理化学研究所 計算科学研究機構

メニュー
メニュー
Learnmore もっと知りたい

"Storm-Scale Weather Analysis and Prediction at the NOAA National Severe Storms Laboratory Using a Localized Particle Filter"

[ 2017年02月27日 ]

RIKEN International Symposium on Data Assimilation 2017
"Storm-Scale Weather Analysis and Prediction at the NOAA National Severe Storms Laboratory Using a Localized Particle Filter" 

Monte Carlo data assimilation techniques provide a means of representing the probabilistic evolution of simulated weather events conditioned on atmospheric measurements. These methods typically operate under Gaussian approximations for the underlying error distribution, which may be inappropriate for highly nonlinear applications. For the case of severe convective storms, nonlinearity in the dynamical model and measurement operators that map satellite and radar observations to prognostic model state variables both pose challenges for Gaussian based ensemble Kalman filters (EnKFs) and ensemble-variational hybrids. The current study applies a newly developed data assimilation method called the local particle filter (PF), which avoids the assumptions of methods currently used for this application. Theoretical advantages of the local PF are explored using idealized and real convective-scale data assimilation experiments performed at the NOAA National Severe Storms Laboratory. Results from this study provide insight into how remotely sensed data can be used most effectively for real-time numerical weather prediction.
http://www.data-assimilation.riken.jp/risda2017/

※Flash動画に関しては、PC端末より閲覧頂くようお願い致します。

0
講師プロフィール
名前:Jonathan Poterjoy 所属:NCAR
略歴:外部ページ

eラーニングアーカイブ カテゴリー

  • 講義(コースから探す方へ)
  • 講義(新着順に探す方へ)
  • 講演・シンポジウム
  • ダウンロード資料集