

How small are the active eddies in turbulent boundary layer?							
	Ro.	R	d	d/_			
	Kel	0	u	/δ			
	$1 imes 10^5$	37 mm	5.1 mm	0.140			
	$1 imes 10^6$	25 mm	600 µm	0.026			
	$1 imes 10^7$	15 mm	77 µm	0.005			
δ : Thickness of boundary layer d: Scale of active eddies in TBL							

Fully-resolved LES									
Applications of LES expected in 2015									
a	automobile	L=2 m, U=28 m/s (100 km/h)	$4.0 imes10^6$	20	40 billion				
r	nodel ship	L= 5m (1/50 scale model), U=1.0 m/s	4.6×10^{6}	1.2	20 billion				
r	nodel pump	D ₂ =300 mm, 1500 rpm, L=0.15 m, U=24 m/s	$3.6 imes 10^6$	12	4000 billion				
v	wind turbine	D ₂ =40 m, L=0.4 m, U=64 m/s	2.5×10^6	3	40 billion				
a	axial-flow fan	D ₂ =600 mm, 1800 rpm, L=0.2 m, U=56 m/s	$7.5 imes 10^5$	12	9 billion				
ł	propeller fan	D ₂ =500 mm, 600 rpm, L=0.2 m, U=16 m/s	$2.0 imes 10^5$	3	100 million				
s	small cooling fan	D ₂ =80 mm, 3400 rpm, L=0.02 m, U=14 m/s	1.9×10^4	7	1 million				
					11				

Co	Code tunings-2/3						
Sustained performance of the hot kernel							
		Hexahedral element	Tetrahedral element				
	Original (1core)	5.9%	2.4%				
	Full unroll (1core)	10.8%	4.2%				
	Full unroll (8core)	5.4%	3.0%				
	Full unroll + Reordering (1core)	10.2%	10.2%				
	Full unroll + Reordering (8core)	8.1%	7.7%				
			24				

