11111

3
2

3
2

3

2

3

2
r1 = 1

r2 = 1

r3 = 1

r4 = 1

r5 =
p
3

r6 = 2

r7 = 2

J1 : n1 = 2

J2 : n2 = 2

J3 : n3 = 1

J4 : n4 = 1

J5 : n5 = 2

J6 : n6 = 1

J7 : n7 = 1

（magnetization plateau is appeared）

x = {J1, J2, J3, J4, J5, J6, J7, b}model parameters :

H =
X

hi,ji

Jij
⇥
si · sj � bij(si · sj)2

⇤�H
X

i

szi bij = bJij
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randomly divided 
into 4 groups 

Test data1 

Test data３ Test data４ 

Test data２ 

J1 = 1, J2 = 4, J3 = 5, J4 = 6, b = 0.1

J5 = J6 = J7 = 0
Gaussian 
noise+Zero temperature 

magnetization curve for

Inputted observed magnetization

Magnetization is calculated by the steepest descent method.
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Transition probability for Markov chain

Energy function for MCMC

(x ! x

0)

min {1, exp[�(E(x

0|�,�,K)� E(x|�,�,K))]}

We search the maximizer of the posterior distribution 
by Markov chain Monte Carlo method and exchange method.

E(x|�,�,K) =
1

2�2

LX

l=1

 
mex(Hl)�

�����
1

N |s|

NX

i=1

hsiiHl,x

�����

!
2

+ �
KX

k=1

|xk|

P (x|{mex

(Hl)}l=1,··· ,L) / exp [�E(x|�,�,K)]

Simulation methods

Boltzmann distribution !

Dynamical variables in this MC simulation are the model parameters.
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Introduction of virtual temperature

Exchange probability between replicas

min

⇢
1, exp


(E(xi|�, 1,K)� E(xj |�, 1,K))

✓
1

Ti
� 1

Tj

◆��

P (x|{mex

(Hl)}l=1,··· ,L) / exp


� 1

T
E(x|�,�,K)

�

Simulation methods
We search the maximizer of the posterior distribution 

by Markov chain Monte Carlo method and exchange method.

Monte Carlo steps to update the model parameters was 104. 

20 replicas with virtual temperatures were prepared  
between 0.001 and 10. 
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Effective model estimation method

We get plausible effective model for experimental results.

P (x|{mex

(Hl)}l=1,··· ,L) / exp

2

4� 1

2�2

LX

l=1

 
mex

(Hl)�

�����
1

N |s|

NX

i=1

hsiiHl,x

�����

!
2

� �
KX

k=1

|xk|

3

5

Posterior distribution by Bayesian statistics

Regularization 
         & 
Prediction error by cross validation

(selection of important model parameters)

Least square mean 
between calculated data and inputted data



20

Thank you !!

R. Tamura and K. Hukushima, Phys. Rev. B 95, 064407 (2017).


