User’s Manual
EigenExa

Version 2.3c

EigenExa Development Group
Large-scale Parallel Numerical Computing Technology Research Team
RIKEN Advanced Institute for Computational Science

24 June 2015

Contents

Introduction
1.1 EigenExa and its course of development
1.2 License for use and copyright L.

Before use

2.1 Software required for EigenExa installation
2.2 Obtaining FigenExa
2.3 Compile and install procedure Lo o

Quick tutorial

API

4.1 eigen-init
4.2 eigenfree
4.3 eigen_get blacs_contexto
4.4 eigen_SX e
45 elgen.s
4.6 eigen.get_version. o
4.7 eigen show.versiom
4.8 eigengetmatdims. L
4.9 eigenmemory_intermal
410 eigen_get_comm.
4.11 eigen_get Procsl
412 eigen_get_id
4.13 eigen_loop_start
4.14 eigenloop.endl
4.15 eigen_translate 12go
4.16 eigen_translate g2l
4.17 eigenownermode
4.18 KMATH.EIGEN_GEV o ittt

Other key considerations

5.1 Caution regarding compatibility oo
5.2 Binding with other languages Lo oL
5.3 Behavior on error occurrence o
5.4 Shared library handling in versions 1.x

3

S Ot

ESEENEENEEN|

13
13
13
14
14
14
15
15
15
16
16
16
17
17
17
17
18
18
18

A Algorithm overview

A1 Introduction.

A.2 Various approaches and related projects

A.5 Differences between eigen_s and eigen_sx

Acknowledgements

References

A3 eigenso
A4 eigenssx e

A6 Conclusion

CONTENTS

Chapter 1

Introduction

1.1 EigenExa and its course of development

EigenExa is a high-performance numerical eigenvalue solver. It traces its history back to EigenES
(code name; no formal name) [1] developed on the Earth Simulator, which attained the rank of
number one in the world of such systems in 2002. EigenES was nominated for a Gordon Bell Prize
at SC 2006 and today continues to serve as an eigenvalue solver on large-scale PC clusters. This
led to the initiation of EigenK [2, 3] development around 2008. The EigenK library became the
immediate predecessor of EigenExa, and in August 2013 EigenK was renamed EigenExa and
public release was begun, following entry into operation on the K computer[4, 5|. EigenExa
development continues, with the underlying objective being to achieve an eigenvalue library
scalable to operate on future post-petascale (“exa” or “extreme”) computer systems.

In its present release (version 2.3c), EigenExa provides the simplest function of computing
all eigenpairs (eigenvalues paired with their respective eigenvectors) for both standard and gen-
eralized eigenvalue problems. As reported elsewhere [2, 3], EigenExa applies both classical and
advanced algorithms in the same basic manner as EigenK, and thereby reduces the required
computation time for diagonalization.

The development of EigenExa includes the utilization of various parallel programming lan-
guages and libraries, encompassing MPI, OpenMP, high-performance BLAS, and SIMD vector-
ized Fortran90 compiler techniques. EigenExa is expected to open the way for high-performance
computation through multiple simultaneous functions characterized by the following.

1. Inter-node parallelism in distributed memory architecture, by MPI
2. Parallelism in shared-memory parallel computers and multicore processors, by OpenMP
3. High parallelism utilizing BLAS highly optimized by vendors

4. SIMD or coarse-grained parallelism utilizing vendor-provided high-performance compilers

The good features of Fortran90 are also actively incorporated into EigenExa. The API of
FEigenExa is more flexible than libraries implemented in Fortran77, and it provides a user-friendly
interface, based on modular interfaces and optional parameters. Data distribution is limited to
two-dimensional cyclic division, the processor map can be specified in almost any arbitrary
configuration, and compatibility and consistency with existing numerical computation libraries
are guaranteed if the data redistribution function provided by ScaLAPACK is used. EigenExa
also permits user interface specification (or omission) for heightened performance, such as block
parameters that strongly affect execution performance.

5

6 CHAPTER 1. INTRODUCTION

In the parallel performance of the library itself, it achieves heightened performance by reduc-
ing the EigenK communication overhead, and it has been shown that in most cases EigenExa
performance exceeds that of EigenK, ScaLAPACK, and others of the highest-level numerical
computation libraries [3].

Today, EigenExa is in operation on many HPC platforms, including the K computer and
its Fujitsu PRIMEHPC FX10 commercial variant, various cluster computers using Intel x86
series processors, IBM Blue/Gene Q systems, and the NEC vector computer SX series systems.
Furthermore, reports on EigenExa have been presented at scientific conferences [6, 7, 8, 9], so if
necessary, please refer to them.

This user’s manual for EigenExa version 2.3c covers procedures from installation to actual
use, with particular consideration given to installation and compiling, a quick tutorial, the API
list, and EigenK compatibility. It is written and provided with the hope of all EigenExa team
developers that it will be helpful for achieving efficient parallel simulations by many users.

1.2 License for use and copyright

Permission to use KMATH_RANDOM is granted on the basis of the BSD 2-Clause License
(found in LICENCE.txt in the library).

ICENCE.

Copyright (C) 2012- 2014 RIKEN.

Copyright (C) 2011- 2012 Toshiyuki Imamura

Graduate School of Informatics and Engineering,
The University of Electro-Communications.

Copyright (C) 2011- 2014 Japan Atomic Energy Agency.

Copyright notice is from here

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this 1list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Chapter 2

Before use

2.1 Software required for EigenExa installation

Several software packages are needed to compile the EigenExa library. BLAS, LAPACK, ScalLA-
PACK, and MPI must be installed in the system before EigenExa is compiled. To present, it
has been confirmed that EigenExa can be compiled with the following libraries.

BLAS Intel MKL, GotoBLAS, OpenBLAS, ATLAS
Fujitsu SSL II, IBM ESSL, NEC MathKeisan

LAPACK Version 3.4.0 or later

ScaLAPACK Version 1.8.0 or later

MPI MPICH2 version 1.5 or later, MPICH version 3.0.2 or later
OpenMPI version 1.6.4 or later, MPI/SX

2.2 Obtaining EigenExa
All available information on EigenExa can be obtained at the following URL.
http://www.aics.riken. jp/labs/lpnctrt/EigenExa.html

Tarball distribution is also performed via this URL. Planning is in progress for provision of
further information on EigenExa.

2.3 Compile and install procedure

Several steps are necessary to compile the EigenExa library. Proceed as described in the following
installation guideline.

Decompression and extraction First, unpack the tarball on the working directory and then
move to the EigenExa-2.3c directory

% tar zxvf EigenExa-2.3c.tgz
% cd EigenExa-2.3c

8 CHAPTER 2. BEFORE USE

Environment setting Second, edit Makefile and make_inc.xxx to match the user’s envi-
ronment. For xxx, select and enter the character string corresponding to the compiler to be
used, from among the following:

1. BX900
2. Intel or Intel.shared

K_FX10 or K_FX10.shared

- W

gcce
5. BlueGeneQ
6. SX
The “.shared” suffix is specified in creating a shared library.

make Third, execute make. This results in creation of the static library 1ibEigenExa.a or
the shared library 1ibEigenExa. so.

% make

install Lastly, copy the library itself, 1ibEigenExa.a (or libEigenExa.so for the shared
library), eigen_libs.mod, and eigen_blacs.mod to the install directory, and end the procedure.
To install /usr/local/lib, for example,

% cp libEigenExa.a eigen_libs.mod eigen_blacs.mod /usr/local/lib/

generalized eigenvalue computation driver routine When the generalized eigenvalue
driver routine KMATH_EIGEN_GEV with the same number as the installed version is down-
loaded from

http://www.aics.riken. jp/labs/lpnctrt/KMATH_EIGEN_GEV.html

and followed by make, the KMATH_EIGEN_GEV. o driver module for generalized eigenvalues is cre-
ated. Linking this object when program linking enables computation of generalized eigenvalues.
At present, this function is a higher-level independent module used as the EigenExa eigenvalue
computation engine. In this manual, it is described in terms of its relation to EigenExa.

Chapter 3

Quick tutorial

The standard benchmark code can be obtained by moving to the working directory and executing
‘make benchmark’. The source code components ‘main2.F’ and ‘Makefile’ should be useful for
code creation. The kernel of main2.f is as follows.

f main2.f ~

use MPI
use eigen_libs

call MPI_Init_thread(MPI_THREAD_MULTIPLE, i, ierr)
call eigen_init()

N=10000; mtype=0

call eigen_get_matdims(N, nm, ny)

allocate (A(am,ny), Z(nm,ny), w(N))

call mat_set(N, a, nm, mtype)

call eigen_sx(N, N, a, nm, w, z, nm, m_forward=32, m_backward=128)
deallocate (A, Z, w)

call eigen_free()
call MPI_Finalize(ierr)
end

N J

The above code represents only the framework and does not actually operate, but is sufficient
to indicate the overall flow from initialization to sequence assurance to eigenvalue computation
to termination procedure.

In the above example, the initialization function eigen_init () is executed by a parameter-
omitted call. In eigen_init(), the group that executes the eigenvalue computation can be
specified as a communicator by the form comm=XXX. For parallel execution of eigenvalue com-
putation simultaneously by multiple groups, parallel computation is enabled by passing the
communicator created by MPI_Comm_split (), for example. Note that a constraint exists in the
current implementation such that performance of collective operation with respect to the com-
municator MPI_COMM_WORLD within eigen_init () requires that eigen_init() be called by all
processes belonging to MPI_COMM_WORLD simultaneously. Since a different communicator can be
specified for each individual process, a process not participating in the eigenvalue computation
can therefore have MPI_COMM_NULL specified for eigen_init(), thus having the call skipped
for the eigenvalue computation driver eigen_sx() itself. In short, it is possible to perform

9

10 CHAPTER 3. QUICK TUTORIAL

simultaneous execution of various operations other than eigen_sx() processing that include
eigen_sx().

(’-MPI,Comm,split and MPI_COMM_NULL B

if (my_rank < 10) then
comm = MPI_COMM_SELF
else
comm = MPI_COMM_NULL
endif
call eigen_init(comm)
call eigen_sx(....)

In EigenExa, processes belonging to a communicator specified by eigen_init () are deployed
and used in a two-dimensional process grid. EigenExa is designed to utilize a process grid that is
nearly square in shape, to reduce communication traffic to the minimum possible. To heighten
user convenience, EigenExa has been developed so that the two-dimensional Cartesian grid
adopted by MPI can be specified to comm. If the Cartesian shape is two dimensional, then
in principle EigenExa can be called and computation performed for any process array, thus
enabling execution of complicated parallel processing through combination of the above multi-
type communicators. Because the Cartesian process grid is essentially row-major, the Cartesian
is prioritized in the event of conflict with an order=’C’ specification. For historical reasons, the
default process grid in EigenExa is column-major.

The generation of matrix data is performed in mat_set(), which is called just before
eigen_sx(). The matrix data are distributed on the specified two-dimensional process grid
in two-dimensional cyclic division style, and are stored in each process as a local array. Because
only some of the data are stored for each process, when matrix elements are accessed, a rule for
transformation between global and local indices is required.

The following program is an excerpt from mat_set() and is presented to compare the pro-
gram for generation of a Frank matrix with a global counterloop structure and the same but
translated to local counterloops.

e matset(before) ~

! Global loop program to compute a Frank matrix
doi=1,n

do j=1, n
a(j, 1) = (n+1-Max(n+1-i,n+1-3j))*1.0D+00
end do
end do

N J

L

11

r matset (after) ~

! Translated local loop program to compute a Frank matrix
use MPI

use eigen_libs

call eigen_get_procs(nnod, x_nnod, y_nnod)

call eigen_get_id (inod, x_inod, y_inod)

= eigen_loop_start(1, x_nnod, x_inod)
= eigen_loop_end (n, x_nnod, x_inod)
eigen_loop_start(1, y_nnod, y_inod)
_3 = eigen_loop_end (n, y_nnod, y_inod)
do i_1 =1i_2, i_3
i = eigen_translate_12g(i_1, y_nnod, y_inod)
do j_1 = 3.2, j_3
j = eigen_translate_12g(j_1, x_nnod, x_inod)
a(j_1, i_1) = (n+1-Max(n+1-i,n+1-j))*1.0D+00
end do

ReoRe G
W N WwWN
]

end do

N J

The eigen_loop_start() and eigen_loop_end() are used to transform the loop range.
The second and third parameters specify the process number and process ID derived from the
communicator, which shows the direction of distribution. In this manual, the correspondence

[[

is always [row] — “x” and [column] — “y” (in the case of the communicator for the overall
participating process, the “x” and “y” portions are characterless). It is important to note that
in EigenExa process IDs are managed as integers, starting with 1. The process ID obtained by
the query function eigen_get_id() therefore differs from the MPI rank by 1, and the ID must

be reduce by 1 in cases where the MPI rank is required.

In the above program, the local loop counter value is translated to the corresponding global
counter value to be used, with eigen_translate_12g() used for the this translation. The sec-
ond and third parameters should be specified in a manner similar to eigen_loop_start(),
for example. Conversely, to convert the global counter value to the local counter value,
eigen_translate_g21() is used, with the proviso that if the global counter value is viewed
as a loop value, then eigen_translate_g21() returns the corresponding local counter value
on the process that becomes the owner process (the process where the local counter value cor-
responding with the global counter value is included in the loop). In order to determine the
owner process of the specified global loop counter, eigen_owner_node()is used. It should be
used when broadcasting in reference to a particular row or column vector value.

Furthermore, when progressing to computation together with ScaLAPACK for personnel at
advanced levels, the process grid context used by EigenExa should be obtained via the auxiliary
function eigen_get_blacs_context (), referring to the mtype=2 portion of the mat_set () func-
tion (the following shows the kernel of the PDTRAN() call that stores the matrix AS transpose
in matrix A).

12 CHAPTER 3. QUICK TUTORIAL

e pdtran ~

! Cooperation with ScaLAPACK
NPROW = x_nnod; NPCOL = y_nnod

ICTXT = eigen_get_blacs_context()
CALL DESCINIT(DESCA, n, n, 1, 1, 0, 0, ICTXT, nm, INFO)

I A <—— AS"T
CALL PDTRAN(n, n, 1DO, as, 1, 1, DESCA, 1DO, a, 1, 1, DESCA)

When compiling, in addition to the use of mpif90, it is necessary to set the path (in most
cases, the -I option) because of the need to access eigen_libs and other modules. To link the
EigenExa library, it is also necessary to simultaneously link MPI, OpenMP, ScaLAPACK (if
version 1.8 or earlier, then also BLACS), and so forth. In the case of Intel-compiler-based MPI,
the procedure is as follows (note that the library names around ScaLAPACK and BLAS vary

with the environment).

% mpif90 -c a.f -openmp -I/usr/local/include -I/usr/local/lib
% mpif90 -o exe a.o -openmp -L/usr/local/lib -1EigenExa -lscalapack \
-llapack -lblas

Chapter 4

API

This section lists the functions in ‘eigen_libs.mod’ that have been assigned a public attribute.
The first three routines are the main drivers and the others are utility functions. Parameters
having optional attributes attached (written in italics) can be omitted, and can also be specified
by TERM=variable or constant value in the Fortran format form.

4.1 eigen_init

Initializes the functions of EigenExa. Process grid mapping can be specified via the parameter
‘comm’ or ‘order’. This procedure is collective (because collective operation is performed for
MPI_COMM_WORLD internally in the present version, after which all processes must call this pro-
cedure); comm can specify a different value for each process group, and when different process
groups simultaneously call driver functions (eigen_sx() or eigen_s()), parallel operations are
performed in driver function units. If comm is MPI_COMM_NULL, calling the handlers eigen_sx ()
and eigen_s() results in an immediate return with no internal action. An inter-communicator
cannot be used for comm.

subroutine eigen_init(comm, order)
1. integer, optional, intent(IN) :: comm = MPI_COMM_WORLD
Base communicator.
Process grid mapping is enabled when a two-dimensional Cartesian grid is
specified for comm.
Note: If omitted, then MPI_COMM_WORLD
2. character*(*), optional, intent(IN) :: order = ’C’
Row or Column
Note: If omitted, then treated as ‘C’. If the grid major conflicts
with the Cartesian comm specification, then ‘R’ is used.

4.2 eigen free

Terminates EigenExa functions.

subsroutine eigen free(flag)

1. integer, optional, intent(IN) :: flag = O
Timer printer flag.
This parameter is for development, and therefore not ordinarily specified.
If omitted, then 0.

13

14 CHAPTER 4. API

4.3 eigen get blacs_context

Returns the ScaLAPACK (BLACS) context corresponding to the process grid information spec-
ified by EigenExa.

integer function eigen_get_blacs_context()

4.4 eigen sx

This is the main EigenExa driver routine. Eigenpairs are computed via transformation to a
pentadiagonal matrix. This is a collective operation driver; all processes attributed to the
process group calling must participate in the call.

subroutine eigen_sx(n, nvec, a, lda, w, z, 1ldz, \
m_forward, m_backward, mode)

1. integer, intent(IN) :: n
Matrix and vector dimensions
2. integer, intent(IN) :: nvec

Number of computed eigenvectors
At present, this option is not supported;
eigen_sx() computes all eigenvectors.
3. real(8), intent(INOUT) :: a(lda,*)
Symmetric matrix to be diagonalized
Array content is destroyed upon subroutine termination but
the FLOPS count is stored in a(1, 1).
4. integer, intent(IN) :: lda
Leading dimension of array a
5. real(8), intent(0OUT) :: w(n)
Eigenvalues in ascending order
6. real(8), intent(OUT) :: z(1ldz,*)
Orthogonal eigenvectors of matrix a

7. integer, intent(IN) :: ldz
Leading dimension of array z
8. integer, optional, intent(IN) :: m_forward = 48

Householder transformation blocksize (must be even number);
48 when omitted
9. integer, optiomnal, intent(IN) :: m_backward = 128
Householder back transformation blocksize; 128 when omitted
10. character, optional, intent(IN) :: mode = ’A’
‘A’ : all eigenvalues and corresponding eigenvectors (default)
‘N’ : eigenvalues only
‘X’ : add to mode A to improve eigenvalue precision

4.5 eigen.s

This is the EigenExa driver routine.

4.6. EIGEN_GET_VERSION 15

subroutine eigen s(n, nvec, a, lda, w, z, 1ldz, \
m_forward, m_backward, mode)

1. integer, intent(IN) :: n
Matrix and vector dimensions
2. integer, intent(IN) :: nvec

Number of computed eigenvectors
At present, this option is not supported;
eigen_s() computes all eigenvectors.

3. real(8), intent(INOUT) :: a(lda,x*)
Symmetric matrix to be diagonalized
Array content is destroyed upon subroutine termination but
the FLOPS count is stored in a(1, 1).

4. integer, intent(IN) :: 1lda
Leading dimension of array a

5. real(8), intent(OUT) :: w(n)
Eigenvalues in ascending order

6. real(8), intent(QUT) :: z(ldz,*)
Orthogonal eigenvectors of matrix a

7. integer, intent(IN) :: 1ldz
Leading dimension of array z

8. integer, optional, intent(IN) :: m_forward = 48
Householder transformation blocksize; 48 when omitted

9. integer, optional, intent(IN) :: m_backward = 128
Householder back transformation blocksize; 128 when omitted

10. character, optional, intent(IN) :: mode = ’A’

‘A’ : all eigenvalues and corresponding eigenvectors (default)
‘N’ : eigenvalues only
‘X’ : add to mode A to improve eigenvalue precision

4.6 eigen get_version

Returns the version information of EigenExa.

subroutine eigen get _version(version, data, vcode)
1. integer, intent(OUT) :: version
Version number in three digits.
The digits indicate major version, minor version, and patch level from the highest.

2. character, intent(QUT) :: date
Release date.
3. character, intent(OUT) :: vcode

Code name of the version.

4.7 eigen show version

Print the version information of EigenExa to standard output.

subroutine eigen show_version()

4.8 eigen get matdims

Returns the array size recommended by EigenExa. It is desirable for the user to dynamically
allocate the local array using the array dimensions (nx,ny) obtained by this function or a larger

16 CHAPTER 4. API

numeric value. The overall matrix is (CYCLIC, CYCLIC) divided.

subroutine eigen get matdims(n, nx, ny)
1. integer, intent(IN) :: n
Matrix dimensions
2. integer, intent(OUT) :: nx
Lower limit of leading dimensions of arrays a and z
3. integer, intent(OUT) :: ny
Lower limit of second indices of arrays a and z

4.9 eigen memory internal

This function returns the dynamically allocated internal memory size, while EigenExa is called.
The user should ascertain the value returned by this function to ensure avoidance of memory
shortage. The type of the return value is changed to integer(8) in version 2.3c. If the return
value is —1 (a negative value), this funtion warns of possible integer overflow resulting from too
large matrix dimension in EigenExa

integer(8) function eigen memory._internal(n, lda, 1dz, ml, mO)
1. integer, intent(IN) :: n

Matrix dimensions
2. integer, intent(IN) :: lda

Leading dimension of array a
3. integer, intent(IN) :: 1ldz

Leading dimension of array z
4. integer, intent(IN) :: ml

Householder transformation blocksize (must be even number)
5. 1integer, intent(IN) :: mO

Householder transformation blocksize

4.10 eigen get_comm

Returns the MPI communicator generated by eigen_init ().

subroutine eigen get_comm(comm, x_comm, y_comm)

1. 1integer, intent(OUT) :: comm

Base communicator.
2. integer, intent(OUT) :: x_comm

Row communicator, attribute of all processes with matching row id.
3. integer, intent(0UT) :: y_comm

Column communicator, attribute of all processes with matching column id.

4.11 eigen get procs

Returns information on the number of processes related to the communicator generated by
eigen_init().

subroutine eigen get_procs(procs, x_procs, y_procs)
1. integer, intent(OUT) :: procs
Number of processes in comm
2. integer, intent(OUT) :: x_procs
Number of processes in x_comm
3. integer, intent(QUT) :: y_procs
Number of processes in y_comm

4.12. EIGEN_GET_ID 17

4.12 eigen get_id

Returns information on the process ID related to the communicator generated by eigen_init ().
Here, the process ID differs from the MPI rank; it is an integer value starting from 1 in the
relation MPI rank = process ID — 1.

subroutine eigen get_id(id, x-id, y-id)
1. integer, intent(0UT) :: id
Process ID defined by comm
2. integer, intent(0OUT) :: x_id
Process ID defined by x_comm
3. integer, intent(OUT) :: y_id
Process ID defined by y_comm

4.13 eigen_loop_start

Returns the loop starting value in the local loop structure corresponding to the specified global
loop starting value.

integer function eigen_loop_start(istart, nnod, inod)

1. integer, intent(IN) :: istart
Global loop starting value

2. integer, intent(IN) :: nnod
Process number

3. integer, intent(IN) :: inod
Process 1D

4.14 eigen_loop_end

Returns the terminal value of the loop in the local loop structure corresponding to the terminal
value of the specified global loop.

integer function eigen_loop-end(iend, nnod, inod)
1. integer, intent(IN) :: istart
Global loop terminal value
2. 1integer, intent(IN) :: nnod
Process number
3. integer, intent(IN) :: inod
Process ID

4.15 eigen translate 12g

integer function eigen,translate,12g(ictr, nnod, inod)

1. integer, intent(IN) :: ictr
Local counter
2. integer, intent(IN) :: nnod

Process number
3. integer, intent(IN):: inod
Process ID

18

4.16

CHAPTER 4. API

eigen _translate_ g2l

integer function eigen translate_g2l(ictr, nnod, inod)

1.

4.17

integer, intent(IN) :: ictr
Global counter

integer, intent(IN) :: nnod
Process number

integer, intent(IN) :: inod
Process ID

eigen_owner_node

Returns owner process ID corresponding to the specified global loop counter value.

integer function eigen owner node(ictr, nnod, inod)

1.

integer, intent(IN) :: ictr
Global loop counter

integer, intent(IN) :: nnod
Process number

integer, intent(IN) :: inod
Process ID

4.18 KMATH EIGEN GEV

This is a generalized eigenvalue computing driver routine that uses EigenExa as the eigenvalue
computing engine. In this driver, eigen_sx is called to compute the eigenpairs via transforma-
tion to a pentadiagonal matrix. The constraints on this driver are similar to those on eigen_sx.
Use of this driver routine requires linking KMATH_EIGEN_GEV.o together with EigenExa itself.

subroutine kmath eigen gev(n, a, lda, b, 1db, w, z, 1dz)

1.

integer, intent(IN) :: n

Matrix and vector dimensions

real(8), intent(INOUT) :: a(lda,*)

Matrix A for computing the pencil (A — AB)

The array content is destroyed upon subroutine termination.
integer, intent(IN) :: lda

Leading dimension of array a

real(8), intent (INOUT) :: b(1ldb,x*)

Matrix B for computing the pencil (A — AB)

The matrix for transformation to the standard eigenvalue problem is stored
upon subroutine termination.

integer, intent(IN) :: 1db

Leading dimension of array b

real(8), intent(0OUT) :: w(n)

Eigenvalues in ascending order

real(8), intent(OUT) :: z(ldz,x*)

B-orthogonal eigenvectors of the generalized eigenvalue problem
integer, intent(IN) :: 1ldz

Leading dimension of array z

Chapter 5

Other key considerations

5.1 Caution regarding compatibility

As the successor to EigenK, EigenExa has inherited many of its functions. Complete compat-
ibility between the two is not guaranteed, however, since their internal implementations differ
in certain details. These are mainly differences in function and variable naming rules and in
common domain management methods. For the same reason, simultaneous linking of EigenExa
and EigenK is not recommended.

5.2 Binding with other languages

The method for calling EigenExa from a language other than Fortran90 is highly dependent on
the user’s environment. For further information, refer to “Language bindings” and “Method of
linking to multiple programming languages” in the compiler manual. Information of reference
may also be found in the “Python binding of EigenExa” project [10], which enabled calling from
the Python language.

5.3 Behavior on error occurrence

During initialization, EigenExa checks that it is being executed under appropriate conditions,
but error detection is not performed during execution. In some cases, forced library termination
may occur if a linked subordinate library such as BLAS or LAPACK produces an error.

Information on bug discoveries is essential for improvement of library quality. On discovery
of any bug, please be sure to report it to the developer email address listed on the public website
of the library.

5.4 Shared library handling in versions 1.x

Shared libraries were not supported in former versions (1.x), because at the time of their de-
velopment it was not possible to guarantee complete, collision-free resolution of function names
when shared libraries are being used (with certain versions of gce, abnormal shutdown occurred
without resolution of function names at execution). When version 1.x is to be used as a shared
library, this must therefore be performed solely at the user’s responsibility.

EigenExa versions 2.x and later are shared-library capable, a development achieved with
the technical cooperation of Team Leader Toshiyuki Maeda and other members of the HPC

19

20 CHAPTER 5. OTHER KEY CONSIDERATIONS

Usability Research Team at the RIKEN Advanced Institute for Computational Science. As
noted in the description of the library build, one should select the appropriate make.inc, and
when executing, always remember to make the appropriate settings for the environment variables
(such as LD_LTBRARY_PATH).

Appendix A

Algorithm overview

A.1 Introduction

Appendix A provides an overview of the eigenvalue computation algorithms used in EigenExa,
with the main focus on ontlines of algorithms that two driver routines (eigen-s and eigen_sx)
use and differences between them. Both routines are designed to meet the underlying EigenExa
objective of computing all eigenvalues and eigenvectors of real symmetric dense matrices. For
general details about eigenvalue computation algorithms for dense matrices, refer to sources
such as [11, 12, 13, 14, 15].

A.2 Various approaches and related projects

ScaLAPACK, EigenExa (eigen_s)

eigenpairs eigenpairs
of T of A
\\\/ DPLASMA, ELPA

banded (B)

real symmetric (4) tridiagonal (7)

EigenExa (eigen_sx)

Figure A.1: Various approaches to eigenvalue computation for real symmetric dense matrices.

Let us begin with a brief introduction to the basic aspects of the eigenvalue computing
procedures that is usually applied to real symmetric dense matrices. Textbooks on general
matrix computation describe an approach based on tridiagonalization of the input matrix (the
green path in Fig. A.1), which is used in ScaLAPACK [16] (and LAPACK). In the first step of
this approach (tridiagonalization), however, the performance is limited by memory bandwidth,
and therefore is expected to be not sufficiently high on recent computer systems.

This problem led to two development projects, ELPA [17] and DPLASMA [18], which em-
ploy an approach based on two-stage tridiagonalization via a banded matrix (the blue path in
Fig. A.1). In this tridiagonalization, the dominant cost arises during the first stage, in trans-
formation from dense to band. The byte/flop ratio required in this transformation is smaller

21

22 APPENDIX A. ALGORITHM OVERVIEW

than that in direct tridiagonalization, which means the improvement of effective performance.
But the eigenvector back-transformation process also requires two stages (basically doubling
the cost). Since high-performance implementation in the first stage of the back-transformation
(from T to B) is currently difficult, its cost becomes extremely large in obtaining a large number
of eigenvectors.

These situations led to the development and provision of two routines for EigenExa. One
(eigen_s) applies an approach based on the conventional (one-stage) tridiagonalization (the green
path in Fig. A.1). The other (eigen_sx) applies an approach in which the eigenvalues and
eigenvectors of a banded matrix are computed directly (the red path in Fig. A.1). The following
sections describe these two approaches in a little more detail.

A.3 eigens

As noted above, the eigen_s routine in EigenExa applies an approach based on the conventional
(one-stage) tridiagonalization, which is used in ScaLAPACK and other libraries. More specif-
ically, it obtains solutions to the eigenvalue problem Ax; = \;x; (i = 1,..., N) through the
following three steps:

1. Tridiagonalization of the input matrix by Householder transformations: QT AQ — T

2. Computation of the eigenvalues and eigenvectors of a tridiagonal matrix by the divide-
and-conquer method: Ty, = \y;

3. Back transformation of the eigenvectors: Qy, — x;
In step 1, the Householder transformations act from both sides
Hy o H'AH,---Hy_ o — T, H;=1-wfu, (A1)

with each column (row) of the input matrix transformed in turn to a tridiagonal matrix
(Fig. A.2(a)). Here, we chose the position of the variable beta in the equations for its cor-
respondence with the description further below. The computation of the transform by each
Householder transformation is usually performed by using the symmetry of A, as

1
(I—upu) TAT —upu’)=A—uv' —vu', v=(w-— §u5T(wTu))ﬂ, w = Au. (A.2)
Furthermore, the Dongarra’s method makes it possible to apply a number of transformations
to the matrix in the form of matrix-matrix multiplications at a time:

(I— UKﬁK’UJKT)T s (I— ulﬂlulT)TA(I — ulﬁlulT) tee (I—UKﬂK’u,KT) =A-— Uv‘/v—r — VUT

(A.3)
However, matrix-vector multiplications, whose performance is limited by the memory band-
width, still remain (for obtaining the matrix V') and is therefore a major bottleneck for high-
performance computing.

In the second step, the divide-and-conquer method proposed by Cuppen [19] is applied to
compute the eigenvalues and eigenvectors of the tridiagonal matrix. As shown in Fig. A.2(b), a
tridiagonal matrix can be decomposed into a block diagonal matrix and a rank one perturbation.
The underlying idea of the method is computing the eigenvalue decomposition of the tridiagonal
matrix efficiently by using the eigenvalue decomposition of the block diagonal matrix (and
recursively apply this idea to the block diagonal matrix).

In the third step, back transformation of the eigenvectors is performed by applying the
Householder transformations obtained in the first step to the eigenvectors of the tridiagonal

A.4. EIGEN_SX 23

matrix in the reverse order. Since a number of Householder transformations can be aggregated
into a convenient form (compact-WY representation):

Hy - Hg =1 -wpiu)) (I —ugBruy) -1 -USU", U=][u; ug] (A.4)

at low cost (only for computing a small matrix S), the back transformation is usually computed
via matrix-matrix multiplications (Level-3 BLAS):

Hy---Hy_ oY = (I -U S U)--- (I = UpnSyUy,))Y = X, (A.5)

where
Y=1[y, yyl, X=[x1--xn] (A.6)

For this reason, this step is expected to achieve high performance.

-

a) Tridiagonalization (b) The divide-and-conquer
method

Figure A.2: Schematic of eigenvalue computation by eigen_s.

In eigen_s, the first and third steps are newly implemented from scratch with appropriate
thread parallelization, whereas the second step is almost ported from the ScaLAPACK code.

A.4 eigen_sx

The other driver routine provided in EigenExa, namely eigen_sx, is based on an approach that
employs direct computation of the eigenvalues and eigenvectors of a banded matrix. At present,
for the reason mentioned in the last section, a pentadiagonal matrix is selected as the banded
matrix. More specifically, the eigenvalue problem is solved in the following three steps.

1. Pentadiagonalization of the input matrix by block version of Householder transformations:
QTAQ — B

2. Computation of the eigenvalues and eigenvectors of a pentadiagonal matrix by the divide-
and-conquer method: By, = \jy;

3. Back transformation of the eigenvectors: Qyz - x;

In the first step, the block version of Householder transformations are applied to the input
matrix from both sides:

g;f/zq -~ H AH, - "FIN/QA — P, H;=I-ua3u (A7)

to transform every two columns (two rows) of the input matrix into a pentadiagonal matrix

(Fig. A.3(a)), where
) o o M g0
a; = [u” u], Bi= o |- (A-8)
521 22

There is no difference excepting the form of H between Eqs. (A.1) and (A.7), so that the proce-
dure of the pentadiagonalization is the same as the tridiagonalization; the Dongarra’s method
can similarly be applied. The performance bottleneck thus resides in the part of computing A.

24 APPENDIX A. ALGORITHM OVERVIEW

In the second step, as shown in Fig. A.3(b), the pentadiagonal matrix is decomposed into
a block diagonal matrix and a rank two perturbation. By treating the rank two perturbation
as two rank one perturbations, we apply the principal of the divide-and-conquer method for
a tridiagonal matrix twice and compute the eigenvalues and eigenvectors of the pentadiagonal
matrix [20].

In the third step, the block version of Householder transformations obtained in the first
step are applied to the eigenvectors of the pentadiagonal matrix in the reverse order, which
is essentially the same as in the case of tridiagonalization. The block version of Householder
transformations can also be aggregated in a form with matrices as in Eq. A.4, and matrix-matrix
multiplication can therefore be used in this step, which promises that this step easily achieves
high performance.

o

a) Pentadiagonalization (b) The divide-and-conquer

Figure A.3: Schematic of eigenvalue computation by eigen_sx.

In eigen_sx, as in eigen_s, steps 1 and 3 are newly implemented with appropriate thread
parallelization, whereas step 2 is a simple extended implementation of the ScaLAPACK code
for a pentadiagonal matrix.

A.5 Differences between eigen_s and eigen_sx

As described in A.3 and A.4, eigen_s and eigen_sx comprise three similar steps and are nearly
the same in computation procedures. Particularly in the step of the back transformation of the
eigenvectors, there is no essential difference between them. In this section, we mention the main
differences in the first and second steps between them.

Tri/Pentadiagonalization

The essential difference between eigen_s and eigen_sx in this step is that eigen_s processes a
single vector, whereas eigen_sx processes two vectors together, e.g.

w = Au (in eigens) — [w; wa] = Alu; us] (in eigen_sx). (A.9)

In the overall step, the total number of floating-point operations is a about the same (at least for
the highest term) for the two routines; amount per operation required in eigen_sx in about twice
that in eigen_s, but the number of operations in eigen_sx is about half that in eigen_s because
the former deals with two columns at an operation. For the similar reasons, the amount of the
data transfered among distributed processes is almost the same for the two.

The first difference that becomes evident between the two is in the effective performance
of the floating-point operations (in particular, in matrix-vector multiplications). The data of
matrix A can be reused when computing Alu; wus], whereas it cannot when computing Aw.
This means that the required byte/flop ratio in the former is lower than that in the latter. As a
result, the effect of limitation by memory bandwidth is smaller in the former than in the latter
(theoretically by about half), which indicates the increasing effective performance in eigen_sx.

The second difference that becomes evident is in the communication latency, arising from the
difference in communication frequencies. Although the data amount per communication is larger

A.6. CONCLUSION 25

in eigen_sx than in eigen_s, the frequency of communications is lower (by about half). The feature
of lower communication frequency (Communication-Avoidance) is a very substantial difference,
especially in cases of massively parallel computing, due to the fact that communication latency
has become a major problem on recent systems.

In short, eigen_sx exhibits clear advantages over eigen_s in terms of both the performance of
floating-point operations and the latency cost of communication. In cases where the problem
size relative to the number of processes is sufficiently large (with the time for floating-point
operations thus dominant), the advantage in effective performance is significant. On the other
hand, in cases where the number of processes is large (with communication time thus dominant),
the advantage in the latency cost is therefore significant. In total, eigen_sx is expected to achieve
higher performance than eigen_s.

The divide-and-conquer method

It is clear that eigen_sx requires more cost (both for floating-point operations and communica-
tions) than eigen_s because the former deals with a rank two perturbation whereas the latter
deals with a rank one perturbation. In eigen_sx, a rank two perturbation is dealt with two rank
one perturbations. The computational cost for the first rank one perturbation can be reduced
by exploiting the structure of the matrix (i.e. block diagonal), however such benefit done not
exist in the computation for the second rank one perturbation; the latter cost is about twice
that of the former cost. The resulting cost required in eigen_sx increases by a factor of about
three.

In the divide-and-conquer method, one can reduce the cost substantially by the technique
known as “deflation”. The number of opportunities in which deflation can be applied varies
with the problem. In addition, it is different even for the same input matrix between routines
via tridiagonalization and pentadiagonalization. Therefore, it is not easy to derive a theoretical
estimation of the difference between the costs of the two routines.

A.6 Conclusion

In this chapter, we gave an overview of the algorithms employed in the two routines, eigen_s and
eigen_sx, provided in EigenExa and explained their main differences. Increasing the bandwidth
of the banded matrix generally involves the trade-off; it is advantageous in the first step (the
transformation step), but disadvantageous in the second step (the divide-and-conquer method).
Taking this trade-off into account, we deem that the pentadiagonal matrix is appropriate on
today’s systems. With increasing performance of future systems and improved implementation
of the divide-and-conquer method (our ScaLAPACK-based implementation seems to be rarely
suitable for current systems), banded matrix with larger band width (e.g. heptadiagonal) may
prove promising. By contrast, the use of conventional tridiagonalization (eigen-s) might in some
circumstances be the best choice. We hope that an understanding of the information in this
appendix will help users to select the routine that is most appropriate to their application.

26

APPENDIX A. ALGORITHM OVERVIEW

Acknowledgements

We would like to express our deepest gratitude to all the members of the EigenExa development
group for their sincere contribution to developing EigenExa. We also grateful the support from
the RIKEN Advanced Institute for Computational Science (AICS). In addition, we appreciate
the users of EigenExa for their bug reports and feedback that is beneficial to further quality
improvement of EigenExa. Without people and support above mentioned, EigenExa could have
not been released.

The EigenExa project has been supported by the following funds.

e JST CREST, “Development of System Software Technologies for post-Peta Scale High
Performance Computing” (FY2011-FY2015).

e MEXT KAKENHI, Grant Numbers 21300013 (FY2012), 23240005 (FY2011-FY2013), and
15H02709 (FY2015-FY2017).

The EigenExa project has used computational resources of the K computer provided by the
RIKEN AICS through the folowing projects.

e HPCI System Research project, project IDs hp140069 (FY2014) and hp140069 (FY2012—
FY2013).

e Computational resources for enhancement, Project ID ra000005 (FY2013-).

The EigenK project, the predecessor of the EigenExa project, was supported by the following
fund.

e JST CREST, “High Performance Computing for Multi-Scale and Multi-Physics Phenom-
ena” (FY2006-FY2012).

27

28

APPENDIX A. ALGORITHM OVERVIEW

References

[1]

[10]

[11]
[12]
[13]

S. Yamada, T. Imamura, T. Kano and M. Machida, “High-Performance Computing for
Exact Numerical Approaches to Quantum Many-Body Problems on the Earth Simulator”,
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06), November
2006. Tampa USA.

http://doi.acm.org/10.1145/1188455.1188504

T. Imamura, S. Yamada and M. Machida, “Development of a High Performance Eigensolver
on the Peta-Scale Next Generation Supercomputer System”, Progress in Nuclear Science
and Technology, the Atomic Energy Society of Japan, Vol. 2, pp.643-650 (2011) .

T. Imamura, S. Yamada and M. Machida, “Figen-K: high performance eigenvalue solver for
symmetric matrices developed for K computer”, 7th International Workshop on. Parallel
Matrix Algorithms and Applications (PMAA2012), June 2012, London UK.

What is K7 — RIKEN Advanced Institute for Computational Science,
http://www.aics.riken. jp/en/k-computer/about/

K computer — Fujitsu Global,
http://www.fujitsu.com/global/about/businesspolicy/tech/k/

T. Imamura and Y. Yamamoto, “CREST: Dense Eigen-Engine Groups”, International
Workshop on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale
Computing (EPASA 2014), Tsukuba, March 7-9, 2014 (poster).
http://www.aics.riken.jp/labs/lpnctrt/EPASA2014_dense_poster_ImamuraT_only.
pdf

T. Imamura, “The EigenExa Library — High Performance & Scalable Direct Eigensolver for
Large-Scale Computational Science”, HPC in Asia, Leipzig, Germany, June 22-26, 2014.

T. Imamura, Y. Hirota, T. Fukaya, S. Yamada and M. Machida, “EigenExa: high per-
formance dense eigensolver, present and future”, 8th International Workshop on Parallel
Matrix Algorithms and Applications (PMAA14), Lugano, Switzerland, July 24, 2014.

T. Fukaya and T. Imamura, “Performance evaluation of the EigenExa eigensolver on the
Oakleaf-FX supercomputing system”, Annual Meeting on Advanced Computing System
and Infrastructure (ACSI) 2015, Tsukuba, January 26-28, 2015.

Python binding of EigenExa, HPC Usability Research Team, RIKEN AICS, http://www.
hpcu.aics.riken. jp/

B. Parlett, “The Symmetric Eigenvalue Problem”, STAM (1987).
J. Demmel, “Applied Numerical Linear Algebra”, SIAM (1997).
L. Trefethen and D. Bau, III, “Numerical Liner Algebra”, STAM (1997).

29

30 REFERENCES

[14] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, “Numerical Recipes: The Art of
Scientific Computing”, 3rd ed., Cambridge University Press (2007).

[15] G. Golub and C. Van Loan, “Matrix Computations”, 4th ed., Johns Hopkins University
Press (2012).

[16] ScaLAPACK, http://www.netlib.org/scalapack/
[17) ELPA, http://elpa.rzg.mpg.de/
[18] DPLASMA, http://icl.cs.utk.edu/dplasma/

[19] J. Cuppen, “A divide and conquer method for the symmetric tridiagonal eigenproblem”,
Numer. Math, Vol.36, pp.177-195 (1981).

[20] P. Arbenz, “Divide and conquer algorithms for the bandsymmetric eigenvalue problem”,
Parallel Computing, Vol.18, No.10, pp.1105-1128 (1992).

